

UiO : Fysisk institutt
Det matematisk-naturvitenskapelige fakultet

Lecture 7

This week

- Wednesday: Hamilton's equations, Hamiltonian for charged particles in an electromagnetic field. (Sections 3.1 and 3.2)
- Thursday: Problem set 3 (main topic: even more e.o.m. from Lagrange's equation, cyclic coordinates and how to remove them)
- Friday: Application of Hamilton's equations, phase space. (Sections 3.2.1, 3.3, and 3.4)

Today

- Hamilton's equations
- Derivation from Lagrange's equations
- Simple example with 1D harmonic oscillator
- Once more (with feeling) the charged particle in magnetic field example
- Introducing (?) the Levi-Civita symbol (The Horror! The Horror!)

Recap

- The Hamiltonian H is given by

$$
H \equiv \sum_{i} \frac{\partial L}{\partial \dot{q}_{i}} \dot{q}_{i}-L=\sum_{i} p_{i} \dot{q}_{i}-L
$$

- Here the generalized/conjugate/canonical momenta are

$$
p_{i}=\frac{\partial L}{\partial \dot{q}_{i}}
$$

- By solving the velocity in terms of p_{i} we can write H as a function of q_{i} and p_{i} (canonical position and momenta).

Recap

- The e.m. potentials give a potential energy

$$
U=e \phi-e \vec{v} \cdot \stackrel{\vec{A}}{ }
$$

- The conjugate momentum is

$$
\vec{p}=m \vec{v}+e \vec{A}
$$

and the Hamiltonian

$$
H=\frac{1}{2 m}(\vec{p}-e \vec{A})^{2}+e \phi
$$

- The resulting e.o.m. are invariant under the gauge transformations

$$
\phi \rightarrow \phi^{\prime}=\phi-\frac{\partial \chi}{\partial t}, \quad \vec{A} \rightarrow \vec{A}^{\prime}=\vec{A}+\vec{\nabla} \chi
$$

Summary

- Expressing the Hamiltonian H in terms of the canonical position and momentum q_{i} and p_{i} the e.o.m can be written as Hamilton's equations

$$
\dot{q}_{i}=\frac{\partial H}{\partial p_{i}}, \quad \dot{p}_{i}=-\frac{\partial H}{\partial q_{i}}, \quad i=1, \ldots, d
$$

- To simplify calculations it is useful to introduce the totally antisymmetric Levi-Civita symbol

$$
\epsilon_{i j k} \equiv\left\{\begin{array}{cl}
1 & \text { for } i \neq j \neq k \text { and cyclic } \\
-1 & \text { for } i \neq j \neq k \text { and not cyclic } \\
0 & \text { otherwise }
\end{array}\right.
$$

