
Introduction to numerical projects

Here follows a brief recipe and recommendation on how to write a report for each project.

• Give a short description of the nature of the problem and the eventual numerical
methods you have used.

• Describe the algorithm you have used and/or developed. Here you may �nd it con-
venient to use pseudocoding. In many cases you can describe the algorithm in the
program itself.

• Include the source code of your program. Comment your program properly.

• If possible, try to �nd analytic solutions, or known limits in order to test your program
when developing the code.

• Include your results either in �gure form or in a table. Remember to label your
results. All tables and �gures should have relevant captions and labels on the axes.

• Try to evaluate the reliabilty and numerical stability/precision of your results. If pos-
sible, include a qualitative and/or quantitative discussion of the numerical stability,
eventual loss of precision etc.

• Try to give an interpretation of you results in your answers to the problems.

• Critique: if possible include your comments and re�ections about the exercise, whether
you felt you learnt something, ideas for improvements and other thoughts you've made
when solving the exercise. We wish to keep this course at the interactive level and
your comments can help us improve it.

• Try to establish a practice where you log your work at the computerlab. You may
�nd such a logbook very handy at later stages in your work, especially when you
don't properly remember what a previous test version of your program did. Here you
could also record the time spent on solving the exercise, various algorithms you may
have tested or other topics which you feel worthy of mentioning.

Format for electronic delivery of report and programs

The preferred format for the report is a PDF �le. You can also use DOC or postscript
formats. As programming language we prefer that you choose between C/C++, Fortran
or Python. The following prescription should be followed when preparing the report:

• Use Fronter to hand in your projects, log in at blyant.uio.no and choose 'fellesrom
fys3150'. Thereafter you will see an icon to the left with 'hand in' or 'innlevering'.
Click on that icon and go to the given project. There you can load up the �les within
the deadline.
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• Upload only the report �le and the source code �le(s) you have developed. The
report �le should include all of your discussions and a list of the codes you have
developed. Do not include library �les which are available at the course homepage,
unless you have made speci�c changes to them.

• Comments from us on your projects, approval or not, corrections to be made etc can
be found under your Fronter domain and are only visible to you and the teachers of
the course.

Finally, we do prefer that you work two and two together. Optimal working groups consist
of 2-3 students. You can then hand in a common report.

Project 3, Schrödinger's equation for two electrons in a

three-dimensional harmonic oscillator well, deadline Oc-

tober 13 12am (midnight)

The aim of this project is to solve Schrödinger's equation for two electrons in a three-
dimensional harmonic oscillator well with and without a repulsive Coulomb interaction.
Your task is to solve this equation by reformulating it in a discretized form as an eigenvalue
equation to be solved with Jacobi's method. To achieve this you will have to write your
own code which implements Jacobi's method.

Electrons con�ned in small areas in semiconductors, so-called quantum dots, form a hot
research area in modern solid-state physics, with applications spanning from such diverse
�elds as quantum nano-medicine to the contruction of quantum gates.

Here we will assume that these electrons move in a three-dimensional harmonic oscil-
lator potential (they are con�ned by for example quadrupole �elds) and repel each other
via the static Colulomb interaction. We assume spherical symmetry.

We are �rst interested in the solution of the radial part of Schrödinger's equation for
one electron. This equation reads

− ~2

2m

(
1

r2

d

dr
r2 d

dr
− l(l + 1)

r2

)
R(r) + V (r)R(r) = ER(r).

In our case V (r) is the harmonic oscillator potential (1/2)kr2 with k = mω2 and E is the
energy of the harmonic oscillator in three dimensions. The oscillator frequency is ω and
the energies are

Enl = ~ω
(

2n+ l +
3

2

)
,

with n = 0, 1, 2, . . . and l = 0, 1, 2, . . . .
Since we have made a transformation to spherical coordinates it means that r ∈ [0,∞).

The quantum number l is the orbital momentum of the electron. Then we substitute
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R(r) = (1/r)u(r) and obtain

− ~2

2m

d2

dr2
u(r) +

(
V (r) +

l(l + 1)

r2

~2

2m

)
u(r) = Eu(r).

The boundary conditions are u(0) = 0 and u(∞) = 0.
We introduce a dimensionless variable ρ = (1/α)r where α is a constant with dimension

length and get

− ~2

2mα2

d2

dρ2
u(ρ) +

(
V (ρ) +

l(l + 1)

ρ2

~2

2mα2

)
u(ρ) = Eu(ρ).

We will set in this project l = 0. Inserting V (ρ) = (1/2)kα2ρ2 we end up with

− ~2

2mα2

d2

dρ2
u(ρ) +

k

2
α2ρ2u(ρ) = Eu(ρ).

We multiply thereafter with 2mα2/~2 on both sides and obtain

− d2

dρ2
u(ρ) +

mk

~2
α4ρ2u(ρ) =

2mα2

~2
Eu(ρ).

The constant α can now (similar to what we did in project 2) be �xed so that

mk

~2
α4 = 1,

or

α =

(
~2

mk

)1/4

.

De�ning

λ =
2mα2

~2
E,

we can rewrite Schrödinger's equation as

− d2

dρ2
u(ρ) + ρ2u(ρ) = λu(ρ).

This is the �rst equation to solve numerically. In three dimensions the eigenvalues for l = 0
are λ0 = 3, λ1 = 7, λ2 = 11, . . . .

We use the by now standard expression for the second derivative of a function u

u′′ =
u(ρ+ h)− 2u(ρ) + u(ρ− h)

h2
+O(h2), (1)

where h is our step. Next we de�ne minimum and maximum values for the variable ρ,
ρmin = 0 and ρmax, respectively. You need to check your results for the energies against
di�erent values ρmax, since we cannot set ρmax =∞.
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With a given number of steps, nstep, we then de�ne the step h as

h =
ρmax − ρmin

nstep + 1
.

De�ne an arbitrary value of ρ as

ρi = ρmin + ih i = 0, 1, 2, . . . , nstep

we can rewrite the Schrödinger equation for ρi as

−u(ρi + h)− 2u(ρi) + u(ρi − h)
h2

+ ρ2
iu(ρi) = λu(ρi),

or in a more compact way

−ui+1 − 2ui + ui−1

h2
+ ρ2

iui = −ui+1 − 2ui + ui−1

h2
+ Viui = λui,

where Vi = ρ2
i is the harmonic oscillator potential. De�ne �rst the diagonal matrix element

di =
2

h2
+ Vi,

and the non-diagonal matrix element

ei = − 1

h2
.

In this case the non-diagonal matrix elements are given by a mere constant. All non-

diagonal matrix elements are equal. With these de�nitions the Schrödinger equation takes
the following form

diui + ei−1ui−1 + ei+1ui+1 = λui,

where ui is unknown. We can write the latter equation as a matrix eigenvalue problem
d1 e1 0 0 . . . 0 0
e1 d2 e2 0 . . . 0 0
0 e2 d3 e3 0 . . . 0
. . . . . . . . . . . . . . . . . . . . .
0 . . . . . . . . . . . . dnstep−2 enstep−1

0 . . . . . . . . . . . . enstep−1 dnstep−1




u1

u2

. . .

. . .

. . .
unstep−1

 = λ


u1

u2

. . .

. . .

. . .
unstep−1

 (2)

or if we wish to be more detailed, we can write the tridiagonal matrix as

2
h2 + V1 − 1

h2 0 0 . . . 0 0
− 1
h2

2
h2 + V2 − 1

h2 0 . . . 0 0
0 − 1

h2
2
h2 + V3 − 1

h2 0 . . . 0
. . . . . . . . . . . . . . . . . . . . .
0 . . . . . . . . . . . . 2

h2 + Vnstep−2 − 1
h2

0 . . . . . . . . . . . . − 1
h2

2
h2 + Vnstep−1

 (3)

Recall that the solutions are known via the boundary conditions at i = nstep and at the
other end point, that is for ρ0. The solution is zero in both cases.
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a) Your task here is to write a function which implements Jacobi's rotation algorithm
(see Lecture notes chapter 12) in order to solve Eq. (2). How many points nstep

do you need in order to get the lowest three eigenvalues with four leading digits?
Remember to check the eigenvalues for the dependency on the choice of ρmax.

How many similarity transformations are needed before you reach a result where all
non-diagonal matrix elements are essentially zero? You can check your results against
the code based on Householder's algorithm, tqli in the �le lib.cpp. The usage of this
code is also discussed in chapter 12.

Comment your results (here you could for example compute the time needed for both
algorithms for a given dimensionality of the matrix).

b) We will now study two electrons in a harmonic oscillator well which also interact
via a repulsive Coulomb interaction. Let us start with the single-electron equation
written as

− ~2

2m

d2

dr2
u(r) +

1

2
kr2u(r) = E(1)u(r),

where E(1) stands for the energy with one electron only. For two electrons with no
repulsive Coulomb interaction, we have the following Schrödinger equation(

− ~2

2m

d2

dr2
1

− ~2

2m

d2

dr2
2

+
1

2
kr2

1 +
1

2
kr2

2

)
u(r1, r2) = E(2)u(r1, r2).

Note that we deal with a two-electron wave function u(r1, r2) and two-electron energy
E(2).

With no interaction this can be written out as the product of two single-electron
wave functions, that is we have a solution on closed form.

We introduce the relative coordinate r = r1 − r2 and the center-of-mass coordinate
R = 1/2(r1 +r2). With these new coordinates, the radial Schrödinger equation reads(

−~2

m

d2

dr2
− ~2

4m

d2

dR2
+

1

4
kr2 + kR2

)
u(r, R) = E(2)u(r, R).

The equations for r and R can be separated via the ansatz for the wave function
u(r, R) = ψ(r)φ(R) and the energy is given by the sum of the relative energy Er and
the center-of-mass energy ER, that is

E(2) = Er + ER.

We add then the repulsive Coulomb interaction between two electrons, namely a term

V (r1, r2) =
βe2

|r1 − r2|
=
βe2

r
,
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with βe2 = 1.44 eVnm.

Adding this term, the r-dependent Schrödinger equation becomes(
−~2

m

d2

dr2
+

1

4
kr2 +

βe2

r

)
ψ(r) = Erψ(r).

This equation is similar to the one we had previously in (a) and we introduce again
a dimensionless variable ρ = r/α. Repeating the same steps as in (a), we arrive at

− d2

dρ2
ψ(ρ) +

mk

~2
α4ρ2ψ(ρ) +

mαβe2

ρ~2
ψ(ρ) =

mα2

~2
Erψ(ρ).

We want to manipulate this equation further to make it as similar to that in (a) as
possible. We de�ne kr = 1/4k The constant α is then again �xed so that

mkr
~2

α4 = 1,

or

α =

(
~2

mkr

)1/4

.

De�ning

λ =
mα2

~2
E,

we can rewrite Schrödinger's equation as

− d2

dρ2
ψ(ρ) + ρ2ψ(ρ) +

γ

ρ
= λψ(ρ),

with

γ =
mαβe2

~2
.

We treat γ as a parameter which re�ects the strength of the oscillator potential.

Here we will study the cases γ = 0, γ = 0.5, γ = 1, γ = 2 and γ = 4. for the ground
state only, that is the lowest-lying state.

For γ = 0 you should get a result which corresponds to the relative energy of a
non-interacting system. The way we have written the equations means you get the
same as in (a) for γ = 0. Make sure your results are stable as functions of ρmax and
the number of steps.

We are only interested in the ground state with l = 0. We omit the center-of-mass
energy.

You can reuse the code you wrote for (a), but you need to change the potential from
ρ2 to ρ2 + γ/ρ.
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Comment the results for the lowest state (ground state) as function of varying
strengths of γ.

For speci�c oscillator frequencies, the above equation has analytic answers, see the
article by M. Taut, Phys. Rev. A 48, 3561 - 3566 (1993). The article is on the
webpage of the course, under the catalogue project3. But you can also retrieve it from
the following web address http://prola.aps.org/abstract/PRA/v48/i5/p3561_1.

c) (Optional/frivillig) In this exercise we want to plot the wave function for two
electrons as functions of the relative coordinate r and di�erent values of γ. For γ = 0
your wave function should correspond to that of a harmonic oscillator. Varying γ,
the shape of the wave function will change.

We are only interested in the wave function for the ground state with l = 0 and omit
again the center-of-mass motion.

You can choose between two approaches; the �rst is to use the existing tqli function.
Here the eigenvectors are obtained from the matrix z[i][j], where the index j refers
to eigenvalue j. The index i points to the value of the wave function in position ρj.
That is, u(λj)(ρi) = z[i][j].

The eigenvectors are normalized. Plot then the normalized wave functions for di�er-
ent values of γ and comment the results.

The other alternative is to add a piece to your Jacobi routine which also returns
the eigenvectors. This is the more di�cult part. You will need to normalize the
eigenvectors.
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