FYS 3120: Classical Mechanics and Electrodynamics

Formula Collection

1 Analytical Mechanics

The Lagrangian

$$
\begin{equation*}
L=L(q, \dot{q}, t), \tag{1}
\end{equation*}
$$

is a function of the generalized coordinates $q=\left\{q_{i} ; i=1,2, \ldots, d\right\}$ of the physical system, and their time derivatives $\dot{q}=\left\{\dot{q}_{i} ; i=1,2, \ldots, d\right\}$. The Lagrangian may also have an explicit dependence of time t.

Lagrange's equations

$$
\begin{equation*}
\frac{d}{d t} \frac{\partial L}{\partial \dot{q}_{i}}-\frac{\partial L}{\partial q_{i}}=0, \quad i=1,2, . ., d . \tag{2}
\end{equation*}
$$

There is one equation for each generalized coordinate.

Generalized momentum

$$
\begin{equation*}
p_{i}=\frac{\partial L}{\partial \dot{q}_{i}}, \quad i=1,2, . ., d . \tag{3}
\end{equation*}
$$

is also referred to as canonical or conjugate momentum. There is one generalized momentum p_{i} conjugate to each generalized coordinate q_{i}.

The Hamiltonian

$$
\begin{equation*}
H(p, q)=\sum_{i=1}^{d} \dot{q}_{i} p_{i}-L \tag{4}
\end{equation*}
$$

is usually considered as a function of the generalized coordinates q_{i} and momenta p_{i}.

Hamilton's equations

$$
\begin{equation*}
\dot{q}_{i}=\frac{\partial H}{\partial p_{i}}, \quad \dot{p}_{i}=-\frac{\partial H}{\partial q_{i}}, \quad i=1,2, . ., d \tag{5}
\end{equation*}
$$

Standard expressions for $L \mathbf{~ o g} H$

$$
\begin{align*}
L & =K-V \\
H & =K+V \tag{7}
\end{align*}
$$

with K as kinetic energy and V as potential energy. There are cases where H is not the total energy.
Charged particle in electromagnetic field (non-relativistic)

$$
\begin{align*}
L=L(\mathbf{r}, \mathbf{v}) & =\frac{1}{2} m v^{2}-e \phi+e \mathbf{v} \cdot \mathbf{A} \\
H=H(\mathbf{r}, \mathbf{p}) & =\frac{1}{2 m}(\mathbf{p}-e \mathbf{A})^{2}+e \phi \tag{8}
\end{align*}
$$

2 Relativity

Space-time coordinates

$$
\begin{equation*}
\left(x^{0}, x^{1}, x^{2}, x^{3}\right)=(c t, x, y, z)=(c t, \mathbf{r}) \tag{9}
\end{equation*}
$$

General Lorentz transformation

$$
\begin{equation*}
x^{\mu} \rightarrow x^{\mu}=L_{\nu}^{\mu} x^{\nu}+a^{\mu} \tag{10}
\end{equation*}
$$

Special Lorentz transformation with velocity v in the x direction

$$
\begin{align*}
& x^{0}=\gamma\left(x^{0}-\beta x^{1}\right) \\
& x^{1}=\gamma\left(x^{1}-\beta x^{0}\right) \tag{11}
\end{align*}
$$

with $\beta=v / c$ and $\gamma=1 / \sqrt{1-\beta^{2}}$, and x^{2} og x^{3} are unchanged.

Condition satisfied by Lorentz transformation matrices

$$
\begin{equation*}
g_{\mu \nu} L_{\rho}^{\mu} L_{\sigma}^{\nu}=g_{\rho \sigma} \tag{12}
\end{equation*}
$$

Invariant line element

$$
\begin{equation*}
\Delta s^{2}=c^{2} \Delta t^{2}-\Delta \mathbf{r}^{2}=g_{\mu \nu} \Delta x^{\mu} \Delta x^{\nu}=\Delta x_{\mu} \Delta x^{\mu} \tag{13}
\end{equation*}
$$

Metric tensor

$$
g_{\mu \nu}=\left\{\begin{array}{cl}
0, & \mu \neq \nu \\
1, & \mu=\nu=0 \\
-1, & \mu=\nu \neq 0
\end{array}\right.
$$

Upper and lower index

$$
\begin{array}{ll}
x_{\mu}=g_{\mu \nu} x^{\nu}, & \left(x^{\mu}\right)=(c t, \mathbf{r}), \quad\left(x_{\mu}\right)=(c t,-\mathbf{r}) \\
x^{\mu}=g^{\mu \nu} x_{\nu}, & g_{\mu \rho} g^{\rho \nu}=\delta_{\mu}^{\nu} \tag{14}
\end{array}
$$

Proper time - time dilatation

$$
\begin{equation*}
d \tau=\frac{1}{c} \sqrt{d s^{2}}=\frac{1}{\gamma} d t \tag{15}
\end{equation*}
$$

$d \tau$: proper time interval $=$ time measured in an (instantaneous) rest frame of a moving body (by a co-moving clock)
$d s^{2}$: invariant line element of an infinitesimal section of the object's world line
$d t$: coordinate time interval = time interval measured in arbitrarily chosen inertial system

Length contraction

$$
\begin{equation*}
L=\frac{1}{\gamma} L_{0} \tag{16}
\end{equation*}
$$

Lengths of a moving body measured in the direction of motion.
L_{0} : length measured in the rest frame of a moving body
L : length measured (at simultaneity) in an arbitrarily chosen inertial frame.

Four velocity

$$
\begin{equation*}
U^{\mu}=\frac{d x^{\mu}}{d \tau}=\gamma(c, \mathbf{v}), \quad U^{\mu} U_{\mu}=c^{2} \tag{17}
\end{equation*}
$$

Four acceleration

$$
\begin{equation*}
\mathcal{A}^{\mu}=\frac{d U^{\mu}}{d \tau}=\frac{d^{2} x^{\mu}}{d \tau^{2}}, \quad \mathcal{A}^{\mu} U_{\mu}=0 \tag{18}
\end{equation*}
$$

Proper acceleration \mathbf{a}_{0}

Acceleration measured in instantaneous rest frame,

$$
\begin{equation*}
\mathcal{A}^{\mu} \mathcal{A}_{\mu}=-\mathbf{a}_{0}{ }^{2} \tag{19}
\end{equation*}
$$

Four momentum

$$
\begin{equation*}
p^{\mu}=m U^{\mu}=m \gamma(c, \mathbf{v})=\left(\frac{E}{c}, \mathbf{p}\right) \tag{20}
\end{equation*}
$$

with m as the (rest) mass of a moving body.

Relativistic energy

$$
\begin{equation*}
E=\gamma m c^{2} \tag{21}
\end{equation*}
$$

γm is sometimes referred to as the relativistic mass of the moving body.

3 Electrodynamics

Maxwell's equations

$$
\begin{align*}
\nabla \cdot \mathbf{E} & =\frac{\rho}{\epsilon_{0}} \\
\boldsymbol{\nabla} \times \mathbf{B}-\frac{1}{c^{2}} \frac{\partial}{\partial t} \mathbf{E} & =\mu_{0} \mathbf{j} \\
\nabla \cdot \mathbf{B} & =0 \\
\boldsymbol{\nabla} \times \mathbf{E}+\frac{\partial}{\partial t} \mathbf{B} & =0 \tag{22}
\end{align*}
$$

Maxwell's equations in covariant form

$$
\begin{align*}
& \partial_{\mu} F^{\mu \nu}=\mu_{0} j^{\nu}, \quad \partial_{\nu} \equiv \frac{\partial}{\partial x^{\nu}} \\
& \partial_{\mu} \tilde{F}^{\mu \nu}=0, \quad \tilde{F}^{\mu \nu} \equiv \frac{1}{2} \epsilon^{\mu \nu \rho \sigma} F_{\rho \sigma} \tag{23}
\end{align*}
$$

Electromagnetic field tensor

$$
\begin{align*}
F^{k 0} & =\frac{1}{c} E_{k}, \quad F^{i j}=-\epsilon_{i j k} B_{k} \\
\tilde{F}^{k 0} & =B_{k}, \quad \tilde{F}^{i j}=\frac{1}{c} \epsilon_{i j k} E_{k} \tag{24}
\end{align*}
$$

Four-current density

$$
\begin{equation*}
\left(j^{\mu}\right)=(c \rho, \mathbf{j}) \tag{25}
\end{equation*}
$$

Charge conservation

$$
\begin{equation*}
\partial_{\mu} j^{\mu}=0, \quad \frac{\partial}{\partial t} \rho+\nabla \cdot \mathbf{j}=0 \tag{26}
\end{equation*}
$$

Electromagnetic potentials

$$
\begin{equation*}
\mathbf{E}=-\boldsymbol{\nabla} \phi-\frac{\partial}{\partial t} \mathbf{A}, \quad \mathbf{B}=\boldsymbol{\nabla} \times \mathbf{A} \tag{27}
\end{equation*}
$$

Four potential

$$
\begin{equation*}
F^{\mu \nu}=\partial^{\mu} A^{\nu}-\partial^{\nu} A^{\mu}, \quad\left(A^{\mu}\right)=\left(\frac{1}{c} \phi, \mathbf{A}\right) \tag{28}
\end{equation*}
$$

Lorentz force

Force from the electromagnetic field on a point particle with charge q

$$
\begin{equation*}
\mathbf{F}=q(\mathbf{E}+\mathbf{v} \times \mathbf{B}) \tag{29}
\end{equation*}
$$

Potentials from charge and current distributions
in Lorentz gauge, $\partial_{\mu} A^{\mu}=0$:

$$
\begin{align*}
& \phi(\mathbf{r}, t)=\frac{1}{4 \pi \epsilon_{0}} \int \frac{\rho\left(\mathbf{r}^{\prime}, t^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} d V^{\prime} \\
& \mathbf{A}(\mathbf{r}, t)=\frac{\mu_{0}}{4 \pi} \int \frac{\mathbf{j}\left(\mathbf{r}^{\prime}, t^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} d V^{\prime} \tag{30}
\end{align*}
$$

Retarded time

$$
\begin{equation*}
t^{\prime}=t-\frac{1}{c}\left|\mathbf{r}-\mathbf{r}^{\prime}\right| \tag{31}
\end{equation*}
$$

Electric dipole moment

$$
\begin{equation*}
\mathbf{p}=\int \mathbf{r} \rho(\mathbf{r}) d V \tag{32}
\end{equation*}
$$

Electric dipole potential (dipole at the origin)

$$
\begin{equation*}
\phi=\frac{\mathbf{n} \cdot \mathbf{p}}{4 \pi \epsilon_{0} r^{2}}, \quad \mathbf{n}=\frac{\mathbf{r}}{r} \tag{33}
\end{equation*}
$$

Force and torque (about the origin)

$$
\begin{equation*}
\mathbf{F}=(\mathbf{p} \cdot \boldsymbol{\nabla}) \mathbf{E}, \quad \mathbf{M}=\mathbf{p} \times \mathbf{E} \tag{34}
\end{equation*}
$$

Magnetic dipole moment

$$
\begin{equation*}
\mathbf{m}=\frac{1}{2} \int \mathbf{r} \times \mathbf{j}(\mathbf{r}) d V \tag{35}
\end{equation*}
$$

Magnetic dipole potential (dipole at the origin)

$$
\begin{equation*}
\mathbf{A}=\frac{\mu_{0} \mathbf{m} \times \mathbf{n}}{4 \pi r^{2}}, \quad \mathbf{n}=\frac{\mathbf{r}}{r} \tag{36}
\end{equation*}
$$

Force and torque (about the origin)

$$
\begin{equation*}
\mathbf{F}=\boldsymbol{\nabla}(\mathbf{m} \cdot \mathbf{B})(\text { current loop }), \quad \mathbf{M}=\mathbf{m} \times \mathbf{B} \tag{37}
\end{equation*}
$$

Lorentz transformation of the electromagnetic field

$$
\begin{equation*}
F^{\prime \mu \nu}=L_{\rho}^{\mu} L_{\sigma}^{\nu} F^{\rho \sigma} \tag{38}
\end{equation*}
$$

Lorentz invariants

$$
\begin{align*}
\mathbf{E}^{2}-c^{2} \mathbf{B}^{2} & =-\frac{c^{2}}{2} F_{\mu \nu} F^{\mu \nu} \\
\mathbf{E} \cdot \mathbf{B} & =\frac{c}{4} \tilde{F}_{\mu \nu} F^{\mu \nu} \tag{39}
\end{align*}
$$

Special Lorentz transformations

$$
\begin{array}{ll}
\mathbf{E}_{\|}^{\prime}=\mathbf{E}_{\|}, & \mathbf{E}_{\perp}^{\prime}=\gamma\left(\mathbf{E}_{\perp}+\mathbf{v} \times \mathbf{B}\right) \\
\mathbf{B}_{\|}^{\prime}=\mathbf{B}_{\|}, & \mathbf{B}_{\perp}^{\prime}=\gamma\left(\mathbf{B}_{\perp}-\mathbf{v} \times \mathbf{E} / c^{2}\right) \tag{40}
\end{array}
$$

The fields are decomposed in a parallel component $(\|)$, in the direction of transformation velocity \mathbf{v}, and a perpendicular component (\perp), orthogonal to \mathbf{v}.

Electromagnetic field energy density

$$
\begin{equation*}
u=\frac{1}{2}\left(\epsilon_{0} E^{2}+\frac{1}{\mu_{0}} B^{2}\right)=\frac{\epsilon_{0}}{2}\left(E^{2}+c^{2} B^{2}\right) \tag{41}
\end{equation*}
$$

Electromagnetic energy current density (Poynting's vector)

$$
\begin{equation*}
\mathbf{S}=\frac{1}{\mu_{0}} \mathbf{E} \times \mathbf{B} \tag{42}
\end{equation*}
$$

Monochromatic plane waves, plane polarized

$$
\begin{align*}
& \mathbf{E}(\mathbf{r}, t)=\mathbf{E}_{0} \cos (\mathbf{k} \cdot \mathbf{r}-\omega t), \quad \mathbf{E}_{0}=E_{0} \mathbf{e}_{1} \\
& \mathbf{B}(\mathbf{r}, t)=\mathbf{B}_{0} \cos (\mathbf{k} \cdot \mathbf{r}-\omega t) ; \quad \mathbf{B}_{0}=B_{0} \mathbf{e}_{2} \\
& \mathbf{E}_{0} \cdot \mathbf{k}=\mathbf{B}_{0} \cdot \mathbf{k}=0, \quad \mathbf{B}_{0}=\frac{1}{c} \mathbf{n} \times \mathbf{E}_{0}, \quad \mathbf{n}=\frac{\mathbf{k}}{k} \tag{43}
\end{align*}
$$

Monochromatic plane waves, circular polarized

$$
\begin{array}{ll}
\mathbf{E}(\mathbf{r}, t)=\operatorname{Re}\left(\mathbf{E}_{0} \exp [i(\mathbf{k} \cdot \mathbf{r}-\omega t)]\right), & \mathbf{E}_{0}=E_{0} \frac{1}{\sqrt{2}}\left(\mathbf{e}_{1} \pm i \mathbf{e}_{2}\right) \\
\mathbf{B}(\mathbf{r}, t)=\operatorname{Re}\left(\mathbf{B}_{0} \exp [i(\mathbf{k} \cdot \mathbf{r}-\omega t)]\right), & \mathbf{B}_{0}=B_{0} \frac{1}{\sqrt{2}}\left(\mathbf{e}_{2} \mp i \mathbf{e}_{1}\right) \tag{44}
\end{array}
$$

Polarization vectors

$$
\begin{equation*}
\mathbf{e}_{1} \cdot \mathbf{k}=\mathbf{e}_{2} \cdot \mathbf{k}=0, \quad \mathbf{e}_{1} \cdot \mathbf{e}_{2}=0, \quad \mathbf{e}_{1}^{2}=\mathbf{e}_{2}^{2}=1 \tag{45}
\end{equation*}
$$

Four-wave vector

$$
\begin{equation*}
\left(k^{\mu}\right)=\left(\frac{\omega}{c}, \mathbf{k}\right), \quad \omega=c k \tag{46}
\end{equation*}
$$

Radiation fields, in the wave zone ($r \gg r^{\prime}, \lambda$)

$$
\begin{align*}
& \mathbf{B}(\mathbf{r}, t)=-\frac{\mu_{0}}{4 \pi c} \frac{\mathbf{n}}{r} \times \frac{d}{d t} \int \mathbf{j}\left(\mathbf{r}^{\prime}, t^{\prime}\right) d V^{\prime}, \quad \mathbf{n}=\frac{\mathbf{r}}{r} \\
& \mathbf{E}(\mathbf{r}, t)=c \mathbf{B}(\mathbf{r}, t) \times \mathbf{n} \tag{47}
\end{align*}
$$

Electric dipole radiation

$$
\begin{equation*}
\mathbf{B}(\mathbf{r}, t)=-\frac{\mu_{0}}{4 \pi c} \frac{\mathbf{n}}{r} \times \ddot{\mathbf{p}}(t-r / c), \quad \mathbf{E}(\mathbf{r}, t)=c \mathbf{B}(\mathbf{r}, t) \times \mathbf{n} \tag{48}
\end{equation*}
$$

Radiation from accelerated, charged particle

$$
\begin{align*}
& \mathbf{B}(\mathbf{r}, t)=\frac{\mu_{0} q}{4 \pi c r}[\mathbf{a} \times \mathbf{n}]_{r e t}, \quad \mathbf{E}(\mathbf{r}, t)=c \mathbf{B}(\mathbf{r}, t) \times \mathbf{n}_{r e t} \\
& \mathbf{n}=\mathbf{R} / R, \quad \mathbf{R}(t)=\mathbf{r}-\mathbf{r}(t) \tag{49}
\end{align*}
$$

with $\mathbf{r}(t)$ as the particle's position vector.
Radiated power, Larmor's formula

$$
\begin{equation*}
P=\frac{\mu_{0} q^{2}}{6 \pi c} \mathbf{a}^{2} \tag{50}
\end{equation*}
$$

