

UiO : Fysisk institutt
Det matematisk-naturvitenskapelige fakultet

Lecture 11

This week

- Wednesday: Relativistic four-vectors, Lorentz transformations and Minkowski diagrams. (Sections 4.3, 4.4, and 4.5)
- Thursday: Problem set 5 with last of Lagrangian and Hamiltonian for now. Includes mid-term exam question from 2008 (famous physics problem).
- Friday: Length contraction, time dilatation and proper time. (Sections 5.1, 5.2, and 5.3) Also twin paradox (Section 5.4) if time.

Recap

- A reference frame or rest frame (RF) is a coordinate system with origin and orientation.
- An inertial RF is a non-accelerated RF.
- Relativity (Galilean) says that a particle with velocity u and u' in two RFs S and S ' with relative velocity v has $\mathrm{u}^{\prime}=\mathrm{u}-\mathrm{v}$ under

$$
x^{\prime}=x-v t, \quad y^{\prime}=y, \quad z^{\prime}=z, \quad t=t
$$

- To have the same velocity of light in all frames we must introduce Lorentz transformations $x^{\prime}=\gamma(x-v t), \quad y^{\prime}=y, \quad z^{\prime}=z, t^{\prime}=\gamma\left(t-\frac{v}{c^{2}} x\right)$

Recap

- We define an invariant distance (metric)
$\Delta s^{2} \equiv c^{2} \Delta t^{2}-\Delta x^{2}$
which is the same in all RFs.
- A crucial point of notation is four-vectors
$x=\left(\begin{array}{c}x^{0} \\ x^{1} \\ x^{2} \\ x^{3}\end{array}\right)=\left(\begin{array}{c}c t \\ x \\ y \\ z\end{array}\right)$, in components x^{μ} where $\mu=0,1,2,3$

Today

- Four-vectors
- Essential tool for all relativistic physics.
- More general (Lorentz) transformations
- All possible symmetries of special relativity.
- Minkowski diagrams
- Keeping track of causal relations between spacetime points.

Det matematisk-naturvitenskapelige fakultet

Minkowski diagram - light cone

Two RFs S and S' with relative velocity $\beta=\mathrm{v} / \mathrm{c}$

$$
\begin{aligned}
x^{\prime} & =\gamma(x-\beta c t) \\
c t^{\prime} & =\gamma(c t-\beta x)
\end{aligned}
$$

Summary

- We can write Lorentz transformations as the matrix multiplication

$$
x^{\prime \mu}=L_{v}^{\mu} x^{v}
$$

or $x^{\prime}=L x$, where, for a boost in the x-direction,

$$
L=\left[\begin{array}{cccc}
\gamma & -\beta \gamma & 0 & 0 \\
-\beta \gamma & \gamma & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

- Adding translations we have the Poincaré transformation $x^{\prime}=L x+a$.

