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Question 1 Swinging Lagrangian mechanics
A mechanical system consists of a mass m attached, on opposite sides of
the mass, to two weightless springs of un-stretched lengths ℓ1 and ℓ2, with
spring constants k1 and k2, fastened between two unmoving walls a distance
d apart. Assume there is no gravity affecting the system and that the mass
moves in the horizontal direction only. You can also ignore the size of the
mass (assume it is a point). However, note that in general ℓ1 + ℓ2 ̸= d. See
illustration in Fig. 1.

We remind you that the potential energy for a spring is given by V (x) =
1
2kx

2, where x is the displacement of the string length away from the un-
stretched length.

Figure 1: Mass m attached to two springs of length ℓ1 and ℓ2, with spring
constants k1 and k2.

1) Find the number of degrees of freedom and generalised coordinate(s)
of the system. [2 points]

Solution: There is a single mass moving in one dimension only, so
there is only one degree of freedom. We choose the horizontal coordi-
nate x of the mass, as measured from the left wall, as the generalised
coordinate.

Marking: 1 point for realizing that there is only one generalized
coordinate, 1 point for giving an appropriate suggestion for coordinate
(multiple possible, including the equilibrium position).

2) Find the Lagrangian of the system. [4 points]

Solution: The kinetic energy of the mass is K = 1
2mẋ2 and the

potential energy of the two springs are V = 1
2k1(x − ℓ1)

2 and V =
1
2k2(d− x− ℓ2)

2. Thus

L = K − V =
1

2
mẋ2 − 1

2
k1(x− ℓ1)

2 − 1

2
k2(d− x− ℓ2)

2. (1)
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Marking: 1 point for L = K −V , 1 point for the right kinetic energy
and 1 point for each of the potential energies.

3) Give the equilibrium condition for generalised coordinates and find the
equilibrium position of the mass. [4 points]

Solution: The equilibrium condition for generalised coordinates qi is
given by ∂V

∂qi
= 0 for all i, where V is the potential. For our single

coordinate we have
∂V

∂x
= k1(x− ℓ1)− k2(d− x− ℓ2) = 0, (2)

which gives

x =
k1ℓ1 + k2(d− ℓ2)

k1 + k2
. (3)

Marking: 2 points for the general formulation of equilibrium, 1 point
for finding ∂V

∂x and 1 point for solving for the position.

4) Find the equation(s) of motion of the system and give the general
solution(s). [5 points]

Solution: Inserting into Lagrange’s equation
∂L

∂x
= −k1(x− ℓ1) + k2(d− x− ℓ2),

∂L

∂ẋ
= mẋ,

d

dt

∂L

∂ẋ
= mẍ, (4)

giving
d

dt

∂L

∂ẋ
− ∂L

∂x
= mẍ+ k1(x− ℓ1)− k2(d− x− ℓ2) = 0, (5)

or
mẍ+ (k1 + k2)x− k1ℓ1 − k2(d− ℓ2) = 0. (6)

This can be solved either as an inhomogeneous differential equation,
or, by realising that the equation is simpler if the coordinate is changed
to be relative to the equilibrium position. Using x′ = x− x0 where x0
is the equilibrium position in (3) we have dx′/dx = 1 and thus ẍ′ = ẍ
so that the differential equation can be written

mẍ′ + (k1 + k2)x− x0(k1 + k2) = mẍ′ + (k1 + k2)x
′ = 0. (7)

This is a harmonic oscillator with angular frequency ω =
√

k1+k2
m and

solution x(t) = A sin(ωt)+B cos(ωt)+x0, where A and B are constants
to be determined form the initial conditions.

Marking: 1 point for giving Lagrange’s equation, 2 points for finding
the necessary derivatives, 2 points for identifying the correct solution
including the frequency and offset from zero.

2



Let us now look at the situation with two masses m and three springs with
the same spring constant k, shown in Fig. 2. Assume that the distance
between the walls is such that the strings are un-stretched in the equilibrium
position.

Figure 2: Two masses attached to springs with identical spring constants.

5) Show that the Lagrangian for this system can be written

L =
1

2
mẋ21 +

1

2
mẋ22 −

1

2
kx21 −

1

2
k(x2 − x1)

2 − 1

2
kx22, (8)

where x1 and x2 are the displacements of the two masses from their
equilibrium position, and find the equations of motion. [4 points]

Solution: Since the springs are un-stretched we can easily use the
distance from the equilibrium position as the coordinates of the masses.
In these coordinates the kinetic energy is the sum of the kinetic energies
for each mass, K = 1

2mẋ21 +
1
2mẋ22, and the potential energy for the

three springs is V = 1
2kx

2
1+

1
2k(x2−x1)

2+ 1
2kx

2
2, where the perturbation

of the middle string from equilibrium depends on the movement of both
masses from their equilibrium position. Thus the Lagrangian for the
problem is

L = K − V =
1

2
mẋ21 +

1

2
mẋ22 −

1

2
kx21 −

1

2
k(x2 − x1)

2 − 1

2
kx22. (9)

Finding the Lagrange equations

∂L

∂x1
= −kx1 + k(x2 − x1),

∂L

∂ẋ1
= mẋ1,

d

dt

∂L

∂ẋ1
= mẍ1, (10)

and

∂L

∂x2
= −kx2 − k(x2 − x1),

∂L

∂ẋ2
= mẋ2,

d

dt

∂L

∂ẋ2
= mẍ2, (11)

gives

mẍ1 + kx1 − k(x2 − x1) = 0,

mẍ2 + kx2 + k(x2 − x1) = 0, (12)
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or

ẍ1 +
2k

m
x1 −

k

m
x2 = 0,

ẍ2 +
2k

m
x2 −

k

m
x1 = 0.

Marking: 2 points for demonstrating the correct Lagrangian (0.5
point for L = K − V , 0.5 point for the kinetic energies, 1 point for
the potential energies), 2 points for finding the equations of motion (1
point for doing the derivatives, 1 point for correct equations).

6) Show that
xi(t) = Aie

iωt, (13)

are mathematical solutions of the equation of motion and find what
the allowed values of Ai and ω are. Briefly discuss the physical inter-
pretation of these solutions. [6 points]

Solution: We can insert the solutions into the equations of motion
and get the following set of equations for Ai and ω

−ω2A1 +
2k

m
A1 −

k

m
A2 = 0, (14)

−ω2A2 +
2k

m
A2 −

k

m
A1 = 0. (15)

This set of equations has a non-trivial solution if and only if the cor-
responding determinant is zero∣∣∣∣2km − ω2 − k

m

− k
m

2k
m − ω2

∣∣∣∣ = 0, (16)

giving (
ω2 − 2k

m

)2

− k2

m2
= 0, (17)

which has solutions ω1 =
√

k
m and ω2 =

√
3k
m . For ω1 inserted into

(14) and (15) we must have A1 = A2, while ω2 requires A1 = −A2.
The absolute value of the Ai is not fixed since it depends on the initial
conditions.
The physical interpretation of the solutions are sine and cosine oscilla-
tions with two different frequencies ω1 and ω2, where the first solution
has the amplitudes of the two masses in phase, which means that the
middle spring does not compress, while in the second higher frequency,
the amplitudes are opposite.
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Marking: 1 point for finding the equations that must be satisfied
for this to be solutions, 1 point for finding the equation for ω, 0.5
point for each of the two allowed values of ω, 0.5 point for each of
the corresponding allowed values of Ai. 2 points for giving the correct
physical interpretation.∑∑∑∞

n=1n+ 6) Find at least one solution for a sequence of 2n+ 1 masses and 2n+ 2
springs. [3

(
1
2

)n points]

Solution: The Lagrangian for a sequence of m masses is

L =

m∑
i=1

1

2
mẋ2i −

m−1∑
i=1

1

2
k(xi+1 − xi)

2 − 1

2
kx21 −

1

2
kx2m. (18)

Finding the Lagrange equation

∂L

∂xi
= k(xi+1 − 2xi + xi−1),

∂L

∂ẋi
= mẋi,

d

dt

∂L

∂ẋi
= mẍi, (19)

gives
mẍi − k(xi+1 − 2xi + xi−1) = 0, (20)

which has the solutions xi(t) = Aie
iωt if the corresponding determinant

is zero:

Dm =

∣∣∣∣∣∣∣∣∣∣∣

2k
m − ω2 − k

m 0 · · · · · · 0

− k
m

2k
m − ω2 − k

m 0 · · · 0

0 − k
m

2k
m − ω2 − k

m · · · 0
...

...
0 · · · · · · 0 − k

m
2k
m − ω2

∣∣∣∣∣∣∣∣∣∣∣
= 0. (21)

This determines the allowed frequencies and the relationship between
the amplitudes. Expanding the determinant around the first row gives

Dm =

(
2k

m
− ω2

)
Dm−1 −

k2

m2
Dm−2. (22)

If m is odd, as it will be with 2n+1 masses, an iterative expansion of
Dm ends with the term D1 =

2k
m − ω2, which is then a common factor

in all terms. Thus one solution must be ω1 =
√

2k
m . Inserted into the

equation of motion (20) this gives A2 = 0 and Ai+1 = −Ai−1, so that
every other mass is at rest and the two surrounding masses oscillate
with equal amplitudes and opposite phase.
This question was inspired by this year’s (2019) Abel prize. Interest-
ingly, the solution found here can also be found to exist for an infinitly
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long sequence of springs. Karen Uhlenbeck’s work on integrable sys-
tems, for example in the form of soliton wave solutions that can occur
on such a set-up, has had a great impact on physics since the 1970ies.

Marking: 1 point for finding the general equation of motion. 1 point
for finding the general requirement for a solution, 0.5 point for finding
ω1 and 0.5 point for finding the correspoding Ai. We will give up to
1.5 points for providing a correct solution for n = 1 (three masses)
only.

Question 2 Acceleration by photons
We will look at the kinematics of a process where a photon hits and is
absorbed by an object with mass m.

a) Assume that we start in the rest frame of the massive object. Draw
a sketch of the process, give explicit expressions for the involved four-
momenta, and give the equations for the conservation of relativistic
energy and momentum in the collision in terms of the four-momenta.
[4 points]

Answer: The four-momenta are

pµγ = (|p⃗γ |, p⃗γ), (23)
pµm = (mc, 0), (24)
p′µm = (E′

m/c, p⃗′m), (25)

where the primes denote the four-momenta and mass after collision and
where E′

m =
√
|p⃗′m|2c2 +m′2c4. The conservation of four-momentum

is then given by
pµγ + pµm = p′µm. (26)

Marking: 1.5 points for a correct sketch, 1.5 points for a correct list of
four-momenta, 1 point for the conservation of four-momenta equation.

b) Find the change in relativistic energy, relativistic momentum and mass
of the object due to the absorbed photon, given in terms of the initial
momentum of the photon. [4 points]

Answer: From the conservation of relativistic energy and momentum
the change in the energy is ∆E = Eγ = |p⃗γ |c and the change in
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momentum is ∆p⃗ = p⃗γ . The change in mass can be found from the
invariant

p′2m = m′2c2 = (pγ + pm)2

= p2γ + 2pγpm + p2m

= 2|p⃗γ |mc+m2c2, (27)

where we have used that the square of the four-momentum of a particle
of mass m is p2 = m2c2. This gives

∆m = m′ −m = m

(√
1 +

2|p⃗γ |
mc

− 1

)
. (28)

Marking: 0.5 points each for the change in relativistic energy and
momentum, 3 points for the calculation of the change in mass (of
which 1 point for using the invariant mass relationship, and 1 point
for calculating it correctly if that solution is followed).

c) The relativistic force is given as F⃗ = dp⃗
dt , where p⃗ is the relativistic

momentum. Use this to show that the relativistic force is related to
the velocity and acceleration in a given reference frame as

F⃗ =
γ3m

c2
(v⃗ · a⃗)v⃗ + γma⃗. (29)

[4 points]

Answer: We use that the time-derivative of the gamma factor is

dγ

dt
=

γ3

2c2
d

dt
(v⃗ · v⃗) = γ3

c2
(v⃗ · a⃗). (30)

We then carry out the differentiation:

F⃗ = m
d

dt
(γv⃗) = m

(
dγ

dt
v⃗ + γa⃗

)
= m

(
γ3

c2
(v⃗ · a⃗)v⃗ + γa⃗

)
. (31)

Marking: 1 point for using the right expression for relativistic mo-
mentum, 2 points for the correct derivative of γ (1 point for keeping
the vector property), 1 point for correct product differentiation and
insertion.
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d) The four-force Kµ is similarly given as the proper time derivative of the
four-momentum, Kµ = dpµ

dτ . Show that the four-force can be written
in terms of the relativistic force as

Kµ =

(
γ
F⃗ · v⃗
c

, γF⃗

)
. (32)

[5 points]

Answer: The four-momentum is pµ = (γmc, γmv⃗). Taking the
derivative to find the four-force we have

Kµ =
dpµ

dτ
=

dt

dτ

dpµ

dt
= γ

dpµ

dt

= γ

(
dγ

dt
mc,

dγ

dt
mv⃗ + γma⃗

)
= γ

(
γ3

c2
(v⃗ · a⃗)mc,

γ3

c2
(v⃗ · a⃗)mv⃗ + γma⃗

)
= γ

(
F⃗ · v⃗
c

, F⃗

)
, (33)

where we have used that

F⃗ · v⃗ = m

(
γ3

c2
(v⃗ · a⃗)v⃗ + γa⃗

)
· v⃗

= mγ

(
γ2

c2
v2 + 1

)
(⃗a · v⃗)

= mγ

(
β2

1− β2
+

1− β2

1− β2

)
(⃗a · v⃗)

= mγ

(
1

1− β2

)
(⃗a · v⃗)

= mγ3(⃗a · v⃗). (34)

Marking: 1 point for starting from the correct four-momentum form,
1 point for changing the differentiation to proper time, 1 point for
carrying out the differentiation, 2 points for finding F⃗ · v⃗.

e) Given that a mass m is hit by a flux of n photons per second with
momentum p⃗γ in a particular direction in a particular reference frame.
Find the velocity dependent acceleration in that frame. You can ignore
any change in the mass of the object found in b). [4 points]

Answer: With a change in relativistic momentum |p⃗γ | from n photons
the force is F⃗ = dp⃗

dt = n|p⃗γ |. There are multiple ways to go from the
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relativistic force to the acceleration, the easiest is probably to use the
expression for the power in (34),

F⃗ · v⃗ = mγ3v⃗ · a⃗, (35)

using that the force (and acceleration) is linear (parallel to the velocity)
so that F⃗ · v⃗ = Fv and v⃗ · a⃗ = va, so that

a =
F

mγ3
=

n|p⃗γ |
mγ3

. (36)

Marking: 1 point for finding the realtivistic force on the mass, 1
point for realizing that the acceleration is linear, 1 point for using a
known relationship between relativistic force and acceleration, 1 point
for solving for a.

Question 3 Classical atom
In the classical atom model an electron moves in a scalar potential

ϕ(r) =
1

4πϵ0

Ze

r
, (37)

where Z is the (effective) number of positive charges in the nucleus seen by
the electron and e is the unit elementary positive charge. Assume for now
that the vector potential is A⃗ = 0.

a) Find the electric field affecting the electron. [3 points]

Answer: With A⃗ = 0 the electric field is given as

E⃗(r) = −∇⃗ϕ(r) = − Ze

4πϵ0
∇⃗1

r
= − Ze

4πϵ0

∂

∂r

1

r
r̂ =

Ze

4πϵ0

1

r2
r̂. (38)

Marking: 1 point for the correct expression for E⃗, 2 points for car-
rying out the differentiation.

b) Find the magnitude of the acceleration for an electron in a circular
orbit around the nucleus. Give your answer in terms of the classical
electron radius

r0 =
1

4πϵ0

e2

mc2
= 2.872 · 10−15 m, (39)

where m is the mass of the electron. [3 points]
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Answer: With no magnetic field the Lorentz force causing the ac-
celeration reduces to F⃗ = −eE⃗, with the sign due to the sign of the
electron’s charge. From ma⃗ = −eE⃗, using (38), we have

a =
Ze2

4πϵ0m

1

r2
=

Ze2

4πϵ0mc2
c2

r2
=

Zr0c
2

r2
. (40)

Marking: 1 point for the acceleration and field relationship, 1 point
for solving for a⃗, and 1 point for substituting in r0.

c) Find the electric dipole moment p⃗e of the electron’s orbit. [3 points]

Answer: The charge density of a single charged particle is given by
ρ(r⃗, t) = qδ(r⃗−r⃗(t)), where r⃗(t) is the path of the particle. The electric
dipole moment of the electron is then

p⃗e =

∫
r⃗ρ(r⃗, t)dV = −

∫
er⃗δ(r⃗ − r⃗(t))dV = −er⃗(t). (41)

Marking: 1 point for the correct definition, 1 point for the charge
density, 1 point for the integration.

d) Find the magnetic dipole moment m⃗e of the electron’s orbit. [3 points]

Answer: The current density of a single charged particle is given by
j⃗(r⃗, t) = qv⃗(t)δ(r⃗− r⃗(t)), where v⃗(t) is the velocity of the particle. The
magnetic dipole moment of the electron is then

m⃗e =
1

2

∫
r⃗×j⃗(r⃗, t)dV = −1

2

∫
r⃗×ev⃗(t)δ(r⃗−r⃗(t))dV = −e

2
r⃗(t)×v⃗(t).

(42)

Marking: 1 point for the correct definition, 1 point for the current
density, 1 point for the integration.

e) Find (numerically) the energy radiated per second from this electron
assuming an arbitrary Z and an orbit with radius given by the Bohr
radius a0 = 5.292 ·10−11 m. Hint: Some constants that may be needed
here are the elementary charge e = 1.60 · 10−19 C, the permittivity
ϵ0 = 8.85 · 10−12 C2 N−1 m−2, and the speed of light c = 3.00 · 108 m/s.
[3 points]

10



Answer: Due to the acceleration in the circular orbit the charged elec-
tron radiates. Larmor’s formula gives the energy radiated per second
for a point particle with acceleration a as:

P =
µ0e

2

6πc
a2 =

µ0e
2

6πc

(
Zr0c

2

a20

)2

=
µ0e

2

6πc

r20c
4

a40
Z2 =

e2

6πϵ0

r20c

a40
Z2

=
(1.60 · 10−19 C)2 · (2.872 · 10−15 m)2 · (3.00 · 108 m/s)
6 · 3.14 · (8.85 · 10−12 C2 N−1 m−2) · (5.292 · 10−11 m)4

Z2

= Z2 · 4.8 · 10−8 W. (43)

Marking: 1 point for Larmor’s formula, 1 point for insertion of the
acceleration and rewrite into known constants, 1 point for evaluation.

f) Estimate the time it takes for the electron orbit to decay completely
due to this radiation. Hint: It may be useful to find an expression for
how r changes with time using the conservation of energy. [4 points]

Answer: The energy of an electron orbiting with a classical radius r
is given by

E = K + V =
1

2
mv2 − Ze2

4πϵ0r
=

1

2
mv2 − Zr0mc2

r
, (44)

where the potential energy is given from the scalar potential as V = eϕ.
Since v2 = ar for a circular orbit, using (40) we have

v2 =
Zr0c

2

r2
r =

Zr0c
2

r
, (45)

so that
E =

1

2
m
Zr0c

2

r
− Zr0mc2

r
= −Zr0mc2

2r
. (46)

The radiated power P we found in (43) controls how this energy
changes, so P = −dE

dt . Differentiating the energy with respect to
the time and equating it with the radiated power gives an expression
for ṙ

−dE

dt
= −Zr0mc2

2r2
ṙ = P =

e2

6πϵ0

r20c

r4
Z2 =

2r0mc2

3

r20c

r4
Z2. (47)

Solving for ṙ,

ṙ = −4

3

r20c

r2
Z. (48)

If we start from an orbit with the Bohr radius, r = a0, and a nucleus
with Z = 1, this takes the value ṙ ≃ 1.18 m/s. For a rough estimate of
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the decay time, assuming ṙ is constant,1 we get t ≈ a0/ṙ ≃ 4.5·10−11 s.
This precision was sufficient to get a full score.
For a more precise estimate of the time to decay T we can use that
ṙr2 is a time-independent constant. The integral of ṙr2 gives∫ T

0
r2ṙ dt =

∫ r(T )

r(0)
r2 dr =

[
1

3
r3
]r(T )

r(0)

=
1

3
(r(T )3− r(0)3) = −4

3
r20cZT.

(49)
Inserting the boundary conditions r(T ) = 0 and r(0) = a0 and solving
for T gives

T =
a30

4r20cZ
=

4π2ϵ0cm
2
ea

3
0

µ0q4
≈ 1.50 · 10−11 s. (50)

Marking: 1 point for making the connection between the radiated
power and the derivative of the total energy E, 1 point for finding E,
1 point for finding ṙ, 1 point for estimating the time to decay.

Atomic nuclei have a magnetic dipole moment due to the angular mo-
mentum (and spin) of their nucleons. This is given as m⃗n = g e

2mp
ℓ⃗, where

ℓ⃗ is the (constant) total angular momentum of the nucleus, g is a factor
depending on the structure of the nucleus, and mp is the proton mass.

g) Show that the resulting magnetic field seen by the electron is given by

B⃗ =
µ0

2πr3
(3(m⃗n · r̂)r̂ − m⃗n) . (51)

[5 points]

Answer: In the multipole expansion the vector potential far away
from a magnetic dipole (and the electron is indeed far from the nucleus)
is

A⃗ =
µ0m⃗n × r̂

4πr2
. (52)

We use the relation between a B⃗-field and the vector potential, and
the double cross product relationship for ∇⃗, to write,

B⃗ = ∇⃗ × A⃗ = ∇⃗ ×
(
µ0m⃗n × r̂

4πr2

)
=

µ0

4π
∇⃗ ×

(
m⃗n × r⃗

r3

)
=

µ0

4π

(
m⃗n(∇⃗ · r⃗

r3
)− r⃗

r3
(∇⃗ · m⃗n) + (

r⃗

r3
· ∇⃗)m⃗n − (m⃗n · ∇⃗)

r⃗

r3

)
=

µ0

4π

(
m⃗n(∇⃗ · r⃗

r3
)− (m⃗n · ∇⃗)

r⃗

r3

)
(53)

1It is not, as we see the speed increases as the electron comes closer to the nucleus.
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where we have used that m⃗ is a constant vector. We then use

∇⃗ · r⃗

r3
=

∂

∂xi

xi
r3

=
3

r3
− 3xi

r4
xi
r

=
3

r3
− 3r2

r5
= 0, (54)

and

(m⃗ · ∇⃗)
r⃗

r3
= mi

∂

∂xi

r⃗

r3
= mi

êi
r3

−mir⃗
3

r4
xi
r

=
m⃗

r3
− 3(m⃗ · r⃗)

r5
r⃗. (55)

Thus
B⃗ =

µ0

2πr3
(3(m⃗n · r̂)r̂ − m⃗n) . (56)

Marking: 1 point for the vector potential, 1 point for the relationship
between the B-field and the vector potential, 1 point for an explicit
expression for the double cross product in terms of scalar products, 2
points for the evaluation of the remaining scalar products .

h) Explain why the force resulting from the magnetic dipole moment of
the nucleus can be ignored for the electron. [2 points]

Answer: First, notice that no electric field will be generated because
∂A⃗
∂t = 0, since the magnetic dipole moment is constant. If we compare
the scaling of the forces the magnetic field contributes

Fm = evB = ev
µ0

r3
mn = ev

µ0

r3
e

mp
ℓn = v

e2µ0

r3
ℓn
mp

=
e2

ϵ0

v

c

1

r2
ℓn

rmpc
,

(57)
while the electric field gives

Fe = eE =
e2

ϵ0

1

r2
. (58)

This show that the contribution from the magnetic dipole moment of
the nucleus is both suppressed by a factor v/c, and by the nucleus’
total angular momentum compared to rmpc, where r are distances of
the scale of an atom compared to the nucleus’ distance scales.
In fact, a much more important (quantum mechanical) contribution is
the magnetic field in the electron’s rest frame (generated by a reference
frame shift of the electric field from the nucleus), which interacts with
the electrons’s dipole moment from its spin (spin-orbit coupling).

Marking: 1 point for valid arguments that the force from the mag-
netic dipole moment is suppressed by β, 1 point for arguments that
the scale of the motion of the nucleus (angular momentum) is small
compared to the atomic scale, leading to an additional suppression.
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