
Lecture 3 
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This week
● Wednesday: Derivation of Lagrange's

equation. (Section 2.1)
● Thursday: Problem set 1 (topic: generalized

coordinates and virtual displacement)
● Friday: Symmetries of the Lagrangian.

(Sections 2.2-2.3.4)
● My plan is to skip Section 2.2 for the time being.

(Basically harmonic oscillator.)
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Today
● Proof of Lagrange’s equation.

― Same approach as for static equilibrium condition.

● As many examples of using Lagrange’s
equation as we have time for.
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Recap
● We define generalized coordinates qj from the

original coordinates ri by using the constraints.
● The virtual displacement is the displacement of

the original coordinates ri by a change in the
generalized coordinates qj at fixed time.

● Constraint forces are the forces resulting from
applied forces and the enforced constraints.

δ r⃗ i =∑
j=1

d ∂ r⃗ i
∂q j

δq j
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Recap
● Static equilibrium can be reformulated through

the principle of no virtual work for applied forces

● Or, as extremal point in the potential energy
expressed in generalized coordinates

● This uses generalized forces

δW =∑
i

F⃗ i
a⋅δ r⃗i = 0

∂V
∂q j

= 0

Fj =∑
i

F⃗ i
a⋅

∂ r⃗i
∂q j
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Summary
● With the Lagrange function

we can find the equations of motion for the
system from Lagrange’s equation

d
dt ( ∂L

∂ q̇i )− ∂ L
∂qi

= 0

L(q , q̇ , t ) = K (q , q̇ , t) − V (q , t)


