

UiO : Fysisk institutt
Det matematisk-naturvitenskapelige fakultet

Lecture 8

Recap

- Expressing the Hamiltonian H in terms of the canonical position and momentum q_{i} and p_{i} the e.o.m can be written as Hamilton's equations

$$
\dot{q}_{i}=\frac{\partial H}{\partial p_{i}}, \quad \dot{p}_{i}=-\frac{\partial H}{\partial q_{i}}, \quad i=1, \ldots, d
$$

- To simplify calculations it is useful to introduce the totally antisymmetric Levi-Civita symbol

$$
\epsilon_{i j k} \equiv\left\{\begin{array}{cl}
1 & \text { for } i \neq j \neq k \text { and cyclic } \\
-1 & \text { for } i \neq j \neq k \text { and not cyclic } \\
0 & \text { otherwise }
\end{array}\right.
$$

Plan for today

- Charged particle in a constant magnetic field Oh no! Not again! (Section 3.2.1)
- Against all previous experience, we are actually going to solve the e.o.m. this time.
- Phase space. (Section 3.3)
- A nice way to think about motion.
- Phase space fluid. (Section 3.4)
- Non-Hamiltonian systems. (Section 3.5)
- What to do without energy conservation (if time!)

FYS3120 - Classical mechanics and electrodynamics

Pendulum

$$
\widetilde{p}=\frac{p}{m \sqrt{g l^{3}}}
$$

Damped pendulum

Summary

- Phase space is the 2d-dimensional space of generalized coordinates and their velocities (q, qdot), or the space of generalized coordinated and generalized momenta (q, p).
- An initial value point in phase space gives (almost always) a unique trajectory.
- Analysis of phase space is very useful for a qualitative understanding of a problem.
- Can be used even for non-Hamiltonian systems.

