

UiO : Fysisk institutt
Det matematisk-naturvitenskapelige fakultet

Lecture 13

This week

- Wednesday: Relativistic four-vectors and the Lorentz transformations, general four-vectors. (Sections 6.1-6.4)
- Thursday: Problem set 6, mostly with relativistic physics. Also mid-term exam question from 2014.
- Friday: Cancelled (NFK).

Recap

- A body of length L_{0} at rest in RF S' moving with velocity v w.r.t. RF S has length L in S given by

$$
L=\frac{1}{\gamma} L_{0} \leq L_{0}
$$

A time interval τ in S^{\prime} is the interval t in S

$$
t=\gamma \tau \geq \tau
$$

This is length contraction and time dilation.

- The proper time is given as

$$
\tau_{A B} \equiv \int_{t_{A}}^{t_{B}} \sqrt{1-\frac{v^{2}(t)}{c^{2}}} d t
$$

Today

- Return of the four-vectors
- We repeat Einstein's summation convention.
- The metric tensor.
- Lower indices (finally).
- The general four-vector. (Not necessarily spacetime x^{μ}.)
- Lorentz transformations strike again
- Now properly using four-vectors and the metric.

Summary

- We define the metric tensor g and inverse g^{-1} as

$$
g=g^{-1}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right]
$$

- This is used to raise and lower indices

$$
A^{u}=g^{u v} A_{v}, \quad A_{\mu}=g_{\mu v} A^{v}
$$

- Lorentz transformations are given by

$$
A^{\prime \mu}=L^{\mu}{ }_{v} A^{v}, \quad A_{\mu}^{\prime}=L_{\mu}{ }^{v} A_{v}
$$

where L fulfils $g_{\mu v} L^{u}{ }_{\rho} L^{v}{ }_{\sigma}=g_{\rho \sigma}$

