

UiO : Fysisk institutt
Det matematisk-naturvitenskapelige fakultet

Lecture 12

Recap

- We can write Lorentz transformations as the matrix multiplication (note index system!)

$$
x^{\prime \mu}=L_{v}^{\mu} x^{v}
$$

or $x^{\prime}=L x$, where, for a boost in the x-direction,

$$
L=\left[\begin{array}{cccc}
\gamma & -\beta \gamma & 0 & 0 \\
-\beta \gamma & \gamma & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

- Adding translations we have the Poincaré transformation $x^{\prime}=L x+a$.

Plan for today

- Length contraction
- The length of objects is different in different RFs!
- Time dilatation
- Time moves differently in different RFs!
- Proper time
- How to get a good definition of time even when accelerating.
- The twin paradox (*sigh*)
- A completely bloody annoying useless example of nothing.

UiO: Fysisk institutt

Det matematisk-naturvitenskapelige fakultet

Length contraction

UiO : Fysisk institutt

Det matematisk-naturvitenskapelige fakultet

Twin paradox

Summary

- A body of length L_{0} at rest in RF S' moving with velocity v w.r.t. RF S has length L in S given by

$$
L=\frac{1}{\gamma} L_{0} \leq L_{0}
$$

A time interval τ in S^{\prime} is the interval t in S

$$
t=\gamma \tau \geq \tau
$$

This is length contraction and time dilation.

- The proper time is given as

$$
\tau_{A B} \equiv \int_{t_{A}}^{t_{B}} \sqrt{1-\frac{v^{2}(t)}{c^{2}}} d t
$$

