

UiO: Fysisk institutt
Det matematisk-naturvitenskapelige fakultet

Lecture 26

Today

- International study of English-medium Instruction lecture comprehension (by prof. Glenn Ole Hellekjær)
- You will be give a survey at the end:
- The survey is anonymous
- Answering the survey is entirely voluntary.
- The survey asks for volunteers for possible follow-up interviews.

This week

- Wednesday: Magnetostatic equation and multipole expansion. Force on static charges and currents. (Section 11.2)
- Thursday: Last problem set! Three old exam questions on electromagnetism. (We will accept answers with only two questions completed.)
- Friday: Electromagnetic radiation from timedependent sources. Retarded solutions. (Sections 12.1)

Recap

- The electrostatic solution for the potential is

$$
\phi(\vec{r})=\frac{1}{4 \pi \epsilon_{0}} \int \frac{\rho(\vec{r})}{\left|\vec{r}-\vec{r}^{\prime}\right|} d^{3} \vec{r}^{\prime}
$$

- At large distances from the charges this can be approximated in the multipole expansion

$$
\rho(\vec{r})=\rho_{0}(\vec{r})+\rho_{1}(\vec{r})+\rho_{2}(\vec{r})+\ldots
$$

with the monopole and dipole contributions

$$
\rho_{0}(\vec{r})=\frac{Q}{4 \pi \epsilon_{0} r}, \quad \rho_{1}(\vec{r})=\frac{\vec{r} \cdot \vec{p}}{4 \pi \epsilon_{0} r^{3}}
$$

where p is the dipole moment $\vec{p}=\int \rho(\vec{r}) \vec{r} d^{3} \vec{r}^{\prime}$

Today

- The magnetostatic solution for a static current
- General solution for vector potential and magnetic field for any static current density.
- Biot-Savart's law as a special case.
- Multipole expansion.
- Force and torque on charge density and current from external fields

Summary

- The magnetostatic solution for the potential is

$$
\vec{A}(\vec{r})=\frac{\mu_{0}}{4 \pi} \int \frac{\vec{j}(\vec{r})}{\left|\vec{r}-\vec{r}^{\prime}\right|} d^{3} \vec{r}^{\prime}
$$

- At large distances from the current this can be approximated in the multipole expansion

$$
\vec{A}(\vec{r})=\vec{A}_{0}(\vec{r})+\vec{A}_{1}(\vec{r})+\vec{A}_{2}(\vec{r})+\ldots
$$

where the monopole contribution is $\mathrm{A}_{0}=0$.

- The force and torque from external fields are

$$
\vec{F}_{e}=Q \vec{E}+(\vec{p} \cdot \vec{\nabla}) \vec{E}+\ldots, \quad \vec{\tau}_{e}=\vec{p} \times \vec{E}+\ldots
$$

$$
\vec{F}_{m}=(\vec{m} \cdot \vec{\nabla}) \vec{B}+\ldots, \quad \vec{\tau}_{m}=\vec{m} \times \vec{B}+\ldots
$$

