

UiO : Fysisk institutt
Det matematisk-naturvitenskapelige fakultet

Lecture 14

This week

- Wednesday: Tensors and vector fields. (Sections 6.5-6.6)
- Thursday: Problem set 7, some repetition of Lagrangians, tensors and relativistic problems including a (modified) exam question from 2006. (Please remember you need 6 problems sets before the exam!)
- Friday: Relativistic kinematics with four-vectors. (Section 7.1)

Recap

- We define the metric tensor g and inverse g^{-1} as

$$
g=g^{-1}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right]
$$

- This is used to raise and lower indices

$$
A^{\mu}=g^{\mu v} A_{v}, \quad A_{\mu}=g_{\mu v} A^{v}
$$

- Lorentz transformations are given by

$$
A^{\prime \mu}=L^{\mu}{ }_{v} A^{v}, \quad A_{\mu}^{\prime}=L_{\mu}{ }^{v} A_{v}
$$

where L fulfils $g_{\mu \nu} L^{\mu}{ }_{\rho} L^{v}{ }_{\sigma}=g_{\rho \sigma}$

Today

- Tensors
- Four-vectors with (possibly) more indices.
- Rank (number of indices).
- Tensor product.
- Vector and tensor fields
- Differentiation for four-vectors
- The d'Alembertian.

Summary

- We can generalize four-vectors to rank-n tensors with n indices, e.g. the rank-2 $\mathrm{F}^{\mu \mathrm{v}}$.
- We also have tensor fields, e.g. $\varphi(x), A^{\mu}(x)$, $F^{\mu v}(x)$, that transform as relativistic tensors.
- We define a four-component derivative as

$$
\partial_{\mu} \equiv \frac{\partial}{\partial x^{u}} ; \quad \frac{\partial}{\partial x^{u}}=\left(\frac{1}{c} \frac{\partial}{\partial t},-\frac{\partial}{\partial x},-\frac{\partial}{\partial y},-\frac{\partial}{\partial z}\right)
$$

that also transforms as a covariant four-vector.

- This can be used to define the d'Alembertian $\partial_{\mu} \partial^{\mu}=\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t_{\text {FYS3120 - Classial mechanis sand dectrodynamics }}^{2}}-\vec{\nabla}^{2}$

