

UiO: Fysisk institutt
Det matematisk-naturvitenskapelige fakultet

Lecture 22

This week

- Wednesday: Lorentz transformations of electric and magnetic fields. (Sections 9.8-9.9)
- Thursday: Problem set 10. (Questions on Maxwell's equations \& exam question from 2013 on relativity.)
- Friday: Electromagnetic waves, polarization. (Sections 10.1 and 10.2)

Recap

- We can write Maxwell's equations on covariant form as

$$
\partial_{\mu} F^{\mu v}=\mu_{0} j^{v}
$$

where

$$
F^{\mu v}=\partial^{u} A^{v}-\partial^{v} A^{u}
$$

is the electromagnetic field strength tensor,

$$
j^{v}=(c \rho, \vec{j})
$$

is the four-vector current density, and

$$
A^{u}=\left(\frac{1}{c} \phi, \vec{A}\right)
$$

is the four-potential.

Recap

- The explicit form of F^{uv} is

$$
F^{u v}=\left|\begin{array}{cccc}
0 & -\frac{1}{c} E_{1} & -\frac{1}{c} E_{2} & -\frac{1}{c} E_{3} \\
\frac{1}{c} E_{1} & 0 & -B_{3} & B_{2} \\
\frac{1}{c} E_{2} & B_{3} & 0 & -B_{1} \\
\frac{1}{C} E_{3} & -B_{2} & B_{1} & 0
\end{array}\right|
$$

and we also define the dual tensor

$$
\widetilde{F}^{\mu \nu}=\frac{1}{2} \epsilon^{\mu v \rho \sigma} F_{\rho \sigma}
$$

Today

- Lorentz transformations of e.m. fields
- Transformation of the electromagnetic field strength tensor
- What happens to the electric and magnetic fields?
- An example
- Lorentz invariants for the electromagnetic fields
- Long example: current in a wire in different reference frames.

Mid-term evaluation

- Problematic difference in notation between lectures and lecture notes.
- Difficult to see connections between the use of tensors in different courses.
- More problems requested (non-mandatory).
- Virtual work WTF.
- Mid-term - more of a test of how many friends you have than how much you have learnt.

Summary

- Under Lorentz transformations, E- \& B-field components parallel and perpendicular to boost transform as

$$
\begin{array}{ll}
\vec{E}_{\|}^{\prime}=\vec{E}_{\|}, & \vec{E}^{\prime}=\gamma\left(\vec{E}_{\perp}+\vec{v} \times \vec{B}\right) \\
\vec{B}_{\|}^{\prime}=\vec{B}_{\|}, & \vec{B}_{\perp}^{\prime}=\gamma\left(\vec{B}_{\perp}-\frac{1}{c^{2}} \vec{v} \times \vec{B}\right)
\end{array}
$$

- We can form the following Lorentz invariants from the electromagnetic field strength tensor

$$
\frac{1}{2} F^{\mu \nu} F_{\mu v}=\vec{B}^{2}-\frac{1}{c^{2}} \vec{E}^{2}, \quad \frac{1}{4} F^{u v} \widetilde{F}_{\mu \nu}=-\frac{1}{c} \vec{E} \cdot \vec{B}
$$

