
Slides from FYS3150 Lectures

Morten Hjorth-Jensen

Department of Physics and Center of Mathematics for Applications
University of Oslo, N-0316 Oslo, Norway

Fall 2008

Computational Physics I FYS3150

Week 34, 18-22 August

Monday: First lecture: Presentation of the course, aims
and content
Monday: Second Lecture: Introduction to C++
programming and numerical precision.
Wednesday: Numerical precision and C++ programming,
continued
Numerical differentiation and loss of numerical precision
(chapter 3 lecture notes)
Computer-Lab: thursday and friday 9am-7pm.
Presentation of hardware and software at room FV329.
Exercises 1 and 2.

Computational Physics I FYS3150

Lectures and ComputerLab

Lectures: monday (12.15pm-2pm) and wednesday
(12.15pm-14pm)
Detailed lecture notes, exercises, all programs presented,
projects etc can be found at the homepage of the course.
Computerlab: 9am-7 pm thursday and friday, room FV329.
Four groups. Each group has four hours at its disposal.
Weekly plans and all other information are on the official
webpage.

Computational Physics I FYS3150

Course Format

Several computer exercises, 5 compulsory projects.
Electronic reports only. Fronter as course organizer
http://blyant.uio.no.
Oral examination based on chosen report from one of the
projects (to be determined later) and five selected topics,
see the syllabus link on the webpage. Dates to be settled,
most likely start, 11 or 12 December with end 18 or 19
december.
The computer lab (room FV329)consists of 16 Linux PCs.
C/C++ is the default programming language, but Fortran95
and Python are also used. All source codes discussed
during the lectures can be found at the webpage of the
course. We recommend either C/C++, Fortran95 or Python
as languages.

Computational Physics I FYS3150

http://blyant.uio.no

ComputerLab

day teacher
Thursday 9am-1 pm Arnt Inge Vistnes
Thursday 1pm-5pm Arnt Inge Vistnes
Friday 9am-1pm Marius Lysebo
Friday 1pm-5pm Marius Lysebo

The lab is open till 7pm, from 4pm till 7pm thursday and friday a
student assistant will be present.
Set up your preferred lab time today, see separate list.

Computational Physics I FYS3150

Exam FYS3150

Place and duration
Oral examination, typical start week 50 or week 51 (11 or
12 december to 18 or 19 december)
duration: ∼ 45 min
ca 20-25 min for discussion of the project, your
presentation, reproduction of results, test runs etc
20-25 min for questions from one of the five topics listed
below.
Please communicate your wishes for oral examination day
as soon as possible.

Computational Physics I FYS3150

Exam FYS3150

How to prepare your Talk
You can use slides, ps, pdf, ppt etc files (projector and slide
projector at room FV329). Choose among disegnated
projects.
10 mins (3-5 slides) for your presentation, rest of 10-15
mins questions and test of code from classfronter

You should discuss (briefly)
The mathematical model and the physics
Your algorithm and how you implemented it, with perhaps a
selected calculation
How you dealt with eventual comments and your
corrections of these
Any improvement you can think of
And: we welcome your critiscism of the project.

Computational Physics I FYS3150

Topics covered in this course

Numerical precision and intro to C++ programming

Numerical derivation and integration

Random numbers and Monte Carlo integration

Monte Carlo methods in statistical physics

Quantum Monte Carlo methods

Linear algebra and eigenvalue problems

Non-linear equations and roots of polynomials

Ordinary differential equations

Partial differential equations

Parallelization of codes

Computational Physics I FYS3150

Syllabus FYS3150

Linear algebra and eigenvalue problems, chapters 4 and 12

Know Gaussian elimination and LU decomposition
How to solve linear equations
How to obtain the inverse and the determinant of a real
symmetric matrix
Cholesky and tridiagonal matrix decomposition

Computational Physics I FYS3150

Syllabus FYS3150

Linear algebra and eigenvalue problems, chapters 4 and 12
Householder’s tridiagonalization technique and finding
eigenvalues based on this
Jacobi’s method for finding eigenvalues
Singular value decomposition
Qubic Spline interpolation

Computational Physics I FYS3150

Syllabus FYS3150

Numerical integration, standard methods and Monte Carlo
methods (chapters 7 and 8)

Trapezoidal, rectangle and Simpson’s rules
Gaussian quadrature, emphasis on Legendre polynomials,
but you need to know about other polynomials as well.
Brute force Monte Carlo integration
Random numbers (simplest algo, ran0) and probability
distribution functions, expectation values
Improved Monte Carlo integration and importance
sampling.

Computational Physics I FYS3150

Syllabus FYS3150

Monte Carlo methods in physics (chapters 9, 10, and 11)
Random walks and Markov chains and relation with
diffusion equation
Metropolis algorithm, detailed balance and ergodicity
Simple spin systems and phase transitions
Variational Monte Carlo
How to construct trial wave functions for quantum systems

Computational Physics I FYS3150

Syllabus FYS3150

Ordinary differential equations (chapters 13 and 14)
Euler’s method and improved Euler’s method, truncation
errors
Runge Kutta methods, 2nd and 4th order, truncation errors
How to implement a second-order differential equation,
both linear and non-linear. How to make your equations
dimensionless.
Boundary value problems, shooting and matching method
(chap 14).

Computational Physics I FYS3150

Syllabus FYS3150

Partial differential equations, chapter 15
Set up diffusion, Poisson and wave equations up to 2
spatial dimensions and time
Set up the mathematical model and algorithms for these
equations, with boundary and initial conditions. Their
stability conditions.
Explicit, implicit and Crank-Nicolson schemes, and how to
solve them. Remember that they result in triangular
matrices.
How to compute the Laplacian in Poisson’s equation.
How to solve the wave equation in one and two
dimensions.

Computational Physics I FYS3150

Overarching aims of this course

Develop a critical approach to all steps in a project, which
methods are most relevant, which natural laws and
physical processes are important. Sort out initial conditions
and boundary conditions etc.
This means to teach you structured scientific computing,
learn to structure a project.
A critical understanding of central mathematical algorithms
and methods from numerical analysis. In particular their
limits and stability criteria.
Always try to find good checks of your codes (like solutions
on closed form)
To enable you to develop a critical view on the
mathematical model and the physics.

Computational Physics I FYS3150

And, there is nothing like a code which gives correct
results!!

Computational Physics I FYS3150

Selected Texts and lectures on C/C++

J. J. Barton and L. R. Nackman,Scientific and Engineering C++, Addison Wesley,
3rd edition 2000.

B. Stoustrup, The C++ programming language, Pearson, 1997.

H. P. Langtangen INF-VERK3830
http://heim.ifi.uio.no/˜hpl/INF-VERK4830/

D. Yang, C++ and Object-oriented Numeric Computing for Scientists and
Engineers, Springer 2000.

More books reviewed at http:://www.accu.org/ and
http://www.comeaucomputing.com/booklist/

Computational Physics I FYS3150

http://heim.ifi.uio.no/~hpl/INF-VERK4830/
http:://www.accu.org/
http://www.comeaucomputing.com/booklist/

Other courses in Computational Science at UiO

Bachelor/Master/PhD Courses
INF-MAT3350/4350 Numerical linear algebra
MAT-INF3300/3310/4300/4310, PDEs and Sobolev spaces
I and II
INF-MAT3360/4360 PDEs
INF5620/5630/5640 Numerical methods for PDEs, finite
element method
MEK4550 Finite element in solid state mechanics
FYS4410 Computational physics II (Parallelization (MPI),
object orientation, classical statistical physics, simulation of
phase transitions and quantum mechanical systems with
many interacting particles)
AST5340 Numerical Simulation, Methods in numerical
simulation in hydrodynamics and plasma physics applied
to astrophysical problems

Computational Physics I FYS3150

A structured programming approach

Before writing a single line, have the algorithm clarified and understood. It is
crucial to have a logical structure of e.g., the flow and organization of data before
one starts writing.

Always try to choose the simplest algorithm. Computational speed can be
improved upon later.

Try to write a as clear program as possible. Such programs are easier to debug,
and although it may take more time, in the long run it may save you time. If you
collaborate with other people, it reduces spending time on debuging and trying to
understand what the codes do. A clear program will also allow you to remember
better what the program really does!

Computational Physics I FYS3150

A structured programming approach

The planning of the program should be from top down to bottom, trying to keep
the flow as linear as possible. Avoid jumping back and forth in the program. First
you need to arrange the major tasks to be achieved. Then try to break the major
tasks into subtasks. These can be represented by functions or subprograms.
They should accomplish limited tasks and as far as possible be independent of
each other. That will allow you to use them in other programs as well.

Try always to find some cases where an analytical solution exists or where
simple test cases can be applied. If possible, devise different algorithms for
solving the same problem. If you get the same answers, you may have coded
things correctly or made the same error twice or more.

Computational Physics I FYS3150

Getting Started

Compiling and linking
In order to obtain an executable file for a C++ program, the following instructions under
Linux/Unix can be used

c++ -c -Wall myprogram.cpp
c++ -o myprogram myprogram.o

where the compiler is called through the command c++/g++. The compiler option -Wall
means that a warning is issued in case of non-standard language. The executable file
is in this case myprogram. The option −c is for compilation only, where the program is
translated into machine code, while the −o option links the produced object file
myprogram.o and produces the executable myprogram .
For Fortran95 we use the Intel compiler, replace c++ with ifort. Also, to speed up the
code use compile options like

c++ -O3 -c -Wall myprogram.cpp

Computational Physics I FYS3150

Makefiles and simple scripts

Under Linux/Unix it is often convenient to create a so-called makefile, which is a script
which includes possible compiling commands.

Comment lines
General makefile for c - choose PROG = name of given program
Here we define compiler option, libraries and the target
CC= g++ -Wall
PROG= myprogram
this is the math library in C, not necessary for C++
LIB = -lm
Here we make the executable file
${PROG} : ${PROG}.o

${CC} ${PROG}.o ${LIB} -o ${PROG}
whereas here we create the object file
${PROG}.o : ${PROG}.c

${CC} -c ${PROG}.c

If you name your file for ’makefile’, simply type the command make and Linux/Unix

executes all of the statements in the above makefile. Note that C++ files have the

extension .cpp

Computational Physics I FYS3150

Hello world

The C encounter
Here we present first the C version.

/* comments in C begin like this and end with */
#include <stdlib.h> /* atof function */
#include <math.h> /* sine function */
#include <stdio.h> /* printf function */
int main (int argc, char* argv[])
{
double r, s; /* declare variables */
r = atof(argv[1]); /* convert the text argv[1] to double */
s = sin(r);
printf("Hello, World! sin(%g)=%g\n", r, s);
return 0; /* success execution of the program */

}

Computational Physics I FYS3150

Hello World

Dissection I
The compiler must see a declaration of a function before you can call it (the compiler
checks the argument and return types). The declaration of library functions appears in
so-called “header files” that must be included in the program, e.g.,

#include <stdlib.h> /* atof function */

We call three functions (atof, sin, printf) and these are declared in three different
header files. The main program is a function called main with a return value set to an
integer, int (0 if success). The operating system stores the return value, and other
programs/utilities can check whether the execution was successful or not. The
command-line arguments are transferred to the main function through

int main (int argc, char* argv[])

Computational Physics I FYS3150

Hello World

Dissection II
The command-line arguments are transferred to the main function through

int main (int argc, char* argv[])

The integer argc is the no of command-line arguments, set to one in our case, while
argv is a vector of strings containing the command-line arguments with argv [0]
containing the name of the program and argv [1], argv [2], ... are the command-line
args, i.e., the number of lines of input to the program. Here we define floating points,
see also below, through the keywords float for single precision real numbers and
double for double precision. The function atof transforms a text (argv [1]) to a float.
The sine function is declared in math.h, a library which is not automatically included
and needs to be linked when computing an executable file.

With the command printf we obtain a formatted printout. The printf syntax is used for

formatting output in many C-inspired languages (Perl, Python, awk, partly C++).

Computational Physics I FYS3150

Hello World

Now in C++
Here we present first the C++ version.

// A comment line begins like this in C++ programs
// Standard ANSI-C++ include files
using namespace std
#include <iostream> // input and output
int main (int argc, char* argv[])
{
// convert the text argv[1] to double using atof:
double r = atof(argv[1]);
double s = sin(r);
cout << "Hello, World! sin(" << r << ")=" << s << ’\n’;

// success
return 0;

}

Computational Physics I FYS3150

C++ Hello World

Dissection I
We have replaced the call to printf with the standard C++ function cout . The header

file < iostream.h > is then needed. In addition, we don’t need to declare variables like

r and s at the beginning of the program. I personally prefer however to declare all

variables at the beginning of a function, as this gives me a feeling of greater readability.

Computational Physics I FYS3150

Brief summary from Monday

C/C++ program

A C/C++ program begins with include statements of
header files (libraries,intrinsic functions etc)
Functions which are used are normally defined at top
(details next week)
The main program is set up as an integer, it returns 0
(everything correct) or 1 (something went wrong)
Standard if, while and for statements as in Java
Integers have a very limited range.

Computational Physics I FYS3150

Brief summary from Monday

Arrays
A C/C++ array begins by indexing at 0!
Array allocations are done by size, not by the final index
value.If you allocate an array with 10 elements, you should
index them from 0,1, . . . ,9.
Initialize always an array before a computation.

Computational Physics I FYS3150

Serious problems and representation of numbers

Integer and Real Numbers

Overflow
Underflow
Round of errors
Loss of precision

Computational Physics I FYS3150

Limits

C++ and Fortran declarations

type in C/C++ and Fortran 90/95 bits range

int/INTEGER (2) 16 −32768 to 32767
unsigned int 16 0 to 65535
signed int 16 −32768 to 32767
short int 16 −32768 to 32767
unsigned short int 16 0 to 65535
signed short int 16 −32768 to 32767
int/long int/INTEGER(4) 32 −2147483648 to 2147483647
signed long int 32 −2147483648 to 2147483647
float/REAL(4) 32 3.4× 10−44 to 3.4× 10+38

double/REAL(8) 64 1.7× 10−322 to 1.7× 10+308

long double 64 1.7× 10−322 to 1.7× 10+308

Computational Physics I FYS3150

From decimal to binary representation

How to do it

an2n + an−12n−1 + an−22n−2 + · · ·+ a020.

In binary notation we have thus (417)10 = (110110001)2 since we have

(110100001)2 = 1×28+1×27+0×26+1×25+0×24+0×23+0×22+0×22+0×21+1×20.

To see this, we have performed the following divisions by 2

417/2=208 remainder 1 coefficient of 20 is 1
208/2=104 remainder 0 coefficient of 21 is 0
104/2=52 remainder 0 coefficient of 22 is 0
52/2=26 remainder 0 coefficient of 23 is 0
26/2=13 remainder 1 coefficient of 24 is 0
13/2= 6 remainder 1 coefficient of 25 is 1
6/2= 3 remainder 0 coefficient of 26 is 0
3/2= 1 remainder 1 coefficient of 27 is 1
1/2= 0 remainder 1 coefficient of 28 is 1

Computational Physics I FYS3150

From decimal to binary representation

Integer numbers
using namespace std;
#include <iostream>
int main (int argc, char* argv[])
{
int i;
int terms[32]; // storage of a0, a1, etc, up to 32 bits
int number = atoi(argv[1]);
// initialise the term a0, a1 etc
for (i=0; i < 32 ; i++){ terms[i] = 0;}
for (i=0; i < 32 ; i++){

terms[i] = number%2;
number /= 2;

}
// write out results
cout << "Number of bytes used= " << sizeof(number) << endl;
for (i=0; i < 32 ; i++){

cout << " Term nr: " << i << "Value= " << terms[i];
cout << endl;

}
return 0;

}

Computational Physics I FYS3150

From decimal to binary representation

Integer numbers, Fortran
PROGRAM binary_integer
IMPLICIT NONE

INTEGER i, number, terms(0:31) ! storage of a0, a1, etc, up to 32 bits

WRITE(*,*) ’Give a number to transform to binary notation’
READ(*,*) number

! Initialise the terms a0, a1 etc
terms = 0

! Fortran takes only integer loop variables
DO i=0, 31

terms(i) = MOD(number,2)
number = number/2

ENDDO
! write out results
WRITE(*,*) ’Binary representation ’
DO i=0, 31

WRITE(*,*)’ Term nr and value’, i, terms(i)
ENDDO

END PROGRAM binary_integer

Computational Physics I FYS3150

Integer Numbers

Possible Overflow for Integers
// A comment line begins like this in C++ programs
// Program to calculate 2**n
// Standard ANSI-C++ include files */
using namespace std
#include <iostream>
#include <cmath>
int main()
{

int int1, int2, int3;
// print to screen

cout << "Read in the exponential N for 2ˆN =\n";
// read from screen

cin >> int2;
int1 = (int) pow(2., (double) int2);
cout << " 2ˆN * 2ˆN = " << int1*int1 << "\n";
int3 = int1 - 1;
cout << " 2ˆN*(2ˆN - 1) = " << int1 * int3 << "\n";
cout << " 2ˆN- 1 = " << int3 << "\n";
return 0;

}
// End: program main()

Computational Physics I FYS3150

Loss of Precision

Machine Numbers
In the decimal system we would write a number like 9.90625 in what is called the
normalized scientific notation.

9.90625 = 0.990625× 101,

and a real non-zero number could be generalized as

x = ±r × 10n, (1)

with r a number in the range 1/10 ≤ r < 1. In a similar way we can use represent a
binary number in scientific notation as

x = ±q × 2m, (2)

with q a number in the range 1/2 ≤ q < 1. This means that the mantissa of a binary
number would be represented by the general formula

(0.a−1a−2 . . . a−n)2 = a−1 × 2−1 + a−2 × 2−2 + · · ·+ a−n × 2−n. (3)

Computational Physics I FYS3150

Loss of Precision

Machine Numbers
In a typical computer, floating-point numbers are represented in the way described
above, but with certain restrictions on q and m imposed by the available word length. In
the machine, our number x is represented as

x = (−1)s × mantissa× 2exponent, (4)

where s is the sign bit, and the exponent gives the available range. With a

single-precision word, 32 bits, 8 bits would typically be reserved for the exponent, 1 bit

for the sign and 23 for the mantissa.

Computational Physics I FYS3150

Loss of Precision

Machine Numbers
A modification of the scientific notation for binary numbers is to require that the leading
binary digit 1 appears to the left of the binary point. In this case the representation of
the mantissa q would be (1.f)2 and 1 ≤ q < 2. This form is rather useful when storing
binary numbers in a computer word, since we can always assume that the leading bit 1
is there. One bit of space can then be saved meaning that a 23 bits mantissa has
actually 24 bits. This means explicitely that a binary number with 23 bits for the
mantissa reads

(1.a−1a−2 . . . a−23)2 = 1× 20 + a−1 × 2−1 + +a−2 × 2−2 + · · ·+ a−23 × 2−23. (5)

As an example, consider the 32 bits binary number

(10111110111101000000000000000000)2,

where the first bit is reserved for the sign, 1 in this case yielding a negative sign. The

exponent m is given by the next 8 binary numbers 01111101 resulting in 125 in the

decimal system.

Computational Physics I FYS3150

Loss of Precision

Machine Numbers
However, since the exponent has eight bits, this means it has 28 − 1 = 255 possible
numbers in the interval −128 ≤ m ≤ 127, our final exponent is 125− 127 = −2
resulting in 2−2. Inserting the sign and the mantissa yields the final number in the
decimal representation as

−2−2
“

1× 20 + 1× 2−1 + 1× 2−2 + 1× 2−3 + 0× 2−4 + 1× 2−5
”

=

(−0.4765625)10.

In this case we have an exact machine representation with 32 bits (actually, we need
less than 23 bits for the mantissa).

If our number x can be exactly represented in the machine, we call x a machine

number. Unfortunately, most numbers cannot and are thereby only approximated in the

machine. When such a number occurs as the result of reading some input data or of a

computation, an inevitable error will arise in representing it as accurately as possible by

a machine number.

Computational Physics I FYS3150

Loss of Precision

Machine Numbers
A floating number x, labelled fl(x) will therefore always be represented as

fl(x) = x(1± εx), (6)

with x the exact number and the error |εx | ≤ |εM |, where εM is the precision assigned.
A number like 1/10 has no exact binary representation with single or double precision.
Since the mantissa

(1.a−1a−2 . . . a−n)2

is always truncated at some stage n due to its limited number of bits, there is only a

limited number of real binary numbers. The spacing between every real binary number

is given by the chosen machine precision. For a 32 bit words this number is

approximately εM ∼ 10−7 and for double precision (64 bits) we have εM ∼ 10−16, or in

terms of a binary base as 2−23 and 2−52 for single and double precision, respectively.

Computational Physics I FYS3150

Loss of Precision

Machine Numbers
In the machine a number is represented as

fl(x) = x(1 + ε) (7)

where |ε| ≤ εM and ε is given by the specified precision, 10−7 for single and 10−16 for
double precision, respectively. εM is the given precision. In case of a subtraction
a = b − c, we have

fl(a) = fl(b)− fl(c) = a(1 + εa), (8)

or
fl(a) = b(1 + εb)− c(1 + εc), (9)

meaning that

fl(a)/a = 1 + εb
b
a
− εc

c
a
, (10)

and if b ≈ c we see that there is a potential for an increased error in fl(a).

Computational Physics I FYS3150

Loss of Precision

Machine Numbers
Define the absolute error as

|fl(a)− a|, (11)

whereas the relative error is
|fl(a)− a|

a
≤ εa. (12)

The above subraction is thus

|fl(a)− a|
a

=
|fl(b)− fl(c)− (b − c)|

a
, (13)

yielding
|fl(a)− a|

a
=
|bεb − cεc |

a
. (14)

The relative error is the quantity of interest in scientific work. Information about the

absolute error is normally of little use in the absence of the magnitude of the quantity

being measured.

Computational Physics I FYS3150

Loss of numerical precision

Suppose we wish to evaluate the function

f (x) =
1− cos(x)

sin(x)
,

for small values of x . Five leading digits. If we multiply the denominator and numerator
with 1 + cos(x) we obtain the equivalent expression

f (x) =
sin(x)

1 + cos(x)
.

If we now choose x = 0.007 (in radians) our choice of precision results in

sin(0.007) ≈ 0.69999× 10−2,

and
cos(0.007) ≈ 0.99998.

Computational Physics I FYS3150

Loss of numerical precision

The first expression for f (x) results in

f (x) =
1− 0.99998

0.69999× 10−2
=

0.2× 10−4

0.69999× 10−2
= 0.28572× 10−2,

while the second expression results in

f (x) =
0.69999× 10−2

1 + 0.99998
=

0.69999× 10−2

1.99998
= 0.35000× 10−2,

which is also the exact result. In the first expression, due to our choice of precision, we

have only one relevant digit in the numerator, after the subtraction. This leads to a loss

of precision and a wrong result due to a cancellation of two nearly equal numbers. If we

had chosen a precision of six leading digits, both expressions yield the same answer.

Computational Physics I FYS3150

Loss of numerical precision

If we were to evaluate x ∼ π, then the second expression for f (x) can lead to potential
losses of precision due to cancellations of nearly equal numbers.

This simple example demonstrates the loss of numerical precision due to roundoff

errors, where the number of leading digits is lost in a subtraction of two near equal

numbers. The lesson to be drawn is that we cannot blindly compute a function. We will

always need to carefully analyze our algorithm in the search for potential pitfalls. There

is no magic recipe however, the only guideline is an understanding of the fact that a

machine cannot represent correctly all numbers.

Computational Physics I FYS3150

Loss of Precision, bad thing

Real Numbers

Overflow : When the positive exponent exceeds the max value, e.g., 308 for
DOUBLE PRECISION (64 bits). Under such circumstances the program will
terminate and some compilers may give you the warning ’OVERFLOW’.

Underflow : When the negative exponent becomes smaller than the min value,
e.g., -308 for DOUBLE PRECISION. Normally, the variable is then set to zero
and the program continues. Other compilers (or compiler options) may warn you
with the ’UNDERFLOW’ message and the program terminates.

Computational Physics I FYS3150

Loss of precision, real numbers

Roundoff errors A floating point number like

x = 1.234567891112131468 = 0.1234567891112131468× 101 (15)

may be stored in the following way. The exponent is small and is stored in full
precision. However, the mantissa is not stored fully. In double precision (64 bits),
digits beyond the 15th are lost since the mantissa is normally stored in two
words, one which is the most significant one representing 123456 and the least
significant one containing 789111213. The digits beyond 3 are lost. Clearly, if we
are summing alternating series with large numbers, subtractions between two
large numbers may lead to roundoff errors, since not all relevant digits are kept.
This leads eventually to the next problem, namely

Computational Physics I FYS3150

More on Loss of Precision

Real Numbers

Loss of precision When one has to e.g., multiply two large numbers where one
suspects that the outcome may be beyond the bonds imposed by the variable
declaration, one could represent the numbers by logarithms, or rewrite the
equations to be solved in terms of dimensionless variables. When dealing with
problems in e.g., particle physics or nuclear physics where distance is measured
in fm (10−15m), it can be quite convenient to redefine the variables for distance
in terms of a dimensionless variable of the order of unity. To give an example,
suppose you work with single precision and wish to perform the addition
1 + 10−8. In this case, the information containing in 10−8 is simply lost in the
addition. Typically, when performing the addition, the computer equates first the
exponents of the two numbers to be added. For 10−8 this has however
catastrophic consequences since in order to obtain an exponent equal to 100,
bits in the mantissa are shifted to the right. At the end, all bits in the mantissa are
zeros.

Computational Physics I FYS3150

A problematic Case

Three ways of computing e−x

1 Brute force

exp (−x) =
∞X

n=0

(−1)n xn

n!

2 recursion relation for

exp (−x) =
∞X

n=0

sn =
∞X

n=0

(−1)n xn

n!

sn = −sn−1
x
n
,

3

exp (x) =
∞X

n=0

sn

exp (−x) =
1

exp (x)

Computational Physics I FYS3150

Program to compute exp (−x)

Brute Force
// Program to calculate function exp(-x)
// using straightforward summation with differing precision
using namespace std
#include <iostream>
#include <cmath>
// type float: 32 bits precision
// type double: 64 bits precision
#define TYPE double
#define PHASE(a) (1 - 2 * (abs(a) % 2))
#define TRUNCATION 1.0E-10
// function declaration
TYPE factorial(int);

Computational Physics I FYS3150

Program to compute exp (−x)

Still Brute Force
int main()
{

int n;
TYPE x, term, sum;
for(x = 0.0; x < 100.0; x += 10.0) {
sum = 0.0; //initialization
n = 0;
term = 1;
while(fabs(term) > TRUNCATION) {

term = PHASE(n) * (TYPE) pow((TYPE) x,(TYPE) n)
/ factorial(n);

sum += term;
n++;

} // end of while() loop

Computational Physics I FYS3150

Program to compute exp (−x)

Oh, it never ends!
printf("\nx = %4.1f exp = %12.5E series = %12.5E

number of terms = %d",
x, exp(-x), sum, n);

} // end of for() loop

printf("\n"); // a final line shift on output
return 0;

} // End: function main()
// The function factorial()
// calculates and returns n!
TYPE factorial(int n)
{

int loop;
TYPE fac;
for(loop = 1, fac = 1.0; loop <= n; loop++) {

fac *= loop;
}
return fac;

} // End: function factorial()

Computational Physics I FYS3150

Results exp (−x)

What is going on?

x exp (−x) Series Number of terms in series
0.0 0.100000E+01 0.100000E+01 1

10.0 0.453999E-04 0.453999E-04 44
20.0 0.206115E-08 0.487460E-08 72
30.0 0.935762E-13 -0.342134E-04 100
40.0 0.424835E-17 -0.221033E+01 127
50.0 0.192875E-21 -0.833851E+05 155
60.0 0.875651E-26 -0.850381E+09 171
70.0 0.397545E-30 NaN 171
80.0 0.180485E-34 NaN 171
90.0 0.819401E-39 NaN 171

100.0 0.372008E-43 NaN 171

Computational Physics I FYS3150

Program to compute exp (−x)

// program to compute exp(-x) without exponentials
using namespace std
#include <iostream>
#include <cmath>
#define TRUNCATION 1.0E-10

int main()
{

int loop, n;
double x, term, sum;
for(loop = 0; loop <= 100; loop += 10)
{
x = (double) loop; // initialization
sum = 1.0;
term = 1;
n = 1;

Computational Physics I FYS3150

Program to compute exp (−x)

Last statements
while(fabs(term) > TRUNCATION)
{

term *= -x/((double) n);
sum += term;
n++;

} // end while loop
cout << "x = " << x << " exp = " << exp(-x) <<"series = "

<< sum << " number of terms =" << n << "\n";
} // end of for() loop

cout << "\n"; // a final line shift on output

} /* End: function main() */

Computational Physics I FYS3150

Results exp (−x)

More Problems

x exp (−x) Series Number of terms in series
0.000000 0.10000000E+01 0.10000000E+01 1

10.000000 0.45399900E-04 0.45399900E-04 44
20.000000 0.20611536E-08 0.56385075E-08 72
30.000000 0.93576230E-13 -0.30668111E-04 100
40.000000 0.42483543E-17 -0.31657319E+01 127
50.000000 0.19287498E-21 0.11072933E+05 155
60.000000 0.87565108E-26 -0.33516811E+09 182
70.000000 0.39754497E-30 -0.32979605E+14 209
80.000000 0.18048514E-34 0.91805682E+17 237
90.000000 0.81940126E-39 -0.50516254E+22 264

100.000000 0.37200760E-43 -0.29137556E+26 291

Computational Physics I FYS3150

Week 35, 25 August - 29 August

Monday: Repetition from last week
Numerical differentiation
C/C++ programming details, pointers, read/write to/from
file
Wednesday: Intro to linear Algebra and presentation of
project 1.
Matrices in C++ and Fortran90/95
Dynamic memory allocation in C/C++ and Fortran90/95 ,
use of the library package Blitz++ for C++ users
Computer-Lab: thursday and friday 9am-7pm, Exercise 3.

Message: Revised lecture notes (chapters 2-15) will be put on
webpage september 1 2008.

Computational Physics I FYS3150

Most used formula for derivatives

3 point formulae
First derivative (f0 = f (x0), f−h = f (x0 − h) and f+h = f (x0 + h)

fh − f−h

2h
= f ′0 +

∞X
j=1

f (2j+1)
0

(2j + 1)!
h2j .

Second derivative
fh − 2f0 + f−h

h2
= f ′′0 + 2

∞X
j=1

f (2j+2)
0

(2j + 2)!
h2j .

Computational Physics I FYS3150

Error Analysis

ε = log10

 ˛̨̨̨
˛ f
′′
computed − f ′′exact

f ′′exact

˛̨̨̨
˛
!
,

εtot = εapprox + εro.

For the computed second derivative we have

f ′′0 =
fh − 2f0 + f−h

h2
− 2

∞X
j=1

f (2j+2)
0

(2j + 2)!
h2j ,

and the truncation or approximation error goes like

εapprox ≈
f (4)
0

12
h2.

Computational Physics I FYS3150

Error Analysis

If we were not to worry about loss of precision, we could in principle make h as small
as possible. However, due to the computed expression in the above program example

f ′′0 =
fh − 2f0 + f−h

h2
=

(fh − f0) + (f−h − f0)

h2
,

we reach fairly quickly a limit for where loss of precision due to the subtraction of two
nearly equal numbers becomes crucial.
If (f±h − f0) are very close, we have (f±h − f0) ≈ εM , where |εM | ≤ 10−7 for single and
|εM | ≤ 10−15 for double precision, respectively.
We have then ˛̨

f ′′0
˛̨

=

˛̨̨̨
(fh − f0) + (f−h − f0)

h2

˛̨̨̨
≤

2εM
h2

.

Computational Physics I FYS3150

Error Analysis

Our total error becomes

|εtot| ≤
2εM
h2

+
f (4)
0

12
h2.

It is then natural to ask which value of h yields the smallest total error. Taking the
derivative of |εtot| with respect to h results in

h =

24εM
f (4)
0

!1/4

.

With double precision and x = 10 we obtain

h ≈ 10−4.

Beyond this value, it is essentially the loss of numerical precision which takes over.

Computational Physics I FYS3150

Error Analysis

Due to the subtractive cancellation in the expression for f ′′ there is a pronounced
detoriation in accuracy as h is made smaller and smaller.
It is instructive in this analysis to rewrite the numerator of the computed derivative as

(fh − f0) + (f−h − f0) = (ex+h − ex) + (ex−h − ex),

as
(fh − f0) + (f−h − f0) = ex (eh + e−h − 2),

since it is the difference (eh + e−h − 2) which causes the loss of precision.

Computational Physics I FYS3150

Error Analysis

x h = 0.01 h = 0.001 h = 0.0001 h = 0.0000001 Exact
0.0 1.000008 1.000000 1.000000 1.010303 1.000000
1.0 2.718304 2.718282 2.718282 2.753353 2.718282
2.0 7.389118 7.389057 7.389056 7.283063 7.389056
3.0 20.085704 20.085539 20.085537 20.250467 20.085537
4.0 54.598605 54.598155 54.598151 54.711789 54.598150
5.0 148.414396 148.413172 148.413161 150.635056 148.413159

Computational Physics I FYS3150

Error Analysis

The results, still for x = 10 are shown in the Table
h eh + e−h eh + e−h − 2
10−1 2.0100083361116070 1.0008336111607230×10−2

10−2 2.0001000008333358 1.0000083333605581×10−4

10−3 2.0000010000000836 1.0000000834065048×10−6

10−5 2.0000000099999999 1.0000000050247593×10−8

10−5 2.0000000001000000 9.9999897251734637×10−11

10−6 2.0000000000010001 9.9997787827987850×10−13

10−7 2.0000000000000098 9.9920072216264089×10−15

10−8 2.0000000000000000 0.0000000000000000×100

10−9 2.0000000000000000 1.1102230246251565×10−16

10−10 2.0000000000000000 0.0000000000000000×100

Computational Physics I FYS3150

Technical Matter in C/C++: Pointer example I

1 using namespace std; // note use of namespace
2 int main()
3 {
4 int var;
5 int *p;
6 p = &var;
7 var = 421;
8 printf("Address of integer variable var : %p\n",&var);
9 printf("Its value: %d\n", var);
10 printf("Value of integer pointer p : %p\n",p);
11 printf("The value p points at : %d\n",*p);
12 printf("Address of the pointer p : %p\n",&p);
13 return 0;
14 }

Computational Physics I FYS3150

Pointer example I

Discussion
Line Comments

4 • Defines an integer variable var.
5 • Define an integer pointer – reserves space in

memory.
7 • The content of the adddress of pointer is the

address of var.
8 • The value of var is 421.
9 •Writes the address of var in hexadecimal no-

tation for pointers %p.
10 •Writes the value of var in decimal notation%d.

Computational Physics I FYS3150

Pointer example II

....
5 int matr[2];
6 int *p;
7 p = &matr[0];
8 matr[0] = 321;
9 matr[1] = 322;

printf("\nAddress of matrix element matr[1]: %p",&matr[0]);
printf("\nValue of the matrix element matr[1]; %d",matr[0]);
printf("\nAddress of matrix element matr[2]: %p",&matr[1]);
printf("\nValue of the matrix element matr[2]: %d\n", matr[1]);
printf("\nValue of the pointer p: %p",p);
printf("\nThe value p points to: %d",*p);
printf("\nThe value that (p+1) points to %d\n",*(p+1));
printf("\nAddress of pointer p : %p\n",&p);

...

Computational Physics I FYS3150

Pointer example II

Discussion
Line

5 • Declaration of an integer array matr with two
elements

6 • Declaration of an integer pointer
7 • The pointer is initialized to point at the first

element of the array matr.
8–9 • Values are assigned to the array matr.

Computational Physics I FYS3150

Pointer example II

Discussion
The ouput of this example, compiled again with c++, is

Address of the matrix element matr[1]: 0xbfffef70
Value of the matrix element matr[1]; 321
Address of the matrix element matr[2]: 0xbfffef74
Value of the matrix element matr[2]: 322
Value of the pointer: 0xbfffef70
The value pointer points at: 321
The value that (pointer+1) points at: 322
Address of the pointer variable : 0xbfffef6c

Computational Physics I FYS3150

File handling, C-way

using namespace std;
#include <iostream>
int main(int argc, char *argv[])
{

FILE *in_file, *out_file;
if(argc < 3) {
printf("The programs has the following structure :\n");
printf("write in the name of the input and output files \n");
exit(0);

}
in_file = fopen(argv[1], "r");// returns pointer to the input file
if(in_file == NULL) { // NULL means that the file is missing
printf("Can’t find the input file %s\n", argv[1]);
exit(0);

}

Computational Physics I FYS3150

File handling, C way contn

out_file = fopen(argv[2], "w"); // returns a pointer to the output file
if(out_file == NULL) { // can’t find the file

printf("Can’t find the output file%s\n", argv[2]);
exit(0);

}
fclose(in_file);
fclose(out_file);
return 0;

}

Computational Physics I FYS3150

File handling, C++-way

You must first declare input and output files

#include <fstream>

// input and output file as global variable
ofstream ofile;
ifstream ifile;

Computational Physics I FYS3150

File handling, C++-way

int main(int argc, char* argv[])
{

char *outfilename;
//Read in output file, abort if there are too
//few command-line arguments
if(argc <= 1){
cout << "Bad Usage: " << argv[0] <<
" read also output file on same line" << endl;

exit(1);
}
else{
outfilename=argv[1];

}
ofile.open(outfilename);
.....
ofile.close(); // close output file

Computational Physics I FYS3150

File handling, C++-way

void output(double r_min , double r_max, int max_step,
double *d)

{
int i;
ofile << "RESULTS:" << endl;
ofile << setiosflags(ios::showpoint | ios::uppercase);
ofile <<"R_min = " << setw(15) << setprecision(8) <<r_min <<endl;
ofile <<"R_max = " << setw(15) << setprecision(8) <<r_max <<endl;
ofile <<"Number of steps = " << setw(15) << max_step << endl;
ofile << "Five lowest eigenvalues:" << endl;
for(i = 0; i < 5; i++) {

ofile << setw(15) << setprecision(8) << d[i] << endl;
}
} // end of function output

Computational Physics I FYS3150

File handling, C++-way

int main(int argc, char* argv[])
{

char *infilename;
// Read in input file, abort if there are too
// few command-line arguments
if(argc <= 1){
cout << "Bad Usage: " << argv[0] <<
" read also input file on same line" << endl;

exit(1);
}
else{
infilename=argv[1];

}
ifile.open(infilename);
....
ifile.close(); // close input file

Computational Physics I FYS3150

File handling, C++-way

const char* filename1 = "myfile";
ifstream ifile(filename1);
string filename2 = filename1 + ".out"
ofstream ofile(filename2); // new output file
ofstream ofile(filename2, ios_base::app); // append

Read something from the file:

double a; int b; char c[200];
ifile >> a >> b >> c; // skips white space in between

Can test on success of reading:

if (!(ifile >> a >> b >> c)) ok = 0;

Computational Physics I FYS3150

Call by value and reference

int main(int argc, char ∗argv[])
{

int a: // line 1
int ∗b; // line 2

a = 10; // line 3
b = new int[10]; // line 4
for(i = 0; i < 10; i++) {

b[i] = i; // line 5
}
func(a,b); // line 6

return 0;
} // End: function main()

Computational Physics I FYS3150

Call by value and reference

void func(int x, int ∗y) // line 7
{

x += 7; // line 8
∗y += 10; // line 9
y[6] += 10; // line 10
return; // line 11

} // End: function func()

Computational Physics I FYS3150

Call by value and reference

Lines 1,2: Declaration of two variables a and b. The compiler reserves two
locations in memory. The size of the location depends on the type of variable.
Two properties are important for these locations – the address in memory and
the content in the location.

The value of a: a. The address of a: &a
The value of b: *b. The address of b: &b.

Line 3: The value of a is now 10.

Line 4: Memory to store 10 integers is reserved. The address to the first location
is stored in b. Address to element number 6 is given by the expression (b + 6).

Line 5: All 10 elements of b are given values: b[0] = 0, b[1] = 1,, b[9] = 9;

Computational Physics I FYS3150

Call by value and reference

Line 6: The main() function calls the function func() and the program counter
transfers to the first statement in func(). With respect to data the following
happens. The content of a (= 10) and the content of b (a memory address) are
copied to a stack (new memory location) associated with the function func()

Line 7: The variable x and y are local variables in func(). They have the values –
x = 10, y = address of the first element in b in the main().

Line 8: The local variable x stored in the stack memory is changed to 17.
Nothing happens with the value a in main().

Computational Physics I FYS3150

Call by value and reference

Line 9: The value of y is an address and the symbol *y means the position in
memory which has this address. The value in this location is now increased by
10. This means that the value of b[0] in the main program is equal to 10. Thus
func() has modified a value in main().

Line 10: This statement has the same effect as line 9 except that it modifies the
element b[6] in main() by adding a value of 10 to what was there originally,
namely 5.

Line 11: The program counter returns to main(), the next expression after
func(a,b);. All data on the stack associated with func() are destroyed.

Computational Physics I FYS3150

Call by value and reference

The value of a is transferred to func() and stored in a new memory location
called x. Any modification of x in func() does not affect in any way the value of a
in main(). This is called transfer of data by value. On the other hand the next
argument in func() is an address which is transferred to func(). This address can
be used to modify the corresponding value in main(). In the C language it is
expressed as a modification of the value which y points to, namely the first
element of b. This is called transfer of data by reference and is a method to
transfer data back to the calling function, in this case main().

Computational Physics I FYS3150

Call by value and reference

C++ allows however the programmer to use solely call by reference (note that call by
reference is implemented as pointers). To see the difference between C and C++,
consider the following simple examples. In C we would write

int n; n =8;
func(&n); /* &n is a pointer to n */
....
void func(int *i)
{

i = 10; / n is changed to 10 */
....

}

Computational Physics I FYS3150

whereas in C++ we would write

int n; n =8;
func(n); // just transfer n itself
....
void func(int& i)
{
i = 10; // n is changed to 10
....

}

The reason why we emphasize the difference between call by value and call by

reference is that it allows the programmer to avoid pitfalls like unwanted changes of

variables. However, many people feel that this reduces the readability of the code.

Computational Physics I FYS3150

Call by value and reference, F90/95

In Fortran we can use INTENT(IN), INTENT(OUT), INTENT(INOUT) to let the program
know which values should or should not be changed.

SUBROUTINE coulomb_integral(np,lp,n,l,coulomb)
USE effective_interaction_declar
USE energy_variables
USE wave_functions
IMPLICIT NONE
INTEGER, INTENT(IN) :: n, l, np, lp
INTEGER :: i
REAL(KIND=8), INTENT(INOUT) :: coulomb
REAL(KIND=8) :: z_rel, oscl_r, sum_coulomb
...

This hinders unwanted changes and increases readability.

Computational Physics I FYS3150

Week 36, 1-5 September

Linear Algebra
Monday: Repetition from last week
Discussion of Project 1, deadline 15 september (midnight).
Gausssian elimination, LU decomposition and linear
equations
Wednesday: Further discussion of linear algebra methods,
numerical stability
Cholesky decomposition, triangular matrices, inverse of a
matrix
Dynamic memory allocation in C/C++ and Fortran90/95 ,
use of the library package Blitz++ for C++ users. How to
use the C/C++ and Fortran 90/95 libraries.
Computer-Lab: thursday and friday 9am-7pm, Project 1.

Computational Physics I FYS3150

Important Matrix and vector handling packages

The Numerical Recipes codes have been rewritten in Fortran 90/95 and C/C++ by us.
The original source codes are taken from the widely used software package LAPACK,
which follows two other popular packages developed in the 1970s, namely EISPACK
and LINPACK.

LINPACK: package for linear equations and least square problems.

LAPACK:package for solving symmetric, unsymmetric and generalized
eigenvalue problems. From LAPACK’s website http://www.netlib.org it is
possible to download for free all source codes from this library. Both C/C++ and
Fortran versions are available.

BLAS (I, II and III): (Basic Linear Algebra Subprograms) are routines that provide
standard building blocks for performing basic vector and matrix operations. Blas I
is vector operations, II vector-matrix operations and III matrix-matrix operations.
Highly parallelized and efficient codes, all available for download from
http://www.netlib.org.

Computational Physics I FYS3150

http://www.netlib.org
http://www.netlib.org

Basic Matrix Features

Matrix Properties Reminder

A =

a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

 I =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

The inverse of a matrix is defined by

A−1 · A = I

Computational Physics I FYS3150

Basic Matrix Features

Matrix Properties Reminder

Relations Name matrix elements
A = AT symmetric aij = aji

A =
(
AT)−1 real orthogonal

∑
k aikajk =

∑
k akiakj = δij

A = A∗ real matrix aij = a∗ij
A = A† hermitian aij = a∗ji
A =

(
A†
)−1 unitary

∑
k aika∗jk =

∑
k a∗kiakj = δij

Computational Physics I FYS3150

Some famous Matrices

1 Diagonal if aij = 0 for i 6= j
2 Upper triangular if aij = 0 for i > j
3 Lower triangular if aij = 0 for i < j
4 Upper Hessenberg if aij = 0 for i > j + 1
5 Lower Hessenberg if aij = 0 for i < j + 1
6 Tridiagonal if aij = 0 for |i − j | > 1
7 Lower banded with bandwidth p aij = 0 for i > j + p
8 Upper banded with bandwidth p aij = 0 for i < j + p
9 Banded, block upper triangular, block lower triangular....

Computational Physics I FYS3150

Basic Matrix Features

Some Equivalent Statements
For an N × N matrix A the following properties are all
equivalent

1 If the inverse of A exists, A is nonsingular.
2 The equation Ax = 0 implies x = 0.
3 The rows of A form a basis of RN .
4 The columns of A form a basis of RN .
5 A is a product of elementary matrices.
6 0 is not eigenvalue of A.

Computational Physics I FYS3150

Important Mathematical Operations

The basic matrix operations that we will deal with are addition and subtraction

A = B± C =⇒ aij = bij ± cij , (16)

scalar-matrix multiplication
A = γB =⇒ aij = γbij , (17)

vector-matrix multiplication

y = Ax =⇒ yi =
nX

j=1

aij xj , (18)

matrix-matrix multiplication

A = BC =⇒ aij =
nX

k=1

bik ckj , (19)

and transposition
A = BT =⇒ aij = bji (20)

Computational Physics I FYS3150

Important Mathematical Operations

Similarly, important vector operations that we will deal with are addition and subtraction

x = y± z =⇒ xi = yi ± zi , (21)

scalar-vector multiplication
x = γy =⇒ xi = γyi , (22)

vector-vector multiplication (called Hadamard multiplication)

x = yz =⇒ xi = yi zi , (23)

the inner or so-called dot product resulting in a constant

x = yT z =⇒ x =
nX

j=1

yj zj , (24)

and the outer product, which yields a matrix,

A = yzT =⇒ aij = yi zj , (25)

Computational Physics I FYS3150

Matrix Handling in C/C++, Static and Dynamical
allocation

Static
We have an N × N matrix A with N = 100 In C/C++ this would
be defined as

int N = 100;
double A[100][100];
// initialize all elements to zero
for(i=0 ; i < N ; i++) {

for(j=0 ; j < N ; j++) {
A[i][j] = 0.0;

}
}

Note the way the matrix is organized, row-major order.

Computational Physics I FYS3150

Matrix Handling in C/C++

Row Major Order, Addition
We have N × N matrices A, B and C and we wish to evaluate
A = B + C.

A = B± C =⇒ aij = bij ± cij ,

In C/C++ this would be coded like

for(i=0 ; i < N ; i++) {
for(j=0 ; j < N ; j++) {

a[i][j] = b[i][j]+c[i][j]
}

}

Computational Physics I FYS3150

Matrix Handling in C/C++

Row Major Order, Multiplication
We have N × N matrices A, B and C and we wish to evaluate
A = BC.

A = BC =⇒ aij =
n∑

k=1

bikckj ,

In C/C++ this would be coded like

for(i=0 ; i < N ; i++) {
for(j=0 ; j < N ; j++) {

for(k=0 ; k < N ; k++) {
a[i][j]+=b[i][k]*c[k][j];

}
}

}

Computational Physics I FYS3150

Matrix Handling in Fortran 90/95

Column Major Order

ALLOCATE (a(N,N), b(N,N), c(N,N))
DO j=1, N

DO i=1, N
a(i,j)=b(i,j)+c(i,j)

ENDDO
ENDDO
...
DEALLOCATE(a,b,c)

Fortran 90 writes the above statements in a much simpler way

a=b+c

Multiplication

a=MATMUL(b,c)

Fortran contains also the intrinsic functions TRANSPOSE and CONJUGATE.

Computational Physics I FYS3150

Dynamic memory allocation in C/C++

At least three possibilities in this course
Do it yourself
Use the functions provided in the library package lib.cpp
Use Blitz++

Computational Physics I FYS3150

Matrix Handling in C/C++, Dynamic Allocation

Do it yourself
int N;
double ** A;
A = new double*[N]
for (i = 0; i < N; i++)

A[i] = new double[N];

Always free space when you don’t need an array anymore.

for (i = 0; i < N; i++)
delete[] A[i];

delete[] A;

Computational Physics I FYS3150

Gaussian Elimination

We start with the linear set of equations

Ax = w.

We assume also that the matrix A is non-singular and that the matrix elements along
the diagonal satisfy aii 6= 0. Simple 4× 4 example0BB@

a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

1CCA
0BB@

x1
x2
x3
x4

1CCA =

0BB@
w1
w2
w3
w4

1CCA .

or

a11x1 + a12x2 + a13x3 + a14x4 = w1

a21x1 + a22x2 + a23x3 + a24x4 = w2

a31x1 + a32x2 + a33x3 + a34x4 = w3

a41x1 + a42x2 + a43x3 + a44x4 = w4.

Computational Physics I FYS3150

Gaussian Elimination
The basic idea of Gaussian elimination is to use the first equation to eliminate the first
unknown x1 from the remaining n − 1 equations. Then we use the new second
equation to eliminate the second unknown x2 from the remaining n− 2 equations. With
n − 1 such eliminations we obtain a so-called upper triangular set of equations of the
form

b11x1 + b12x2 + b13x3 + b14x4 = y1

b22x2 + b23x3 + b24x4 = y2

b33x3 + b34x4 = y3

b44x4 = y4.

We can solve this system of equations recursively starting from xn (in our case x4) and
proceed with what is called a backward substitution. This process can be expressed
mathematically as

xm =
1

bmm

0@ym −
nX

k=m+1

bmk xk

1A m = n − 1, n − 2, . . . , 1. (26)

To arrive at such an upper triangular system of equations, we start by eliminating the

unknown x1 for j = 2, n. We achieve this by multiplying the first equation by aj1/a11

and then subtract the result from the j th equation. We assume obviously that a11 6= 0

and that A is not singular.

Computational Physics I FYS3150

Gaussian Elimination

Our actual 4× 4 example reads after the first operation0BBB@
a11 a12 a13 a14
0 (a22 −

a21a12
a11

) (a23 −
a21a13

a11
) (a24 −

a21a14
a11

)

0 (a32 −
a31a12

a11
) (a33 −

a31a13
a11

) (a34 −
a31a14

a11
)

0 (a42 −
a41a12

a11
) (a43 −

a41a13
a11

) (a44 −
a41a14

a11
)

1CCCA
0BB@

x1
x2
x3
x4

1CCA =

0BBB@
y1

w (2)
2

w (2)
3

w (2)
4

1CCCA ,

or

b11x1 + b12x2 + b13x3 + b14x4 = y1

a(2)
22 x2 + a(2)

23 x3 + a(2)
24 x4 = w (2)

2

a(2)
32 x2 + a(2)

33 x3 + a(2)
34 x4 = w (2)

3

a(2)
42 x2 + a(2)

43 x3 + a(2)
44 x4 = w (2)

4 ,

(27)

Computational Physics I FYS3150

Gaussian Elimination

The new coefficients are
b1k = a(1)

1k k = 1, . . . , n, (28)

where each a(1)
1k is equal to the original a1k element. The other coefficients are

a(2)
jk = a(1)

jk −
a(1)

j1 a(1)
1k

a(1)
11

j, k = 2, . . . , n, (29)

with a new right-hand side given by

y1 = w (1)
1 , w (2)

j = w (1)
j −

a(1)
j1 w (1)

1

a(1)
11

j = 2, . . . , n. (30)

We have also set w (1)
1 = w1, the original vector element. We see that the system of

unknowns x1, . . . , xn is transformed into an (n − 1)× (n − 1) problem.

Computational Physics I FYS3150

Gaussian Elimination

This step is called forward substitution. Proceeding with these substitutions, we obtain
the general expressions for the new coefficients

a(m+1)
jk = a(m)

jk −
a(m)

jm a(m)
mk

a(m)
mm

j, k = m + 1, . . . , n, (31)

with m = 1, . . . , n − 1 and a right-hand side given by

w (m+1)
j = w (m)

j −
a(m)

jm w (m)
m

a(m)
mm

j = m + 1, . . . , n. (32)

This set of n − 1 elimations leads us to an equations which is solved by back
substitution. If the arithmetics is exact and the matrix A is not singular, then the
computed answer will be exact.

Even though the matrix elements along the diagonal are not zero, numerically small

numbers may appear and subsequent divisions may lead to large numbers, which, if

added to a small number may yield losses of precision. Suppose for example that our

first division in (a22 − a21a12/a11) results in −10−7 and that a22 is one. one. We are

then adding 107 + 1. With single precision this results in 107.

Computational Physics I FYS3150

Gaussian Elimination and Tridiagonal matrices, project
1

Suppose we want to solve the following boundary value equation

−
d2u(x)

dx2
= f (x , u(x)),

with x ∈ (a, b) and with boundary conditions u(a) = u(b) = 0. We assume that f is a
continuous function in the domain x ∈ (a, b). Since, except the few cases where it is
possible to find analytic solutions, we will seek after approximate solutions, we choose
to represent the approximation to the second derivative from the previous chapter

f ′′ =
fh − 2f0 + f−h

h2
+ O(h2).

We subdivide our interval x ∈ (a, b) into n subintervals by setting xi = ih, with
i = 0, 1, . . . , n + 1. The step size is then given by h = (b − a)/(n + 1) with n ∈ N. For
the internal grid points i = 1, 2, . . . n we replace the differential operator with the above
formula resulting in

u′′(xi) ≈
u(xi + h)− 2u(xi) + u(xi − h)

h2
,

which we rewrite as

u
′′
i ≈

ui+1 − 2ui + ui−i

h2
.

Computational Physics I FYS3150

Gaussian Elimination and Tridiagonal matrices, project
1

We can rewrite our original differential equation in terms of a discretized equation with
approximations to the derivatives as

−
ui+1 − 2ui + ui−i

h2
= f (xi , u(xi)),

with i = 1, 2, . . . , n. We need to add to this system the two boundary conditions
u(a) = u0 and u(b) = un+1. If we define a matrix

A =
1
h2

0BBBBB@
2 −1
−1 2 −1

−1 2 −1
.

−1 2 −1
−1 2

1CCCCCA
and the corresponding vectors u = (u1, u2, . . . , un)T and
f(u) = f (x1, x2, . . . , xn, u1, u2, . . . , un)T we can rewrite the differential equation
including the boundary conditions as a system of linear equations with a large number
of unknowns

Au = f(u).

Computational Physics I FYS3150

Gaussian Elimination and Tridiagonal matrices, project
1

We start with the linear set of equations

Au = f,

where A is a tridiagonal matrix which we rewrite as

A =

0BBBBB@
b1 c1 0
a2 b2 c2

a3 b3 c3
.

an−2 bn−1 cn−1
an bn

1CCCCCA
where a, b, c are one-dimensional arrays of length 1 : n. In project 1 the arrays a and c

are equal, namely ai = ci = −1/h2. The matrix is also positive definite.

Computational Physics I FYS3150

Gaussian Elimination and Tridiagonal matrices, project
1

We can rewrite as

A =

0BBBBB@
b1 c1 0
a2 b2 c2

a3 b3 c3
.

an−2 bn−1 cn−1
an bn

1CCCCCA

0BBBBB@
u1
u2
. . .
. . .
. . .
un

1CCCCCA =

0BBBBB@
f1
f2
. . .
. . .
. . .
fn

1CCCCCA .

Computational Physics I FYS3150

Gaussian Elimination and Tridiagonal matrices, project
1

A tridiagonal matrix is a special form of banded matrix where all the elements are zero
except for those on and immediately above and below the leading diagonal. The above
tridiagonal system can be written as

ai ui−1 + bi ui + ci ui+1 = fi ,

for i = 1, 2, . . . , n. We see that u−1 and un+1 are not required and we can set

a1 = cn = 0. In many applications the matrix is symmetric and we have ai = ci . The

algorithm for solving this set of equations is rather simple and requires two steps only, a

forward substitution and a backward substitution. These steps are also common to the

algorithms based on Gaussian elimination that we discussed previously. However, due

to its simplicity, the number of floating point operations is in this case proportional with

O(n) while Gaussian elimination requires 2n3/3 + O(n2) floating point operations.

Computational Physics I FYS3150

Gaussian Elimination and Tridiagonal matrices, project
1

In case your system of equations leads to a tridiagonal matrix, it is clearly an overkill to
employ Gaussian elimination or the standard LU decomposition. You will encounter
several applications involving tridiagonal matrices in our discussion of partial
differential equations in chapter 15.
Our algorithm starts with forward substitution with a loop over of the elements i and can
be expressed via the following piece of code

btemp = b[1];
u[1] = f[1]/btemp;
for(i=2 ; i <= n ; i++) {

temp[i] = c[i-1]/btemp;
btemp = b[i]-a[i]*temp[i];
u[i] = (f[i] - a[i]*u[i-1])/btemp;

}

Computational Physics I FYS3150

Gaussian Elimination and Tridiagonal matrices, project
1

Note that you should avoid cases with b1 = 0. If that is the case, you should rewrite the
equations as a set of order n − 1 with u2 eliminated. Finally we perform the
backsubstitution leading to the following code

for(i=n-1 ; i >= 1 ; i--) {
u[i] -= temp[i+1]*u[i+1];

}

Computational Physics I FYS3150

Gaussian Elimination and Tridiagonal matrices, project
1

Note that our sums start with i = 1 and that one should avoid cases with b1 = 0. If that
is the case, you should rewrite the equations as a set of order n − 1 with u2 eliminated.
However, a tridiagonal matrix problem is not a guarantee that we can find a solution.
The matrix A which rephrases a second derivative in a discretized form

A =

0BBBBB@
2 −1 0 0 0 0
−1 2 −1 0 0 0
0 −1 2 −1 0 0
0
0 0 0 −1 2 −1
0 0 0 0 −1 2

1CCCCCA ,

fulfills the condition of a weak dominance of the diagonal, with |b1| > |c1|, |bn| > |an|
and |bk | ≥ |ak |+ |ck | for k = 2, 3, . . . , n − 1. This is a relevant but not sufficient

condition to guarantee that the matrix A yields a solution to a linear equation problem.

The matrix needs also to be irreducible. A tridiagonal irreducible matrix means that all

the elements ai and ci are non-zero. If these two conditions are present, then A is

nonsingular and has a unique LU decomposition.

Computational Physics I FYS3150

Project 1, hints

When setting up the algo it is useful to note that the different operations on the matrix
(here as a 4× 4 case with diagonals di and off-diagonals ei0BB@

d1 e1 0 0
e1 d2 e2 0
0 e2 d3 e3
0 0 e3 d4

1CCA→
0BB@

d1 e1 0 0
0 d̃2 e2 0
0 e2 d3 e3
0 0 e3 d4

1CCA→
0BB@

d1 e1 0 0
0 d̃2 e2 0
0 0 d̃3 e3
0 0 e3 d4

1CCA
and finally 0BB@

d1 e1 0 0
0 d̃2 e2 0
0 0 d̃3 e3
0 0 0 d̃4

1CCA

Computational Physics I FYS3150

Project 1, hints

We notice the sub-blocks which get repeated0BB@
d1 e1 0 0
0 d̃2 e2 0
0 0 d̃3 e3
0 0 0 d̃4

1CCA
The matrices we often end up with in rewriting for for example partial differential
equations, have the feature that all leading principal submatrices are non-singular. If
the matrix is symmetric as well it can be rewritten as A = LDLT with D the diagonal
and we have the following relations a11 = d1, ak,k−1 = ek−1dk−1 for k = 2, . . . , n and
finally

akk = dk + e2
k−1dk−1 = dk + ek−1ak,k−1

for k = 2, . . . , n.

Computational Physics I FYS3150

LU Decomposition
The LU decomposition method means that we can rewrite this matrix as the product of
two matrices B and C where0BB@

a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

1CCA =

0BB@
1 0 0 0

b21 1 0 0
b31 b32 1 0
b41 b42 b43 1

1CCA
0BB@

c11 c12 c13 c14
0 c22 c23 c24
0 0 c33 c34
0 0 0 c44

1CCA .

LU decomposition forms the backbone of other algorithms in linear algebra, such as
the solution of linear equations given by

a11x1 + a12x2 + a13x3 + a14x4 = w1

a21x1 + a22x2 + a23x3 + a24x4 = w2

a31x1 + a32x2 + a33x3 + a34x4 = w3

a41x1 + a42x2 + a43x3 + a44x4 = w4.

The above set of equations is conveniently solved by using LU decomposition as an
intermediate step.
The matrix A ∈ Rn×n has an LU factorization if the determinant is different from zero. If
the LU factorization exists and A is non-singular, then the LU factorization is unique
and the determinant is given by

det{A} = c11c22 . . . cnn.

Computational Physics I FYS3150

Linear Algebra Methods

Gaussian elimination, O(2/3n3) flops, general matrix
LU decomposition, upper triangular and lower tridiagonal
matrices, O(2/3n3) flops, general matrix. Get easily the
inverse, determinant and can solve linear equations with
back-substitution only, O(n2) flops
Cholesky decomposition A = LLT . Real symmetric or
hermitian positive definite matrix, O(1/3n3) flops.
Tridiagonal linear systems, important for differential
equations. Normally positive definite and non-singular.
O(8n) flops for symmetric. A = LDLT with D the diagonal.
Special case of banded matrices.
Singular value decomposition
the QR method will be discussed in chapter 12 in
connection with eigenvalue systems. O(4/3n3) flops.

Computational Physics I FYS3150

How to use the Library functions

Standard C/C++: fetch the files lib.cpp and lib.h. You can make a directory where you
store these files, and eventually its compiled version lib.o. The example here is
program1.cpp from chapter 4 and performs the matrix inversion.

/ Simple matrix inversion example
#include <iostream>
#include <new>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <cstring>
#include "lib.h"

using namespace std;

/* function declarations */

void inverse(double **, int);

Computational Physics I FYS3150

How to use the Library functions

void inverse(double **a, int n)
{

int i,j, *indx;
double d, *col, **y;
// allocate space in memory
indx = new int[n];
col = new double[n];
y = (double **) matrix(n, n, sizeof(double));
ludcmp(a, n, indx, &d); // LU decompose a[][]
printf("\n\nLU form of matrix of a[][]:\n");
for(i = 0; i < n; i++) {
printf("\n");
for(j = 0; j < n; j++) {
printf(" a[%2d][%2d] = %12.4E",i, j, a[i][j]);

}
}

Computational Physics I FYS3150

How to use the Library functions

// find inverse of a[][] by columns
for(j = 0; j < n; j++) {
// initialize right-side of linear equations
for(i = 0; i < n; i++) col[i] = 0.0;
col[j] = 1.0;
lubksb(a, n, indx, col);
// save result in y[][]
for(i = 0; i < n; i++) y[i][j] = col[i];

} //j-loop over columns
// return the inverse matrix in a[][]
for(i = 0; i < n; i++) {
for(j = 0; j < n; j++) a[i][j] = y[i][j];

}
free_matrix((void **) y); // release local memory
delete [] col;
delete []indx;

} // End: function inverse()

Computational Physics I FYS3150

How to use the Library functions

For Fortran users:

PROGRAM matrix
USE constants
USE F90library
IMPLICIT NONE
! The definition of the matrix, using dynamic allocation
REAL(DP), ALLOCATABLE, DIMENSION(:,:) :: a, ainv, unity
! the determinant
REAL(DP) :: d
! The size of the matrix
INTEGER :: n
....
! Allocate now place in heap for a
ALLOCATE (a(n,n), ainv(n,n), unity(n,n))

Computational Physics I FYS3150

How to use the Library functions

For Fortran users:

WRITE(6,*) ’ The matrix before inversion’
WRITE(6,’(3F12.6)’) a
ainv=a
CALL matinv (ainv, n, d)
....
! get the unity matrix
unity=MATMUL(ainv,a)
WRITE(6,*) ’ The unity matrix’
WRITE(6,’(3F12.6)’) unity
! deallocate all arrays
DEALLOCATE (a, ainv, unity)

END PROGRAM matrix

Computational Physics I FYS3150

What is Blitz++
http://www.oonumerics.org/blitz/?

Blitz++ http://www.oonumerics.org/blitz/ is a C++ library whose two main

goals are to improve the numerical efficiency of C++ and to extend the conventional

dense array model to incorporate new and useful features. Some examples of such

extensions are flexible storage formats, tensor notation and index placeholders. It

allows you also to write several operations involving vectors and matrices in a simple

and clear (from a mathematical point of view) way. The way you would code the

addition of two matrices looks very similar to the way it is done in Fortran90/95. The

C++ programming language offers many features useful for tackling complex scientific

computing problems: inheritance, polymorphism, generic programming, and operator

overloading are some of the most important. Unfortunately, these advanced features

came with a hefty performance pricetag: until recently, C++ lagged behind Fortran’s

performance by anywhere from 20% to a factor of ten. It was not uncommon to read in

textbooks on high-performance computing that if performance matters, then one should

resort to Fortran, preferentiall even Fortran 77.

Computational Physics I FYS3150

http://www.oonumerics.org/blitz/
http://www.oonumerics.org/blitz/

What is Blitz++
http://www.oonumerics.org/blitz/?

As a result, untill very recently, the adoption of C++ for scientific computing has been
slow. This has changed quite a lot in the last years and modern C++ compilers with
numerical libraries have improved the situation considerably. Recent benchmarks show
C++ encroaching steadily on Fortran’s high-performance monopoly, and for some
benchmarks, C++ is even faster than Fortran! These results are being obtained not
through better optimizing compilers, preprocessors, or language extensions, but
through the use of template techniques. By using templates cleverly, optimizations
such as loop fusion, unrolling, tiling, and algorithm specialization can be performed
automatically at compile time.
The features of Blitz++ which are useful for our studies are the dynamical allocation of
vectors and matrices and algebraic operations on these objects. In particular, if you
access the Blitz++ webpage at http://www.oonumerics.org/blitz/, we
recommend that you study chapters two and three.

Computational Physics I FYS3150

http://www.oonumerics.org/blitz/
http://www.oonumerics.org/blitz/

Blitz++ http://www.oonumerics.org/blitz/

A simple makefile

Path where Blitz is installed
BZDIR = /site/Blitz++-0.9_64
CXX = c++
Flags for optimizing executables
CXXFLAGS = -02 -I$(BZDIR) -ftemplate-depth-30
Flags for debugging
CXXFLAGS = -ftemplate-depth-30 -g -DBZ_DEBUG -I$(BZDIR)/include
LDFLAGS =
LIBS = -L$(BZDIR)/lib -lblitz -lm
TARGETS = blitz_test
.SUFFIXES: .o.cpp
.cpp.o:

$(CXX) $(CXXFLAGS) -c $*.cpp
$(TARGETS):

$(CXX) $(LDFLAGS) $@.o -o $@ $(LIBS)
all:

$(TARGETS)

blitz_test: blitz_test.o

clean:
rm -f *.o

Computational Physics I FYS3150

http://www.oonumerics.org/blitz/

Blitz++ example

// Simple test case of matrix operations
// using Blitz++
#include <blitz/array.h>
#include <iostream>
using namespace std;
using namespace blitz;

int main()
{

// Create two 4x4 arrays. We want them to look like matrices, so
// we’ll make the valid index range 1..4 (rather than 0..3 which is
// the default).

Range r(1,4);
Array<float,2> A(r,r), B(r,r);
// initialize a matrix
A = 0.; B = 0.;

Computational Physics I FYS3150

Blitz++ example

// The first will be a Hilbert matrix:
//
// a = 1
// ij -----
// i+j-1
//
// Blitz++ provides a set of types { firstIndex, secondIndex, ... }
// which act as placeholders for indices. These can be used directly
// in expressions. For example, we can fill out the A matrix like this:

firstIndex i; // Placeholder for the first index
secondIndex j; // Placeholder for the second index

A = 1.0 / (i+j-1);
cout << "A = " << A << endl;
// Now the A matrix has each element equal to a_ij = 1/(i+j-1).

Computational Physics I FYS3150

Blitz++ example

// The matrix B will be the permutation matrix
//
// [0 0 0 1]
// [0 0 1 0]
// [0 1 0 0]
// [1 0 0 0]
//
// Here are two ways of filling out B:

B = (i == (5-j)); // Using an equation -- a bit cryptic

cout << "B = " << B << endl;

B = 0, 0, 0, 1, // Using an initializer list
0, 0, 1, 0,
0, 1, 0, 0,
1, 0, 0, 0;

cout << "B = " << B << endl;

Computational Physics I FYS3150

Blitz++ example

// Now some examples of tensor-like notation.

Array<float,3> C(r,r,r); // A three-dimensional array: 1..4, 1..4, 1..4

thirdIndex k; // Placeholder for the third index

// This expression will set
//
// c = a * b
// ijk ik kj

C = A(i,k) * B(k,j);

Computational Physics I FYS3150

Blitz++ example

// In real tensor notation, the repeated k index would imply a
// contraction (or summation) along k. In Blitz++, you must explicitly
// indicate contractions using the sum(expr, index) function:

Array<float,2> D(r,r);

D = sum(A(i,k) * B(k,j), k);

// The above expression computes the matrix product of A and B.

cout << "D = " << D << endl;

Computational Physics I FYS3150

Blitz++ example

// Now let’s fill out a two-dimensional array with a radially symmetric
// decaying sinusoid.

int N = 64; // Size of array: N x N
Array<float,2> F(N,N);
float midpoint = (N-1)/2.;
int cycles = 3;
float omega = 2.0 * M_PI * cycles / double(N);
float tau = - 10.0 / N;

F = cos(omega * sqrt(pow2(i-midpoint) + pow2(j-midpoint)))

* exp(tau * sqrt(pow2(i-midpoint) + pow2(j-midpoint)));

return 0;
}

More about classes in C++ from INF-VERK3830 slides

Computational Physics I FYS3150

Blitz++ Library
See at webpage under blitz programs and examples. Here we
look at the code linEq.

/*
** The template function

** solveEq()

** solves the set of linear equations,

** check the results and print it to

** standard output

*/

template <typename T>
void solveEq(INPUTDATA data)
{

int row,col;
T val;
Array<T,2> A(data.dim, data.dim), A1(data.dim, data.dim);
Array<T,1> B(data.dim), X(data.dim);
Array<int,1> Index(data.dim);

// fill the matrix A(,) and vector B() with data

matrixVal(data, A, B);

Computational Physics I FYS3150

Blitz++ Library

/*
** In order to check the solution we save the original

** matrix A and vector B and use A1 and X

** in the calculation since ludcmp() and lubksb() destroy

** the original elements

*/

A1 = A; // Blitz asignements
X = B;

// necessary parameter if ludcmp() is used to invert a matrix

T permutation = static_cast<T>(1);
// LU decomposition of A1()
ludcmp(A1, data.dim, Index, permutation);

Computational Physics I FYS3150

Blitz++ Library

cout << endl << "Time used: " << ex_time.hour << " hour "
<< ex_time.min << " min "
<< ex_time.sec << " sec "

<< endl;
cout << endl << "The coefficient matrix A1 after

ludcmp(A1 = " << A1 << endl;
lubksb(A1, data.dim, Index, X); // solve the equations
cout << endl << endl

<< "Solution to " << data.dim <<" linear equations"
<< endl <<endl;

cout << endl << "The coefficient matrix A = " << A << endl;
cout << endl << "The right-hand matrix B = " << B << endl;
cout << endl << "The solution X = " << X << endl;
checkEq(A, X, B);

Computational Physics I FYS3150

Blitz++ Library

cout << endl << endl
<< "Check the solution B - (A x X) = " << B
<< endl <<endl;

A.free(); // release memory -- Blitz methods
A1.free();
B.free();
X.free();

Computational Physics I FYS3150

Blitz++ Library, output for random matrix

Solution to 3 linear equations

The coefficient matrix A = 3 x 3
[-2.57343 -1.71153 4.39192

-4.98846 -1.04559 -3.17281
4.54754 0.539849 3.24798]

The right-hand matrix B = 3
[-1.22136 2.67661 -4.17957]

The solution X = 3
[-1.79775 4.60816 0.464313]

Check the solution B - (A x X) = 3
[-1.11022e-15 0 0]

Computational Physics I FYS3150

Week 37, 8-12 September

Linear Algebra and differential equations
Monday: Repetition from last week
Determinant and inverse of matrices, chapter 4.
Qubic spline, chapter 6
Singular value decomposition, chapter 4
Wednesday: Differential equations
Improved Euler methods and introduction to differential
equations
Presentation of project 2.
Computer-Lab: thursday and friday 9am-7pm, Project 1.

Computational Physics I FYS3150

Differential equations program

Ordinary differential equations, Runge-Kutta
method,chapter 13
Ordinary differential equations with boundary conditions:
one-variable equations to be solved by shooting and
Green’s function methods, chapter 14
We can solve such equations by a finite difference scheme
as well, turning the equation into an eigenvalue problem.
Still one variable.
Eigenvalue problems, chapter 12
If we have more than one variable, we need to solve partial
differential equations, which form the last part of this
course. Chapter 15
Fourier transforms and Fast Fourier transforms, chapter 15.

Till middle of october. Projects 2-4 cover these topics.

Computational Physics I FYS3150

Qubic Splines, Chapter 6

Qubic spline interpolation is among one of the mostly used methods for interpolating
between data points where the arguments are organized as ascending series. In the
library program we supply such a function, based on the so-called qubic spline method
to be described below.
A spline function consists of polynomial pieces defined on subintervals. The different
subintervals are connected via various continuity relations.
Assume we have at our disposal n + 1 points x0, x1, . . . xn arranged so that
x0 < x1 < x2 < . . . xn−1 < xn (such points are called knots). A spline function s of
degree k with n + 1 knots is defined as follows

On every subinterval [xi−1, xi) s is a polynomial of degree ≤ k .

s has k − 1 continuous derivatives in the whole interval [x0, xn].

Computational Physics I FYS3150

Splines

As an example, consider a spline function of degree k = 1 defined as follows

s(x) =

8>><>>:
s0(x) = a0x + b0 x ∈ [x0, x1)
s1(x) = a1x + b1 x ∈ [x1, x2)

.
sn−1(x) = an−1x + bn−1 x ∈ [xn−1, xn]

In this case the polynomial consists of series of straight lines connected to each other

at every endpoint. The number of continuous derivatives is then k − 1 = 0, as

expected when we deal with straight lines. Such a polynomial is quite easy to construct

given n + 1 points x0, x1, . . . xn and their corresponding function values.

Computational Physics I FYS3150

Splines

The most commonly used spline function is the one with k = 3, the so-called qubic
spline function. Assume that we have in adddition to the n + 1 knots a series of
functions values y0 = f (x0), y1 = f (x1), . . . yn = f (xn). By definition, the polynomials
si−1 and si are thence supposed to interpolate the same point i , i.e.,

si−1(xi) = yi = si (xi),

with 1 ≤ i ≤ n − 1. In total we have n polynomials of the type

si (x) = ai0 + ai1x + ai2x2 + ai2x3,

yielding 4n coefficients to determine.

Computational Physics I FYS3150

Splines

Every subinterval provides in addition the 2n conditions

yi = s(xi),

and
s(xi+1) = yi+1,

to be fulfilled. If we also assume that s′ and s′′ are continuous, then

s′i−1(xi) = s′i (xi),

yields n − 1 conditions. Similarly,

s′′i−1(xi) = s′′i (xi),

results in additional n − 1 conditions. In total we have 4n coefficients and 4n − 2

equations to determine them, leaving us with 2 degrees of freedom to be determined.

Computational Physics I FYS3150

Splines

Using the last equation we define two values for the second derivative, namely

s′′i (xi) = fi ,

and
s′′i (xi+1) = fi+1,

and setting up a straight line between fi and fi+1 we have

s′′i (x) =
fi

xi+1 − xi
(xi+1 − x) +

fi+1

xi+1 − xi
(x − xi),

and integrating twice one obtains

si (x) =
fi

6(xi+1 − xi)
(xi+1 − x)3 +

fi+1

6(xi+1 − xi)
(x − xi)

3 + c(x − xi) + d(xi+1 − x).

Computational Physics I FYS3150

Splines

Using the conditions si (xi) = yi and si (xi+1) = yi+1 we can in turn determine the
constants c and d resulting in

si (x) =
fi

6(xi+1−xi)
(xi+1 − x)3 +

fi+1
6(xi+1−xi)

(x − xi)
3

+ (
yi+1

xi+1−xi
− fi+1(xi+1−xi)

6)(x − xi) + (
yi

xi+1−xi
− fi (xi+1−xi)

6)(xi+1 − x). (33)

Computational Physics I FYS3150

Splines

How to determine the values of the second derivatives fi and fi+1? We use the
continuity assumption of the first derivatives

s′i−1(xi) = s′i (xi),

and set x = xi . Defining hi = xi+1 − xi we obtain finally the following expression

hi−1fi−1 + 2(hi + hi−1)fi + hi fi+1 =
6
hi

(yi+1 − yi)−
6

hi−1
(yi − yi−1),

and introducing the shorthands ui = 2(hi + hi−1), vi = 6
hi

(yi+1 − yi)− 6
hi−1

(yi − yi−1),

we can reformulate the problem as a set of linear equations to be solved through e.g.,

Gaussian elemination

Computational Physics I FYS3150

Splines

Gaussian elimination2666664
u1 h1 0 . . .
h1 u2 h2 0 . . .
0 h2 u3 h3 0 . . .
.

. . . 0 hn−3 un−2 hn−2
0 hn−2 un−1

3777775

2666664
f1
f2
f3
. . .

fn−2
fn−1

3777775 =

2666664
v1
v2
v3
. . .

vn−2
vn−1

3777775 .

Note that this is a set of tridiagonal equations and can be solved through only O(n)

operations.

Computational Physics I FYS3150

Splines

The functions supplied in the program library are spline and splint . In order to use
qubic spline interpolation you need first to call

spline(double x[], double y[], int n, double yp1,
double yp2, double y2[])

This function takes as input x [0, .., n − 1] and y [0, .., n − 1] containing a tabulation

yi = f (xi) with x0 < x1 < .. < xn−1 together with the first derivatives of f (x) at x0 and

xn−1, respectively. Then the function returns y2[0, .., n − 1] which contains the second

derivatives of f (xi) at each point xi . n is the number of points. This function provides

the qubic spline interpolation for all subintervals and is called only once.

Computational Physics I FYS3150

Splines

Thereafter, if you wish to make various interpolations, you need to call the function

splint(double x[], double y[], double y2a[], int n,
double x, double *y)

which takes as input the tabulated values x [0, .., n − 1] and y [0, .., n − 1] and the

output y2a[0,..,n - 1] from spline. It returns the value y corresponding to the point x .

Computational Physics I FYS3150

Differential Equations

The order of the ODE refers to the order of the derivative on the left-hand side in the
equation

dy
dt

= f (t , y). (34)

This equation is of first order and f is an arbitrary function. A second-order equation
goes typically like

d2y
dt2

= f (t ,
dy
dt
, y). (35)

A well-known second-order equation is Newton’s second law

m
d2x
dt2

= −kx , (36)

where k is the force constant. ODE depend only on one variable

Computational Physics I FYS3150

Differential Equations

partial differential equations like the time-dependent Schrödinger equation

i~
∂ψ(x, t)
∂t

= −
~2

2m

„
∂2ψ(r, t)
∂x2

+
∂2ψ(r, t)
∂y2

+
∂2ψ(r, t)
∂z2

«
+ V (x)ψ(x, t), (37)

may depend on several variables. In certain cases, like the above equation, the wave

function can be factorized in functions of the separate variables, so that the

Schrödinger equation can be rewritten in terms of sets of ordinary differential

equations. These equations are discussed in chapter 15. Involve boundary conditions

in addition to initial conditions.

Computational Physics I FYS3150

Differential Equations

We distinguish also between linear and non-linear differential equation where e.g.,

dy
dt

= g3(t)y(t), (38)

is an example of a linear equation, while

dy
dt

= g3(t)y(t)− g(t)y2(t), (39)

is a non-linear ODE.

Computational Physics I FYS3150

Differential Equations

Another concept which dictates the numerical method chosen for solving an ODE, is
that of initial and boundary conditions. To give an example, if we study white dwarf
stars or neutron stars we will need to solve two coupled first-order differential
equations, one for the total mass m and one for the pressure P as functions of ρ

dm
dr

= 4πr2ρ(r)/c2,

and
dP
dr

= −
Gm(r)

r2
ρ(r)/c2.

where ρ is the mass-energy density. The initial conditions are dictated by the mass
being zero at the center of the star, i.e., when r = 0, yielding m(r = 0) = 0. The other
condition is that the pressure vanishes at the surface of the star.
In the solution of the Schrödinger equation for a particle in a potential, we may need to
apply boundary conditions as well, such as demanding continuity of the wave function
and its derivative.

Computational Physics I FYS3150

Differential Equations

In many cases it is possible to rewrite a second-order differential equation in terms of
two first-order differential equations. Consider again the case of Newton’s second law
in Eq. (36). If we define the position x(t) = y (1)(t) and the velocity v(t) = y (2)(t) as its
derivative

dy (1)(t)
dt

=
dx(t)

dt
= y (2)(t), (40)

we can rewrite Newton’s second law as two coupled first-order differential equations

m
dy (2)(t)

dt
= −kx(t) = −ky (1)(t), (41)

and
dy (1)(t)

dt
= y (2)(t). (42)

Computational Physics I FYS3150

Differential Equations, Finite Difference

These methods fall under the general class of one-step methods. The algoritm is rather
simple. Suppose we have an initial value for the function y(t) given by

y0 = y(t = t0). (43)

We are interested in solving a differential equation in a region in space [a,b]. We define
a step h by splitting the interval in N sub intervals, so that we have

h =
b − a

N
. (44)

With this step and the derivative of y we can construct the next value of the function y
at

y1 = y(t1 = t0 + h), (45)

and so forth.

Computational Physics I FYS3150

Differential Equations

If the function is rather well-behaved in the domain [a,b], we can use a fixed step size.
If not, adaptive steps may be needed. Here we concentrate on fixed-step methods only.
Let us try to generalize the above procedure by writing the step yi+1 in terms of the
previous step yi

yi+1 = y(t = ti + h) = y(ti) + h∆(ti , yi (ti)) + O(hp+1), (46)

where O(hp+1) represents the truncation error. To determine ∆, we Taylor expand our
function y

yi+1 = y(t = ti + h) = y(ti) + h(y ′(ti) + · · ·+ y (p)(ti)
hp−1

p!
) + O(hp+1), (47)

where we will associate the derivatives in the parenthesis with

∆(ti , yi (ti)) = (y ′(ti) + · · ·+ y (p)(ti)
hp−1

p!
). (48)

Computational Physics I FYS3150

Differential Equations

We define
y ′(ti) = f (ti , yi) (49)

and if we truncate ∆ at the first derivative, we have

yi+1 = y(ti) + hf (ti , yi) + O(h2), (50)

which when complemented with ti+1 = ti + h forms the algorithm for the well-known

Euler method. Note that at every step we make an approximation error of the order of

O(h2), however the total error is the sum over all steps N = (b − a)/h, yielding thus a

global error which goes like NO(h2) ≈ O(h).

Computational Physics I FYS3150

Differential Equations

To make Euler’s method more precise we can obviously decrease h (increase N).
However, if we are computing the derivative f numerically by e.g., the two-steps formula

f ′2c(x) =
f (x + h)− f (x)

h
+ O(h),

we can enter into roundoff error problems when we subtract two almost equal numbers
f (x + h)− f (x) ≈ 0. Euler’s method is not recommended for precision calculation,
although it is handy to use in order to get a first view on how a solution may look like.
As an example, consider Newton’s equation rewritten in Eqs. (41) and (42). We define
y0 = y (1)(t = 0) an v0 = y (2)(t = 0). The first steps in Newton’s equations are then

y (1)
1 = y0 + hv0 + O(h2) (51)

and
y (2)

1 = v0 − hy0k/m + O(h2). (52)

Computational Physics I FYS3150

Differential Equations

The Euler method is asymmetric in time, since it uses information about the derivative
at the beginning of the time interval. This means that we evaluate the position at y (1)

1

using the velocity at y (2)
0 = v0. A simple variation is to determine y (1)

n+1 using the

velocity at y (2)
n+1, that is (in a slightly more generalized form)

y (1)
n+1 = y (1)

n + hy (2)
n+1 + O(h2) (53)

and
y (2)

n+1 = y (2)
n + han + O(h2). (54)

The acceleration an is a function of an(y (1)
n , y (2)

n , t) and needs to be evaluated as well.

This is the Euler-Cromer method.

Computational Physics I FYS3150

Differential Equations

Let us then include the second derivative in our Taylor expansion. We have then

∆(ti , yi (ti)) = f (ti) +
h
2

df (ti , yi)

dt
+ O(h3). (55)

The second derivative can be rewritten as

y ′′ = f ′ =
df
dt

=
∂f
∂t

+
∂f
∂y

∂y
∂t

=
∂f
∂t

+
∂f
∂y

f (56)

and we can rewrite Eq. (47) as

yi+1 = y(t = ti + h) = y(ti) + hf (ti) +
h2

2

„
∂f
∂t

+
∂f
∂y

f
«

+ O(h3), (57)

which has a local approximation error O(h3) and a global error O(h2).

Computational Physics I FYS3150

Differential Equations

These approximations can be generalized by using the derivative f to arbitrary order so
that we have

yi+1 = y(t = ti + h) = y(ti) + h(f (ti , yi) + . . . f (p−1)(ti , yi)
hp−1

p!
) + O(hp+1). (58)

These methods, based on higher-order derivatives, are in general not used in

numerical computation, since they rely on evaluating derivatives several times. Unless

one has analytical expressions for these, the risk of roundoff errors is large.

Computational Physics I FYS3150

Differential Equations

The most obvious improvements to Euler’s and Euler-Cromer’s algorithms, avoiding in
addition the need for computing a second derivative, is the so-called midpoint method.
We have then

y (1)
n+1 = y (1)

n +
h
2

“
y (2)

n+1 + y (2)
n

”
+ O(h2) (59)

and
y (2)

n+1 = y (2)
n + han + O(h2), (60)

yielding

y (1)
n+1 = y (1)

n + hy (2)
n +

h2

2
an + O(h3) (61)

implying that the local truncation error in the position is now O(h3), whereas Euler’s or

Euler-Cromer’s methods have a local error of O(h2).

Computational Physics I FYS3150

Differential Equations

Thus, the midpoint method yields a global error with second-order accuracy for the
position and first-order accuracy for the velocity. However, although these methods
yield exact results for constant accelerations, the error increases in general with each
time step.
One method that avoids this is the so-called half-step method. Here we define

y (2)
n+1/2 = y (2)

n−1/2 + han + O(h2), (62)

and
y (1)

n+1 = y (1)
n + hy (2)

n+1/2 + O(h2). (63)

Note that this method needs the calculation of y (2)
1/2. This is done using e.g., Euler’s

method
y (2)

1/2 = y (2)
0 + ha0 + O(h2). (64)

As this method is numerically stable, it is often used instead of Euler’s method.

Computational Physics I FYS3150

Differential Equations

Another method which one may encounter is the Euler-Richardson method with

y (2)
n+1 = y (2)

n + han+1/2 + O(h2), (65)

and
y (1)

n+1 = y (1)
n + hy (2)

n+1/2 + O(h2). (66)

The program program2.cpp includes all of the above methods.

Computational Physics I FYS3150

Week 38, 15 - 19 September

Ordinary Differential Equations (ODEs)
Monday
Ordinary Differential equations and Runge-Kutta methods,
one-step methods and adaptive methods
Discussion of project 2
Wednesday:
Ordinary Differential Equations: Pendulum, code, classes,
driven nonlinear oscillations and the route to chaos.

Computational Physics I FYS3150

Differential Equations, Runge-Kutta methods

Runge-Kutta (RK) methods are based on Taylor expansion formulae, but yield in
general better algorithms for solutions of an ODE. The basic philosophy is that it
provides an intermediate step in the computation of yi+1.
To see this, consider first the following definitions

dy
dt

= f (t , y), (67)

and
y(t) =

Z
f (t , y)dt , (68)

and

yi+1 = yi +

Z ti+1

ti
f (t , y)dt . (69)

Computational Physics I FYS3150

Differential Equations, Runge-Kutta methods

To demonstrate the philosophy behind RK methods, let us consider the second-order
RK method, RK2. The first approximation consists in Taylor expanding f (t , y) around
the center of the integration interval ti to ti+1, i.e., at ti + h/2, h being the step. Using
the midpoint formula for an integral, defining y(ti + h/2) = yi+1/2 and
ti + h/2 = ti+1/2, we obtain

Z ti+1

ti
f (t , y)dt ≈ hf (ti+1/2, yi+1/2) + O(h3). (70)

This means in turn that we have

yi+1 = yi + hf (ti+1/2, yi+1/2) + O(h3). (71)

Computational Physics I FYS3150

Differential Equations, Runge-Kutta methods

However, we do not know the value of yi+1/2. Here comes thus the next approximation,
namely, we use Euler’s method to approximate yi+1/2. We have then

y(i+1/2) = yi +
h
2

dy
dt

= y(ti) +
h
2

f (ti , yi). (72)

This means that we can define the following algorithm for the second-order
Runge-Kutta method, RK2.

k1 = hf (ti , yi), (73)

k2 = hf (ti+1/2, yi + k1/2), (74)

with the final value
yi+i ≈ yi + k2 + O(h3). (75)

Computational Physics I FYS3150

Differential Equations, Runge-Kutta methods

The difference between the previous one-step methods is that we now need an

intermediate step in our evaluation, namely ti + h/2 = t(i+1/2) where we evaluate the

derivative f . This involves more operations, but the gain is a better stability in the

solution.

Computational Physics I FYS3150

Differential Equations, Runge-Kutta methods

The fourth-order Runge-Kutta, RK4, which we will employ in the solution of various
differential equations below, has the following algorithm

k1 = hf (ti , yi), (76)

k2 = hf (ti + h/2, yi + k1/2), (77)

k3 = hf (ti + h/2, yi + k2/2) (78)

k4 = hf (ti + h, yi + k3) (79)

with the final value
yi+1 = yi +

1
6

(k1 + 2k2 + 2k3 + k4) . (80)

Thus, the algorithm consists in first calculating k1 with ti , y1 and f as inputs. Thereafter,

we increase the step size by h/2 and calculate k2, then k3 and finally k4. Global error

as O(h4).

Computational Physics I FYS3150

Simple Example, Block tied to a Wall

Our first example is the classical case of simple harmonic
oscillations, namely a block sliding on a horizontal frictionless
surface. The block is tied to a wall with a spring. If the spring is
not compressed or stretched too far, the force on the block at a
given position x is

F = −kx .

Computational Physics I FYS3150

Simple Example, Block tied to a Wall

The negative sign means that the force acts to restore the object to an equilibrium
position. Newton’s equation of motion for this idealized system is then

m
d2x
dt2

= −kx ,

or we could rephrase it as
d2x
dt2

= −
k
m

x = −ω2
0x ,

with the angular frequency ω2
0 = k/m.

The above differential equation has the advantage that it can be solved analytically with
solutions on the form

x(t) = Acos(ω0t + ν),

where A is the amplitude and ν the phase constant. This provides in turn an important

test for the numerical solution and the development of a program for more complicated

cases which cannot be solved analytically.

Computational Physics I FYS3150

Simple Example, Block tied to a Wall

With the position x(t) and the velocity v(t) = dx/dt we can reformulate Newton’s
equation in the following way

dx(t)
dt

= v(t),

and
dv(t)

dt
= −ω2

0x(t).

We are now going to solve these equations using the Runge-Kutta method to fourth

order discussed previously.

Computational Physics I FYS3150

Simple Example, Block tied to a Wall

Before proceeding however, it is important to note that in addition to the exact solution,
we have at least two further tests which can be used to check our solution.
Since functions like cos are periodic with a period 2π, then the solution x(t) has also to
be periodic. This means that

x(t + T) = x(t),

with T the period defined as

T =
2π
ω0

=
2πp
k/m

.

Observe that T depends only on k/m and not on the amplitude of the solution.

Computational Physics I FYS3150

Simple Example, Block tied to a Wall

In addition to the periodicity test, the total energy has also to be conserved.
Suppose we choose the initial conditions

x(t = 0) = 1 m v(t = 0) = 0 m/s,

meaning that block is at rest at t = 0 but with a potential energy

E0 =
1
2

kx(t = 0)2 =
1
2

k .

The total energy at any time t has however to be conserved, meaning that our solution
has to fulfil the condition

E0 =
1
2

kx(t)2 +
1
2

mv(t)2.

Computational Physics I FYS3150

Simple Example, Block tied to a Wall
An algorithm which implements these equations is included below.

1 Choose the initial position and speed, with the most common choice
v(t = 0) = 0 and some fixed value for the position.

2 Choose the method you wish to employ in solving the problem.

3 Subdivide the time interval [ti , tf] into a grid with step size

h =
tf − ti

N
,

where N is the number of mesh points.

4 Calculate now the total energy given by

E0 =
1
2

kx(t = 0)2 =
1
2

k .

5 The Runge-Kutta method is used to obtain xi+1 and vi+1 starting from the
previous values xi and vi ..

6 When we have computed x(v)i+1 we upgrade ti+1 = ti + h.

7 This iterative process continues till we reach the maximum time tf .

8 The results are checked against the exact solution. Furthermore, one has to
check the stability of the numerical solution against the chosen number of mesh
points N.

Computational Physics I FYS3150

Simple Example, Block tied to a Wall

y[0] = initial_x; // initial position
y[1] = initial_v; // initial velocity
t=0.; // initial time
E0 = 0.5*y[0]*y[0]+0.5*y[1]*y[1]; // the initial total energy
// now we start solving the differential
// equations using the RK4 method
while (t <= tmax){
derivatives(t, y, dydt); // initial derivatives
runge_kutta_4(y, dydt, n, t, h, yout, derivatives);
for (i = 0; i < n; i++) {

y[i] = yout[i];
}
t += h;
output(t, y, E0); // write to file

}

Computational Physics I FYS3150

Simple Example, Block tied to a Wall

// this function sets up the derivatives for this special case
void derivatives(double t, double *y, double *dydt)
{
dydt[0]=y[1]; // derivative of x
dydt[1]=-y[0]; // derivative of v

} // end of function derivatives

Computational Physics I FYS3150

Runge-Kutta methods, code

void runge_kutta_4(double *y, double *dydx, int n,
double x, double h,

double *yout, void (*derivs)(double, double *, double *))
{

int i;
double xh,hh,h6;
double *dym, *dyt, *yt;
// allocate space for local vectors
dym = new double [n];
dyt = new double [n];
yt = new double [n];
hh = h*0.5;
h6 = h/6.;
xh = x+hh;

Computational Physics I FYS3150

Runge-Kutta methods, code

for (i = 0; i < n; i++) {
yt[i] = y[i]+hh*dydx[i];

}
(*derivs)(xh,yt,dyt); // computation of k2
for (i = 0; i < n; i++) {
yt[i] = y[i]+hh*dyt[i];

}
(*derivs)(xh,yt,dym); // computation of k3
for (i=0; i < n; i++) {
yt[i] = y[i]+h*dym[i];
dym[i] += dyt[i];

}
(*derivs)(x+h,yt,dyt); // computation of k4
// now we upgrade y in the array yout
for (i = 0; i < n; i++){
yout[i] = y[i]+h6*(dydx[i]+dyt[i]+2.0*dym[i]);

}
delete []dym;
delete [] dyt;
delete [] yt;

} // end of function Runge-kutta 4

Computational Physics I FYS3150

Week 39, 22 - 26 September

Ordinary Differential Equations (ODEs) with boundary
conditions

Monday
Discussion of project 2
Ordinary Differential Equations: Pendulum, code, classes,
driven nonlinear oscillations and the route to chaos.
Begin of discussion of ODE with two-point boundary
conditions
Wednesday:
ODE with two-point boundary conditions, Numerov’s
method, shooting and matching.
Green’s function methods

Computational Physics I FYS3150

Project 2, Typos

There were two errors in the old project description (till last sunday).

R0 =

„
Yemec2

4πρ0GMp

«1/2

= 7.72× 106Ye m.

and R� = 6.95× 108 m. The power 106 was wrongly written 105 and the radius
of the sun carried an exponent of 107 instead of 108.

In the text we write
x ∝ n(1/3) ∝ V−3,

it should be
x ∝ n(1/3) ∝ V−1/3,

Computational Physics I FYS3150

Why do we think electrons are responsible in white
dwarfs?

The arguments here follow Landau’s original work back in 1932 related to the
proposition of neutron stars (after Chadwick’s discovery of the neutron).
Assume we have N fermions inside a star of radius R. We have a density of fermions
n = N/V .
Using Heisenberg’s uncertainty relation we can assume that momentum is proportional

p ∼ ~n1/3

The gravitional energy per fermion is then

EG ∼ −
GMmB

R
,

with mB the mass of the relevant baryons (neutrons and protons). The total mass is
assumed to be M = NmB .
The fermions are relativistic (why is explained below) and we assume that the energy is

EF ∼ ~cn1/3 ∼
~cN1/3

R
,

recall
p

p2c2 + m2c4.

Computational Physics I FYS3150

Why do we think electrons are responsible in white
dwarfs?

The total energy is

E = EG + EF ∼
~cN1/3

R
−

GNm2
B

R
.

It depends on R and N. Rest is given by fundamental constants. Stability when E = 0.

Assume E > 0

1 This means N is small for fixed R.
2 Reduce E by increasing R
3 Electrons become non-relativistic EF ∝ 1/R2 and as

R →∞, E becomes negative, collapse. Only stable for
finite R.

Assume E < 0

1 Can reduce E with no bounds by decreasing R, that is
R → 0.

2 No stable star.

Computational Physics I FYS3150

Why do we think electrons are responsible in white
dwarfs?

The total energy is

E = EG + EF ∼
~cN1/3

R
−

GNm2
B

R
.

Stability when E = 0.
Maximum baryon number when E = 0,

Nmax ∼

~c
Gm2

B

!3/2

∼ 2× 1057.

Maximum mass of the star

Mmax ∼ NmaxmB ∼ 1.5×M�

This analysis involves only fundamental constants. The radius at equilibrium when
M → Mmax is connected with a relativistic equation of state, that is EF ≥ mc2 (E = 0)
resulting in a radius

R ≤
~

mc

~c

Gm2
B

!1/2

.

Computational Physics I FYS3150

Why do we think electrons are responsible in white
dwarfs?

Inserting the mass of the neutron or the mass of the electron in

R ≤
~

mc

~c

Gm2
B

!1/2

.

we obtain radii for either a neutron star or a white dwarf. With m = mn we get

R ∼ 3× 103 m, or just some few kilometers. Alternatively, with m = me we get

R ∼ 5× 106 m, or some thousand kilometers. We have only use fundamental

constants in this analysis.

Computational Physics I FYS3150

Radius of a white dwarf as function of central density

−2 −1 0 1 2 3 4 5 6 7 8
0

0.01

0.02

0.03

0.04

0.05

0.06

 ρ
c

r

Radius of white dwarf as function of central density.

Computational Physics I FYS3150

Mass-radius relationships for different values of Ye

0 0.005 0.01 0.015 0.02 0.025 0.03
0

0.5

1

1.5

R, [R
O

]

M, [M
O

]

Fe
C

Sirius B

Eri B

Stein 2051

Computational Physics I FYS3150

Gravitational energy versus kinetic energy

As an interesting digression, we compute the total kinetic and rest energy of the
electrons U(R) and the gravitational energy W (R) given by

U(R) =
3
8

4πn0mec2
Z R

0
(x(1 + 2x2)

p
1 + x2 − ln(x +

p
1 + x2)) r2dr ,

where x = (ρ(r))
1
3 and

W (R) = −4πG
Z R

0
m(r) ρ(r)rdr .

Computational Physics I FYS3150

Gravitational and kinetic energies for different values
of Ye

1 2 3 4 5
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

M, [M
0
]

W(M) + U(M), [U
0
]

Y
e
 = 1

C
Fe

Computational Physics I FYS3150

Gravitational energy versus kinetic energy

The mass value at which sum of U + W is equal to zero corresponds to the maximum

mass a white dwarf of a given composition can assume. At this point the degenerate

electron gas pressure cannot balance the gravitational pull of a star’s mass. This leads

eventually to the star’s collapse. One easily notices that the maximum mass of a white

dwarf composed primarily of 12 is roughly M ≈ 1.44M�, which is equal to the famous

Chandrasekhar’s limit.

Computational Physics I FYS3150

The classical pendulum

The angular equation of motion of the pendulum is given by Newton’s equation and
with no external force it reads

ml
d2θ

dt2
+ mgsin(θ) = 0, (81)

with an angular velocity and acceleration given by

v = l
dθ
dt
, (82)

and

a = l
d2θ

dt2
. (83)

Computational Physics I FYS3150

More on the Pendulum

We do however expect that the motion will gradually come to an end due a viscous
drag torque acting on the pendulum. In the presence of the drag, the above equation
becomes

ml
d2θ

dt2
+ ν

dθ
dt

+ mgsin(θ) = 0, (84)

where ν is now a positive constant parameterizing the viscosity of the medium in
question. In order to maintain the motion against viscosity, it is necessary to add some
external driving force. We choose here a periodic driving force. The last equation
becomes then

ml
d2θ

dt2
+ ν

dθ
dt

+ mgsin(θ) = Asin(ωt), (85)

with A and ω two constants representing the amplitude and the angular frequency

respectively. The latter is called the driving frequency.

Computational Physics I FYS3150

More on the Pendulum

We define
ω0 =

p
g/l,

the so-called natural frequency and the new dimensionless quantities

t̂ = ω0t ,

with the dimensionless driving frequency

ω̂ =
ω

ω0
,

and introducing the quantity Q, called the quality factor,

Q =
mg
ω0ν

,

and the dimensionless amplitude

Â =
A

mg

Computational Physics I FYS3150

More on the Pendulum

we have
d2θ

dt̂2
+

1
Q

dθ
dt̂

+ sin(θ) = Âcos(ω̂t̂).

This equation can in turn be recast in terms of two coupled first-order differential
equations as follows

dθ
dt̂

= v̂ ,

and
dv̂
d t̂

= −
v̂
Q
− sin(θ) + Âcos(ω̂t̂).

These are the equations to be solved. The factor Q represents the number of

oscillations of the undriven system that must occur before its energy is significantly

reduced due to the viscous drag. The amplitude Â is measured in units of the

maximum possible gravitational torque while ω̂ is the angular frequency of the external

torque measured in units of the pendulum’s natural frequency.

Computational Physics I FYS3150

Classes for ODE methods

In this course we have not emphasized the use of classes.
However for the ordinary differential equations it can be very
useful to make a Class which contains all possible methods
discussed. In Fortran we can use the MODULE keyword in
order to can methods and keep the variables private and
hidden from other parts of our code. This allows for a
generalization which can be used to tackle other ODEs as well.

Computational Physics I FYS3150

Classes for ODE methods

In program2.cpp of chapter13 we have canned the following methods

void euler();

void euler cromer();

void midpoint();

void euler richardson();

void half step();

void rk2(); //runge-kutta-second-order

void rk4 step(double,double*,double*,double); // we need it in function rk4() and
asc()

void rk4(); //runge-kutta-fourth-order

void asc(); //runge-kutta-fourth-order with adaptive stepsize control

Computational Physics I FYS3150

Classes for ODE methods

class pendulum
{
private:
double Q, A_roof, omega_0, omega_roof,g; //
double y[2]; //for the initial-values of phi and v
int n; // how many steps
double delta_t,delta_t_roof;

public:
void derivatives(double,double*,double*);
void initialise();
void euler();
void euler_cromer();
void midpoint();
void euler_richardson();
void half_step();
void rk2(); //runge-kutta-second-order
void rk4_step(double,double*,double*,double); // we need it in function rk4() and asc()
void rk4(); //runge-kutta-fourth-order
void asc(); //runge-kutta-fourth-order with adaptive stepsize control

};

Computational Physics I FYS3150

Classes for ODE methods

void pendulum::derivatives(double t, double* in, double* out)
{ /* Here we are calculating the derivatives at (dimensionless) time t

’in’ are the values of phi and v, which are used for the calculation
The results are given to ’out’ */

out[0]=in[1]; //out[0] = (phi)’ = v
if(Q)
out[1]=-in[1]/((double)Q)-sin(in[0])+A_roof*cos(omega_roof*t); //out[1] = (phi)’’

else
out[1]=-sin(in[0])+A_roof*cos(omega_roof*t); //out[1] = (phi)’’

}

Computational Physics I FYS3150

Classes for ODE methods

int main()
{

pendulum testcase;
testcase.initialise();
testcase.euler();
testcase.euler_cromer();
testcase.midpoint();
testcase.euler_richardson();
testcase.half_step();
testcase.rk2();
testcase.rk4();
return 0;

} // end of main function

Computational Physics I FYS3150

Classes for ODE methods

In Fortran we would use

MODULE pendulum
USE CONSTANTS
IMPLICIT NONE
REAL(DP), PRIVATE :: Q, A_roof, omega_0, omega_roof,g
REAL(DP), PRIVATE :: y(2) ! for the initial-values of phi and v
INTEGER, PRIVATE :: n ! how many steps
REAL(DP), PRIVATE :: delta_t,delta_t_roof

CONTAINS
SUBROUTINE derivatives(..)
SUBROUTINE initialise(..)
SUBROUTINE euler(..)
SUBROUTINE euler_cromer(..)
SUBROUTINE midpoint(..)
etc

END MODULE pendulum

Computational Physics I FYS3150

Boundary value problems, chapter 14

Suppose we want to solve the following boundary value equation

d2u(x)

dx2
+ g(x)u(x) = f (x , u(x)),

with x ∈ (a, b) and with for example boundary conditions u(a) = u(b) = 0. We
assume that f is a continuous function in the domain x ∈ (a, b).
We have already seen this in project 1 (g(x) = 0.
Another example of an equation with similar boundary conditions is

d2u(x)

dx2
+ g(x)u(x) = λu(x),

which is often called an eigenvalue equation.

How do we solve such equations?

Computational Physics I FYS3150

Week 40, 29 September 3 October

Ordinary Differential Equations (ODEs) with boundary
conditions and Eigenvalue problems

Monday
Discussion of project 3
ODE with two-point boundary conditions, shooting and
matching method.
Differential equations as eigenvalue problems, Jacobi’s
method
Wednesday:
Eigenvalue problems, Jacobi’s method and Householder’s
method

Computational Physics I FYS3150

Boundary Value Problems

−
~2

2mα2

d2

dρ2
u(r) +

„
V (ρ) +

l(l + 1)

ρ2

~2

2mα2

«
u(ρ) = Eu(ρ).

In our case we are interested in attractive potentials

V (r) = −V0f (r),

where V0 > 0 and analyze bound states where E < 0.

Computational Physics I FYS3150

Boundary Value Problems

The final equation can be written as

d2

dρ2
u(ρ) + k(ρ)u(ρ) = 0,

where

k(ρ) = γ

„
f (ρ)−

1
γ

l(l + 1)

ρ2
− ε
«

γ =
2mα2V0

~2

ε =
|E |
V0

Computational Physics I FYS3150

Boundary Value Problems

f (r) =

1
0 for r ≤ a

r > a

and choose α = a. Then

k(ρ) = γ

8<: 1− ε− 1
γ

l(l+1)

ρ2

−ε−− 1
γ

l(l+1)

ρ2

for r ≤ a
r > a

Computational Physics I FYS3150

Boundary Value Problems

For small ρ we get
d2

dρ2
u(ρ)−

l(l + 1)

ρ2
u(ρ) = 0,

with solutions u(ρ) = ρl+1 or u(ρ) = ρ−l . Since the final solution must be finite
everywhere we get the condition for our numerical solution

u(ρ) = ρl+1 for small ρ

Computational Physics I FYS3150

Boundary Value Problems

For large ρ we get
d2

dρ2
u(ρ)− γεu(ρ) = 0 γ > 0,

with solutions u(ρ) = exp(±γερ) and the condition for large ρ means that our
numerical solution must satisfy

u(ρ) = e−γερ for large ρ

Computational Physics I FYS3150

Boundary Value Problems

In order to find a bound state we start integrating, with a trial negative value for the

energy, from small values of the variable ρ, usually zero, and up to some large value of

ρ. As long as the potential is significantly different from zero the function oscillates.

Outside the range of the potential the function will approach an exponential form. If we

have chosen a correct eigenvalue the function decreases exponetially as

u(ρ) = e−γερ. However, due to numerical inaccuracy the solution will contain small

admixtures of the undesireable exponential growing function u(ρ) = e+γερ.

Computational Physics I FYS3150

Boundary Value Problems

The final solution will then become unstable. Therefore, it is better to generate two

solutions, with one starting from small values of ρ and integrate outwards to some

matching point ρ = ρm. We call that function u<(ρ). The next solution u>(ρ) is then

obtained by integrating from some large value ρ where the potential is of no

importance, and inwards to the same matching point ρm. Due to the quantum

mechanical requirements the logarithmic derivative at the matching point ρm should be

well defined.

Computational Physics I FYS3150

Boundary Value Problems

We obtain the following condition

d
dρu<(ρ)

u<(ρ)
=

d
dρu>(ρ)

u>(ρ)
at ρ = ρm.

We can modify this expression by normalizing the function u<u<(ρm) = Cu>u<(ρm).

Computational Physics I FYS3150

d
dρ

u<(ρ) =
d
dρ

u>(ρ) at ρ = ρm

We can calculate the first order derivatives by

d
dρ

u<(ρm) ≈
u<(ρm)− u<(ρm − h)

h
d
dρ

u>(ρm) ≈
u>(ρm + h)− u>(ρm)

h

Thus the criterium for a proper eigenfunction will be

f = u<(ρm − h)− u>(ρm + h)

which should be smaller than a fixed number.

Computational Physics I FYS3150

Boundary Value Problems

The algorithm could then take the following form

Initialise the problem by choosing minimum and maximum values for the energy,
Emin and Emax, the maximum number of iterations max iter and the desired
numerical precision.

Search then for the roots of the function f (E), where the root(s) is(are) in the
interval E ∈ [Emin,Emax] using e.g., the bisection method.

Computational Physics I FYS3150

Boundary Value Problems

do {
i++;
e = (e_min+e_max)/2.; //bisection
if (f(e)*f(e_max) > 0) {

e_max = e; //change search interval
}
else { e_min = e; }

} while ((fabs(f(e) > convergence_test) !! (i <= max_iterations))

Computational Physics I FYS3150

Boundary Value Problems

The use of a root-searching method forms the shooting part of the algorithm. We
have however not yet specified the matching part.

The matching part is given by the function f (e) which receives as argument the
present value of E . This function forms the core of the method and is based on
an integration of Schrödinger’s equation from ρ = 0 and ρ =∞. If

f = u<(ρm − h)− u>(ρm + h) ≤ test

we have a solution.

The function f (E) receives as input a guess for the energy. In the version implemented
below, we use the standard three-point formula for the second derivative, namely

f ′′0 ≈
fh − 2f0 + f−h

h2
.

Computational Physics I FYS3150

Boundary Value Problems

void f(double step, int max_step, double energy, double *w, double *wf)
{

int loop, loop_1,match;
double fac, wwf, norm;

// adding the energy guess to the array containing the potential
for(loop = 0; loop <= max_step; loop ++) {

w[loop] = (w[loop] - energy) * step * step + 2;
}

}

Computational Physics I FYS3150

Boundary Value Problems

// integrating from large r-values
wf[max_step] = 0.0;
wf[max_step - 1] = 0.5 * step * step;

// search for matching point
for(loop = max_step - 2; loop > 0; loop--) {

wf[loop] = wf[loop + 1] * w[loop + 1] - wf[loop + 2];
if(wf[loop] <= wf[loop + 1]) break;

}
match = loop + 1;
wwf = wf[match];

Computational Physics I FYS3150

Boundary Value Problems

// start integrating up to matching point from r =0
wf[0] = 0.0; wf[1] = 0.5 * step * step;
for(loop = 2; loop <= match; loop++) {

wf[loop] = wf[loop -1] * w[loop - 1] - wf[loop - 2];
if(fabs(wf[loop]) > INFINITY) {

for(loop_1 = 0; loop_1 <= loop; loop_1++) {
wf[loop_1] /= INFINITY;

}
}

}
return fabs(wf[match-1]-wf[match+1]);

Computational Physics I FYS3150

Eigenvalue Solvers

Let us consider the matrix A of dimension n. The eigenvalues of A is defined through
the matrix equation

Ax(ν) = λ(ν)x(ν),

where λ(ν) are the eigenvalues and x(ν) the corresponding eigenvectors. Unless
otherwise stated, when we use the wording eigenvector we mean the right eigenvector.
The left eigenvector is defined as

x(ν)
LA = λ(ν)x(ν)

L

The above right eigenvector problem is equivalent to a set of n equations with n

unknowns xi .

Computational Physics I FYS3150

Eigenvalue Solvers

The eigenvalue problem can be rewritten as“
A− λ(ν)I

”
x(ν) = 0,

with I being the unity matrix. This equation provides a solution to the problem if and
only if the determinant is zero, namely˛̨̨

A− λ(ν)I
˛̨̨

= 0,

which in turn means that the determinant is a polynomial of degree n in λ and in

general we will have n distinct zeros.

Computational Physics I FYS3150

Eigenvalue Solvers

The eigenvalues of a matrix A ∈ Cn×n are thus the n roots of its characteristic
polynomial

P(λ) = det(λI− A),

or

P(λ) =
nY

i=1

(λi − λ) .

The set of these roots is called the spectrum and is denoted as λ(A). If
λ(A) = {λ1, λ2, . . . , λn} then we have

det(A) = λ1λ2 . . . λn,

and if we define the trace of A as

Tr(A) =
nX

i=1

aii

then Tr(A) = λ1 + λ2 + · · ·+ λn.

Computational Physics I FYS3150

Abel-Ruffini Impossibility Theorem

The Abel-Ruffini theorem (also known as Abel’s impossibility theorem) states that there
is no general solution in radicals to polynomial equations of degree five or higher.
The content of this theorem is frequently misunderstood. It does not assert that
higher-degree polynomial equations are unsolvable. In fact, if the polynomial has real
or complex coefficients, and we allow complex solutions, then every polynomial
equation has solutions; this is the fundamental theorem of algebra. Although these
solutions cannot always be computed exactly with radicals, they can be computed to
any desired degree of accuracy using numerical methods such as the
Newton-Raphson method or Laguerre method, and in this way they are no different
from solutions to polynomial equations of the second, third, or fourth degrees.

The theorem only concerns the form that such a solution must take. The content of the

theorem is that the solution of a higher-degree equation cannot in all cases be

expressed in terms of the polynomial coefficients with a finite number of operations of

addition, subtraction, multiplication, division and root extraction. Some polynomials of

arbitrary degree, of which the simplest nontrivial example is the monomial equation

axn = b, are always solvable with a radical.

Computational Physics I FYS3150

Abel-Ruffini Impossibility Theorem

The Abel-Ruffini theorem says that there are some fifth-degree equations whose
solution cannot be so expressed. The equation x5 − x + 1 = 0 is an example. Some
other fifth degree equations can be solved by radicals, for example
x5 − x4 − x + 1 = 0. The precise criterion that distinguishes between those equations
that can be solved by radicals and those that cannot was given by Évariste Galois and
is now part of Galois theory: a polynomial equation can be solved by radicals if and
only if its Galois group is a solvable group.

Today, in the modern algebraic context, we say that second, third and fourth degree

polynomial equations can always be solved by radicals because the symmetric groups

S2,S3 and S4 are solvable groups, whereas Sn is not solvable for n ≥ 5.

Computational Physics I FYS3150

Eigenvalue Solvers

In the present discussion we assume that our matrix is real and symmetric, that is
A ∈ Rn×n. The matrix A has n eigenvalues λ1 . . . λn (distinct or not). Let D be the
diagonal matrix with the eigenvalues on the diagonal

D =

0BBBBB@
λ1 0 0 0 . . . 0 0
0 λ2 0 0 . . . 0 0
0 0 λ3 0 0 . . . 0
. .
0 λn−1
0 0 λn

1CCCCCA .

If A is real and symmetric then there exists a real orthogonal matrix S such that

ST AS = diag(λ1, λ2, . . . , λn),

and for j = 1 : n we have AS(:, j) = λj S(:, j).

Computational Physics I FYS3150

Eigenvalue Solvers

To obtain the eigenvalues of A ∈ Rn×n, the strategy is to perform a series of similarity
transformations on the original matrix A, in order to reduce it either into a diagonal form
as above or into a tridiagonal form.
We say that a matrix B is a similarity transform of A if

B = ST AS, where ST S = S−1S = I.

The importance of a similarity transformation lies in the fact that the resulting matrix

has the same eigenvalues, but the eigenvectors are in general different.

Computational Physics I FYS3150

Eigenvalue Solvers

To prove this we start with the eigenvalue problem and a similarity transformed matrix
B.

Ax = λx and B = ST AS.

We multiply the first equation on the left by ST and insert ST S = I between A and x.
Then we get

(STAS)(STx) = λSTx, (86)

which is the same as
B
“

STx
”

= λ
“

STx
”
.

The variable λ is an eigenvalue of B as well, but with eigenvector STx.

Computational Physics I FYS3150

Eigenvalue Solvers

The basic philosophy is to

either apply subsequent similarity transformations so that

ST
N . . .S

T
1AS1 . . .SN = D, (87)

or apply subsequent similarity transformations so that A becomes tridiagonal.
Thereafter, techniques for obtaining eigenvalues from tridiagonal matrices can
be used.

Computational Physics I FYS3150

Eigenvalue Solvers, Jacobi

Consider an (n × n) orthogonal transformation matrix

S =

0BBBBBBBBB@

1 0 . . . 0 0 . . . 0 0
0 1 . . . 0 0 . . . 0 0
. 0 . . .
0 0 . . . cos θ 0 . . . 0 sin θ
0 0 . . . 0 1 . . . 0 0
. 0 . . .
0 0 . . . −sinθ 0 . . . 1 cos θ
0 0 . . . 0 0 1

1CCCCCCCCCA
with property ST = S−1. It performs a plane rotation around an angle θ in the

Euclidean n−dimensional space.

Computational Physics I FYS3150

Eigenvalue Solvers, Jacobi

It means that its matrix elements that differ from zero are given by

skk = sll = cosθ, skl = −slk = −sinθ, sii = −sii = 1 i 6= k i 6= l,

A similarity transformation
B = ST AS,

results in

bik = aik cosθ − ail sinθ, i 6= k , i 6= l

bil = ail cosθ + aik sinθ, i 6= k , i 6= l

bkk = akk cos2θ − 2akl cosθsinθ + all sin2θ

bll = all cos2θ + 2akl cosθsinθ + akk sin2θ

bkl = (akk − all)cosθsinθ + akl (cos2θ − sin2θ)

The angle θ is arbitrary. The recipe is to choose θ so that all non-diagonal matrix
elements bkl become zero.

Computational Physics I FYS3150

Eigenvalue Solvers, Jacobi

The main idea is thus to reduce systematically the norm of the off-diagonal matrix
elements of a matrix A

off(A) =

vuut nX
i=1

nX
j=1,j 6=i

a2
ij .

To demonstrate the algorithm, we consider the simple 2× 2 similarity transformation of
the full matrix. The matrix is symmetric, we single out 1 ≤ k < l ≤ n and use the
abbreviations c = cos θ and s = sin θ to obtain„

bkk 0
0 bll

«
=

„
c −s
s c

«„
akk akl
alk all

«„
c s
−s c

«
.

Computational Physics I FYS3150

Eigenvalue Solvers, Jacobi
We require that the non-diagonal matrix elements bkl = blk = 0, implying that

akl (c2 − s2) + (akk − all)cs = bkl = 0.

If akl = 0 one sees immediately that cos θ = 1 and sin θ = 0.
The Frobenius norm of an orthogonal transformation is always preserved. The
Frobenius norm is defined as

||A||F =

vuut nX
i=1

nX
j=1

|aij |2.

This means that for our 2× 2 case we have

2a2
kl + a2

kk + a2
ll = b2

kk + b2
ll ,

which leads to

off(B)2 = ||B||2F −
nX

i=1

b2
ii = off(A)2 − 2a2

kl ,

since

||B||2F −
nX

i=1

b2
ii = ||A||2F −

nX
i=1

a2
ii + (a2

kk + a2
ll − b2

kk − b2
ll).

This results means that the matrix A moves closer to diagonal form for each
transformation.

Computational Physics I FYS3150

Eigenvalue Solvers, Jacobi
Defining the quantities tan θ = t = s/c and

cot 2θ = τ =
akk − all

2akl
,

we obtain the quadratic equation (using cot 2θ = 1/2(cot θ − tan θ)

t2 + 2τ t − 1 = 0,

resulting in
t = −τ ±

p
1 + τ2,

and c and s are easily obtained via

c =
1p

1 + t2
,

and s = tc. Choosing t to be the smaller of the roots ensures that |θ| ≤ π/4 and has
the effect of minimizing the difference between the matrices B and A since

||B− A||2F = 4(1− c)
nX

i=1,i 6=k,l

(a2
ik + a2

il) +
2a2

kk
c2

.

Computational Physics I FYS3150

Eigenvalue Solvers, Jacobi algo

Choose a tolerance ε, making it a small number, typically 10−8 or smaller.

Setup a while-test where one compares the norm of the newly computed
off-diagonal matrix elements

off(A) =

vuut nX
i=1

nX
j=1,j 6=i

a2
ij > ε.

Now choose the matrix elements akl so that we have those with largest value,
that is |akl | = maxi 6=j |aij |.

Compute thereafter τ = (all − akk)/2akl , tan θ, cos θ and sin θ.

Compute thereafter the similarity transformation for this set of values (k , l),
obtaining the new matrix B = S(k , l, θ)T AS(k , l, θ).

Compute the new norm of the off-diagonal matrix elements and continue till you
have satisfied off(B) ≤ ε

The convergence rate of the Jacobi method is however poor, one needs typically

3n2 − 5n2 rotations and each rotation requires 4n operations, resulting in a total of

12n3 − 20n3 operations in order to zero out non-diagonal matrix elements.

Computational Physics I FYS3150

Jacobi’s method, an example to convice you about the
algorithm

We specialize to a symmetric 3× 3 matrix A. We start the process as follows
(assuming that a23 = a32 is the largest non-diagonal) with c = cos θ and s = sin θ

B =

0@ 1 0 0
0 c −s
0 s c

1A0@ a11 a12 a13
a21 a22 a23
a31 a32 a33

1A0@ 1 0 0
0 c s
0 −s c

1A .

We will choose the angle θ in order to have a23 = a32 = 0. We get (symmetric matrix)

B =

0@ a11 a12c − a13s a12s + a13c
a12c − a13s a22c2 + a33s2 − 2a23sc (a22 − a33)sc + a23(c2 − s2)
a12s + a13c (a22 − a33)sc + a23(c2 − s2) a22s2 + a33c2 + 2a23sc

1A .

Note that a11 is unchanged! As it should.

Computational Physics I FYS3150

Jacobi’s method, an example to convice you about the
algorithm

We have

B =

0@ a11 a12c − a13s a12s + a13c
a12c − a13s a22c2 + a33s2 − 2a23sc (a22 − a33)sc + a23(c2 − s2)
a12s + a13c (a22 − a33)sc + a23(c2 − s2) a22s2 + a33c2 + 2a23sc

1A .

or

b11 = a11

b12 = a12cosθ − a13sinθ, 1 6= 2, 1 6= 3

b13 = a13cosθ + a12sinθ, 1 6= 2, 1 6= 3

b22 = a22cos2θ − 2a23cosθsinθ + a33sin2θ

b33 = a33cos2θ + 2a23cosθsinθ + a22sin2θ

b23 = (a22 − a33)cosθsinθ + a23(cos2θ − sin2θ)

We will fix the angle θ so that b23 = 0.

Computational Physics I FYS3150

Jacobi’s method, an example to convice you about the
algorithm

We get then a new matrix

B =

0@ b11 b12 b13
b12 b22 0
b13 0 a33

1A .

We repeat then assuming that b12 is the largest non-diagonal matrix element and get a
new matrix

C =

0@ c −s 0
s c 0
0 0 1

1A0@ b11 b12 b13
b12 b22 0
b13 0 b33

1A0@ c s 0
−s c 0
0 0 1

1A .

We continue this process till all non-diagonal matrix elements are zero (ideally). You
will notice that performing the above operations that the matrix element b23 which was
previous zero becomes different from zero. This is one of the problems which slows
down the jacobi procedure.

Computational Physics I FYS3150

Jacobi’s method, an example to convice you about the
algorithm

The more general expression for the new matrix elements are

bii = aii , i 6= k , i 6= l

bik = aik cosθ − ail sinθ, i 6= k , i 6= l

bil = ail cosθ + aik sinθ, i 6= k , i 6= l

bkk = akk cos2θ − 2akl cosθsinθ + all sin2θ

bll = all cos2θ + 2akl cosθsinθ + akk sin2θ

bkl = (akk − all)cosθsinθ + akl (cos2θ − sin2θ)

This is what we will need to code.

Computational Physics I FYS3150

Jacobi code example

Main part

// we have defined a matrix A and a matrix R for the eigenvector, both of dim n x n
// The final matrix R has the eigenvectors in its row elements, it is set to one
// for the diagonal elements in the beginning, zero else.
....
double tolerance = 1.0E-10;
int iterations = 0;
while (maxnondiag > tolerance && iterations <= maxiter)
{

int p, q;
maxnondiag = offdiag(A, p, q, n);
jacobirotate(A, R, p, q, n);
iterations++;

}
...

Computational Physics I FYS3150

Jacobi code example

Finding the max nondiagonal element

// the offdiag function
double offdiag(double **A, int p, int q, int n);
{

double max;
for (int i = 0; i < n; ++i)
{

for (int j = i+1; j < n; ++j)
{

double aij = fabs(A[i][j]);
if (aij > max)
{

max = aij; p = i; q = j;
}

}
}
return max;

}
...

Computational Physics I FYS3150

Jacobi code example
Finding the new matrix elements

//
void jacobirotate(double **A, double **R, int p, int q, int n)
{

....
double c = 1.0; double s = 0.0;
if (A[p][q] /= 0.0) {
double tau = (A[p][p]-A[q][q])/(2.0*A[p][q];
if (tau >= 0.0) { tan = 1/(tau +sqrt(1+tau*tau));}
if (tau < 0.0) { tan = -1/(-tau +sqrt(1+tau*tau));}
double c = 1.0/sqrt(1.0+tan*tan); double s = tan*c;

A[p][p] += tan*A[p][q];
A[q][q] -= tan*A[p][q];
for (int k = 0; k < n; ++k)
{
if (k != p && k != q) {

A[k][p] = c*A[k][p]-s*A[k][q];
A[k][q] = c*A[k][q]+s*A[k][p];

}
}

.....
}
...

Computational Physics I FYS3150

Week 41, 6- 10 October

Partial Differential Equations (PDEs)
Monday: Repetition from last week and discussion of
project 3
Householder’s algorithm
Parabolic PDEs: The diffusion equation, implicit and
explicit finite difference schemes
Wednesday:
More on the diffusion equation
Laplace’s equation, Jacobi and Gauss-Seidel iterations

Computational Physics I FYS3150

Eigenvalue Solvers, Householder

The first step consists in finding an orthogonal matrix S which is the product of (n − 2)
orthogonal matrices

S = S1S2 . . .Sn−2,

each of which successively transforms one row and one column of A into the required
tridiagonal form. Only n − 2 transformations are required, since the last two elements
are already in tridiagonal form. In order to determine each Si let us see what happens
after the first multiplication, namely,

ST
1 AS1 =

0BBB@
a11 e1 0 0 . . . 0 0
e1 a′22 a′23 a′2n
0 a′32 a′33 a′3n
0
0 a′n2 a′n3 a′nn

1CCCA
where the primed quantities represent a matrix A′ of dimension n − 1 which will

subsequentely be transformed by S2.

Computational Physics I FYS3150

Eigenvalue Solvers, Householder

The factor e1 is a possibly non-vanishing element. The next transformation produced
by S2 has the same effect as S1 but now on the submatirx A

′
only

(S1S2)T AS1S2 =

0BBB@
a11 e1 0 0 . . . 0 0
e1 a′22 e2 0 0
0 e2 a′′33 a′′3n
0
0 0 a′′n3 a′′nn

1CCCA
Note that the effective size of the matrix on which we apply the transformation

reduces for every new step. In the previous Jacobi method each similarity

transformation is in principle performed on the full size of the original matrix.

Computational Physics I FYS3150

Eigenvalue Solvers, Householder

After a series of such transformations, we end with a set of diagonal matrix elements

a11, a′22, a
′′
33 . . . a

n−1
nn ,

and off-diagonal matrix elements

e1, e2, e3, . . . , en−1.

The resulting matrix reads

ST AS =

0BBBBBBB@

a11 e1 0 0 . . . 0 0
e1 a′22 e2 0 . . . 0 0
0 e2 a′′33 e3 0 . . . 0
. .

0 a(n−1)
n−2 en−1

0 en−1 a(n−1)
n−1

1CCCCCCCA
.

Computational Physics I FYS3150

Eigenvalue Solvers, Householder

It remains to find a recipe for determining the transformation Sn. We illustrate the
method for S1 which we assume takes the form

S1 =

„
1 0T

0 P

«
,

with 0T being a zero row vector, 0T = {0, 0, · · · } of dimension (n − 1). The matrix P is
symmetric with dimension ((n− 1)× (n− 1)) satisfying P2 = I and PT = P. A possible
choice which fullfils the latter two requirements is

P = I− 2uuT ,

where I is the (n − 1) unity matrix and u is an n − 1 column vector with norm uT u

(inner product).

Computational Physics I FYS3150

Eigenvalue Solvers, Householder

Note that uuT is an outer product giving a matrix of dimension ((n − 1)× (n − 1)).
Each matrix element of P then reads

Pij = δij − 2ui uj ,

where i and j range from 1 to n − 1. Applying the transformation S1 results in

ST
1 AS1 =

„
a11 (Pv)T

Pv A′

«
,

where vT = {a21, a31, · · · , an1} and P must satisfy (Pv)T = {k , 0, 0, · · · }. Then

Pv = v− 2u(uT v) = ke, (88)

with eT = {1, 0, 0, . . . 0}.

Computational Physics I FYS3150

Eigenvalue Solvers, Householder

Solving the latter equation gives us u and thus the needed transformation P. We do
first however need to compute the scalar k by taking the scalar product of the last
equation with its transpose and using the fact that P2 = I. We get then

(Pv)T Pv = k2 = vT v = |v |2 =
nX

i=2

a2
i1,

which determines the constant k = ±v .

Computational Physics I FYS3150

Eigenvalue Solvers, Householder

Now we can rewrite Eq. (88) as

v− ke = 2u(uT v),

and taking the scalar product of this equation with itself and obtain

2(uT v)2 = (v2 ± a21v), (89)

which finally determines

u =
v− ke
2(uT v)

.

In solving Eq. (89) great care has to be exercised so as to choose those values which

make the right-hand largest in order to avoid loss of numerical precision. The above

steps are then repeated for every transformations till we have a tridiagonal matrix

suitable for obtaining the eigenvalues.

Computational Physics I FYS3150

Eigenvalue Solvers, Householder

The matrix is now transformed into tridiagonal form and the last step is to transform it
into a diagonal matrix giving the eigenvalues on the diagonal.
Before we discuss the algorithms, we note that the eigenvalues of a tridiagonal matrix
can be obtained using the characteristic polynomial

P(λ) = det(λI− A) =
nY

i=1

(λi − λ) ,

which rewritten in matrix form reads

P(λ) =

0BBBBBB@

d1 − λ e1 0 0 . . . 0 0
e1 d2 − λ e2 0 . . . 0 0
0 e2 d3 − λ e3 0 . . . 0
. .
0 dNstep−2 − λ eNstep−1
0 eNstep−1 dNstep−1 − λ

1CCCCCCA

Computational Physics I FYS3150

Eigenvalue Solvers, Householder

We can solve this equation in a recursive manner. We let Pk (λ) be the value of k
subdeterminant of the above matrix of dimension n × n. The polynomial Pk (λ) is
clearly a polynomial of degree k . Starting with P1(λ) we have P1(λ) = d1 − λ. The
next polynomial reads P2(λ) = (d2 − λ)P1(λ)− e2

1 . By expanding the determinant for
Pk (λ) in terms of the minors of the nth column we arrive at the recursion relation

Pk (λ) = (dk − λ)Pk−1(λ)− e2
k−1Pk−2(λ).

Together with the starting values P1(λ) and P2(λ) and good root searching methods

we arrive at an efficient computational scheme for finding the roots of Pn(λ). However,

for large matrices this algorithm is rather inefficient and time-consuming.

Computational Physics I FYS3150

Eigenvalue Solvers, Householder

Special to a 4× 4 matrix. The tridiagonal matrix takes the form

A =

0BB@
d1 e1 0 0
e1 d2 e2 0
0 e2 d3 e3
0 0 e3 d4

1CCA .

As a first observation, if any of the elements ei are zero the matrix can be separated

into smaller pieces before diagonalization. Specifically, if e1 = 0 then d1 is an

eigenvalue.

Computational Physics I FYS3150

Eigenvalue Solvers, Householder

Thus, let us introduce a transformation S1

S1 =

0BB@
cos θ 0 0 sin θ

0 0 0 0
0 0 0 0

− sin θ 0 0 cos θ

1CCA

Computational Physics I FYS3150

Eigenvalue Solvers, Householder

Then the similarity transformation

ST
1AS1 = A′ =

0BB@
d ′1 e′1 0 0
e′1 d2 e2 0
0 e2 d3 e′3
0 0 e′3 d ′4

1CCA
produces a matrix where the primed elements in A′ have been changed by the

transformation whereas the unprimed elements are unchanged. If we now choose θ to

give the element a
′
21 = e

′
= 0 then we have the first eigenvalue = a

′
11 = d

′
1.

Computational Physics I FYS3150

Eigenvalue Solvers, Householder

This procedure can be continued on the remaining three-dimensional submatrix for the
next eigenvalue. Thus after four transformations we have the wanted diagonal form.

Much more efficient than standard Jacobi.

Computational Physics I FYS3150

Eigenvalue Solvers, Householder functions

The programs which performs these transformations are
matrix A −→ tridiagonal matrix −→ diagonal matrix

C++: void trd2(double ∗∗a, int n, double d[], double e[])
void tqli(double d[], double[], int n, double ∗∗z)

Fortran: CALL tred2(a, n, d, e)
CALL tqli(d, e, n, z)

Computational Physics I FYS3150

Eigenvalue Solvers, Applications

Instead of solving the Schrödinger equation as a differential equation, we will solve it
through diagonalization of a large matrix. However, in both cases we need to deal with
a problem with boundary conditions, viz., the wave function goes to zero at the
endpoints.
To solve the Schrödinger equation as a matrix diagonalization problem, let us study the
radial part of the Schrödinger equation. The radial part of the wave function, R(r), is a
solution to

−
~2

2m

„
1
r2

d
dr

r2 d
dr
−

l(l + 1)

r2

«
R(r) + V (r)R(r) = ER(r).

Computational Physics I FYS3150

Eigenvalue Solvers, Applications

Then we substitute R(r) = (1/r)u(r) and obtain

−
~2

2m
d2

dr2
u(r) +

„
V (r) +

l(l + 1)

r2

~2

2m

«
u(r) = Eu(r).

We introduce a dimensionless variable ρ = (1/α)r where α is a constant with
dimension length and get

−
~2

2mα2

d2

dρ2
u(r) +

„
V (ρ) +

l(l + 1)

ρ2

~2

2mα2

«
u(ρ) = Eu(ρ).

Computational Physics I FYS3150

Code Example

// Read in data
initialise(r_min, r_max, orb_l, max_step);
// initialise constants
step = (r_max - r_min) / max_step;
const_2 = -1.0 / (step * step);
const_1 = - 2.0 * const_2;
orb_factor = orb_l * (orb_l + 1);

Computational Physics I FYS3150

Code Example

// local memory for r and the potential w[r]
r = new double[max_step + 1];
w = new double[max_step + 1];
for(i = 0; i <= max_step; i++) {
r[i] = r_min + i * step;
w[i] = potential(r[i]) + orb_factor / (r[i] * r[i]);

}
// local memory for the diagonalization process
d = new double[max_step]; // diagonal elements
e = new double[max_step]; // tridiagonal off-diagonal elements
z = (double **) matrix(max_step, max_step, sizeof(double));

Computational Physics I FYS3150

Code Example

for(i = 0; i < max_step; i++) {
d[i] = const_1 + w[i + 1];
e[i] = const_2;
z[i][i] = 1.0;
for(j = i + 1; j < max_step; j++) {
z[i][j] = 0.0;

}
}
// diagonalize and obtain eigenvalues
tqli(d, e, max_step - 1, z);
// Sort eigenvalues as an ascending series
qsort(d,(UL) max_step - 1,sizeof(double),

(int(*)(const void *,const void *))comp);
// send results to ouput file
output(r_min , r_max, max_step, d);

Computational Physics I FYS3150

Code Example

/*
The function potential()
calculates and return the value of the
potential for a given argument x.
The potential here is for the 1-dim harmonic oscillator

*/

double potential(double x)
{

return x*x; // or coulomb return 1/x;

} // End: function potential()

Computational Physics I FYS3150

Partial Differential Equations

General 2+1-dim PDE

A(x , y)
∂2U
∂x2

+ B(x , y)
∂2U
∂x∂y

+ C(x , y)
∂2U
∂y2

= F (x , y ,U,
∂U
∂x

,
∂U
∂y

)

Examples
B = C = 0,

give e.g., 1+1-dim diffusion equation

A
∂2U
∂x2

=
∂U
∂t

and is an example of a parabolic PDE

Computational Physics I FYS3150

Partial Differential Equations

More examples 2+1-dim wave equation

A
∂2U
∂x2

+ C
∂2U
∂y2

=
∂2U
∂t2

Poisson’s (Laplace’s ρ = 0) equation

∇2U(x) = −4πρ(x).

Computational Physics I FYS3150

Heat/Diffusion Equation

Diffusion equation
κ

Cρ
∇2T (x, t) =

∂T (x, t)
∂t

κ

Cρ(x, t)
∇2T (x, t) =

∂T (x, t)
∂t

Computational Physics I FYS3150

Explicit Scheme for the Diffusion Equation

In one dimension we have thus the following equation

∇2u(x , t) =
∂u(x , t)
∂t

, (90)

or
uxx = ut , (91)

with initial conditions, i.e., the conditions at t = 0,

u(x , 0) = g(x) 0 ≤ x ≤ L (92)

with L = 1 the length of the x-region of interest. The boundary conditions are

u(0, t) = a(t) t ≥ 0, (93)

and
u(L, t) = b(t) t ≥ 0, (94)

where a(t) and b(t) are two functions which depend on time only, while g(x) depends

only on the position x .

Computational Physics I FYS3150

Explicit Scheme, Forward Euler

ut ≈
ui,j+1 − ui,j

∆t
, (95)

and

uxx ≈
ui+i,j − 2ui,j + ui−1,j

∆x2
. (96)

The one-dimensional diffusion equation can then be rewritten in its discretized version
as

ui,j+1 − ui,j

∆t
=

ui+i,j − 2ui,j + ui−1,j

∆x2
. (97)

Defining α = ∆t/∆x2 results in the explicit scheme

ui,j+1 = αui−1,j + (1− 2α)ui,j + αui+1,j . (98)

Computational Physics I FYS3150

Explicit Scheme

Vj+1 = AVj

with

A =

0BB@
1− 2α α 0 0 . . .
α 1− 2α α 0 . . .
.

0 . . . 0 . . . α 1− 2α

1CCA
yielding

Vj+1 = AVj = · · · = Aj V0

The explicit scheme, although being rather simple to implement has a very weak
stability condition given by

∆t/∆x2 ≤ 1/2 (99)

Computational Physics I FYS3150

Implicit Scheme

Choose now

ut ≈
u(xi , tj)− u(xi , tj − k)

k

and

uxx ≈
u(xi + h, tj)− 2u(xi , tj) + u(xi − h, tj)

h2

Define α = k/h2. Gives

ui,j−1 = −αui−1,j + (1− 2α)ui,j − αui+1,j

Here ui,j−1 is the only unknown quantity.

Computational Physics I FYS3150

Have
AVj = Vj−1

with

A =

0BB@
1 + 2α −α 0 0 . . .
−α 1 + 2α −α 0 . . .
.

0 . . . 0 . . . −α 1 + 2α

1CCA
which gives

Vj = A−1Vj−1 = · · · = A−j V0

Need only to invert a matrix

Computational Physics I FYS3150

Brute Force Implicit Scheme, inefficient algo

! now invert the matrix
CALL matinv(a, ndim, det)
DO i = 1, m

DO l=1, ndim
u(l) = DOT_PRODUCT(a(l,:),v(:))

ENDDO
v = u
t = i*k
DO j=1, ndim

WRITE(6,*) t, j*h, v(j)
ENDDO

ENDDO

Computational Physics I FYS3150

Brief Summary of the Explicit and the Implicit Methods

Explicit is straightforward to code, but avoid doing the matrix vector multiplication
since the matrix is tridiagonal.

ut ≈
u(x , t)− u(x , t −∆t)

∆t
=

u(xi , tj)− u(xi , tj −∆t)
∆t

The implicit method can be applied in a brute force way as well as long as the
element of the matrix are constants.

ut ≈
u(x , t)− u(x , t −∆t)

∆t
=

u(xi , tj)− u(xi , tj −∆t)
∆t

However, it is more efficient to use a linear algebra solver for tridiagonal matrices.

Computational Physics I FYS3150

Crank-Nicolson

θ

∆x2

`
ui−1,j − 2ui,j + ui+1,j

´
+

1− θ
∆x2

`
ui+1,j−1 − 2ui,j−1 + ui−1,j−1

´
=

1
∆t

`
ui,j − ui,j−1

´
,

which for θ = 0 yields the forward formula for the first derivative and the explicit
scheme, while θ = 1 yields the backward formula and the implicit scheme. These two
schemes are called the backward and forward Euler schemes, respectively. For
θ = 1/2 we obtain a new scheme after its inventors, Crank and Nicolson.

Computational Physics I FYS3150

Crank Nicolson

Using our previous definition of α = ∆t/∆x2 we can rewrite the latter equation as

−αui−1,j + (2 + 2α) ui,j − αui+1,j = αui−1,j−1 + (2− 2α) ui,j−1 + αui+1,j−1,

or in matrix-vector form as“
2̂I + αB̂

”
Vj =

“
2̂I − αB̂

”
Vj−1,

where the vector Vj is the same as defined in the implicit case while the matrix B̂ is

B̂ =

0BB@
2 −1 0 0 . . .
−1 2 −1 0 . . .
.

0 . . . 0 . . . 2

1CCA

Computational Physics I FYS3150

Week 42, 13- 17 October

Partial Differential Equations (PDEs)
Monday: Repetition from last week
Laplace’s equation, Jacobi and Gauss-Seidel iterations
Begin of wave function and discussion of project 4
Wednesday:
Wave equation in two dimensions and project 4

Computational Physics I FYS3150

Laplace’s and Poisson’s equations

Laplace’s equation reads
∇2u(x) = uxx + uyy = 0. (100)

with possible boundary conditions u(x , y) = g(x , y) on the border. There is no
time-dependence. Choosing equally many steps in both directions we have a quadratic
or rectangular grid, depending on whether we choose equal steps lengths or not in the
x and the y directions. Here we set ∆x = ∆y = h and obtain a discretized version

uxx ≈
u(x + h, y)− 2u(x , y) + u(x − h, y)

h2
, (101)

and

uyy ≈
u(x , y + h)− 2u(x , y) + u(x , y − h)

h2
, (102)

Computational Physics I FYS3150

Laplace’s and Poisson’s equations

uxx ≈
ui+1,j − 2ui,j + ui−1,j

h2
, (103)

and

uyy ≈
ui,j+1 − 2ui,j + ui,j−1

h2
, (104)

which gives when inserted in Laplace’s equation

ui,j =
1
4

ˆ
ui,j+1 + ui,j−1 + ui+1,j + ui−1,j

˜
. (105)

This is our final numerical scheme for solving Laplace’s equation. Poisson’s equation
adds only a minor complication to the above equation since in this case we have

uxx + uyy = −ρ(x),

and we need only to add a discretized version of ρ(x) resulting in

ui,j =
1
4

ˆ
ui,j+1 + ui,j−1 + ui+1,j + ui−1,j

˜
+ ρi,j . (106)

Computational Physics I FYS3150

Solution Approach

The way we solve these equations is based on an iterative scheme called the

relaxation method. Its steps are rather simple. We start with an initial guess for u(0)
i,j

where all values are known. To obtain a new solution we solve Eq. (105) or Eq. (106) in

order to obtain a new solution u(1)
i,j . Most likely this solution will not be a solution to

Eq. (105). This solution is in turn used to obtain a new and improved u(2)
i,j . We continue

this process till we obtain a result which satisfies some specific convergence criterion.

Computational Physics I FYS3150

Iterative Scheme

! set up of initial conditions at t = 0 and boundary conditions
......

! iteration algorithm starts here
iterations = 0
DO WHILE ((iterations <= 20) .OR. (diff > 0.00001))

u_temp = u; diff = 0.
DO j = 2, ndim - 1

DO l = 2, ndim -1
u(j,l) = 0.25*(u_temp(j+1,l)+u_temp(j-1,l)+ &

u_temp(j,l+1)+u_temp(j,l-1))
diff = diff + ABS(u_temp(i,j)-u(i,j))

ENDDO
ENDDO
iterations = iterations + 1
diff = diff/(ndim+1)**2

ENDDO
! write out results

DO j = 1, ndim
DO l = 1, ndim

WRITE(6,*) j*h, l*h, u(j,l)
ENDDO

ENDDO

Computational Physics I FYS3150

Two-dimensional wave equation and project 4

Consider first the two-dimensional wave equation for a vibrating square membrane
given by the following initial and boundary conditions8>>><>>>:

λ
“
∂2u
∂x2 + ∂2u

∂y2

”
= ∂2u

∂t2 x , y ∈ [0, 1], t ≥ 0
u(x , y , 0) = sin(πx)sin(2πy) x , y ∈ (0, 1)

u = 0 boundary t ≥ 0
∂u/∂t |t=0 = 0 x , y ∈ (0, 1)

.

The boundary is defined by x = 0, x = 1, y = 0 and y = 1. Here we set λ = 1.

Computational Physics I FYS3150

Two-dimensional wave equation

Our equations depend on three variables whose discretized versions are now8<: tl = l∆t l ≥ 0
xi = i∆x 0 ≤ i ≤ nx
yj = j∆y 0 ≤ j ≤ ny

, (107)

and we will let ∆x = ∆y = h and nx = ny for the sake of simplicity. We have now the
following discretized partial derivatives

uxx ≈
ul

i+1,j − 2ul
i,j + ul

i−1,j

h2
, (108)

and

uyy ≈
ul

i,j+1 − 2ul
i,j + ul

i,j−1

h2
, (109)

and

utt ≈
ul+1

i,j − 2ul
i,j + ul−1

i,j

∆t2
. (110)

Computational Physics I FYS3150

Two-dimensional wave equation

We merge this into the discretized 2 + 1-dimensional wave equation as

ul+1
i,j = 2ul

i,j − ul−1
i,j +

∆t2

h2

“
ul

i+1,j − 4ul
i,j + ul

i−1,j + ul
i,j+1 + ul

i,j−1

”
, (111)

where again we have an explicit scheme with ul+1
i,j as the only unknown quantity. It is

easy to account for different step lengths for x and y . The partial derivative is treated in
much the same way as for the one-dimensional case, except that we now have an
additional index due to the extra spatial dimension, viz., we need to compute u−1

i,j
through

u−1
i,j = u0

i,j +
∆t
2h2

“
u0

i+1,j − 4u0
i,j + u0

i−1,j + u0
i,j+1 + u0

i,j−1

”
, (112)

in our setup of the initial conditions.

Computational Physics I FYS3150

Two-dimensional wave equation

Check your results as function of the number of mesh points and in particular against
the stability condition

∆t ≤
1
√
λ

„
1

∆x2
+

1
∆y2

«−1/2

where ∆t , ∆x and ∆y are the chosen step lengths. In our case ∆x = ∆y = h. How

do we find this condition? In one dimension we can proceed as we did for the diffusion

equation.

Computational Physics I FYS3150

Two-dimensional wave equation

The analytic solution of the wave equation in 2 + 1 dimensions has a characteristic
wave component which reads

u(x , y , t) = A exp (i(kx x + ky y − ωt))

Then from

uxx ≈
ul

i+1,j − 2ul
i,j + ul

i−1,j

∆x2
,

we get, with ui = exp ikxi

uxx ≈
ui

∆x2
(exp ik∆x − 2 + exp (−ik∆x)) ,

or
uxx ≈ 2

ui

∆x2
(cos(k∆x)− 1) = −4

ui

∆x2
sin2(k∆x/2)

We get similar results for t and y .

Computational Physics I FYS3150

Two-dimensional wave equation

We have

λ

„
∂2u
∂x2

+
∂2u
∂y2

«
=
∂2u
∂t2

,

resulting in

λ

−4

ul
ij

∆x2
sin2 (kx ∆x/2)− 4

ul
ij

∆y2
sin2 (ky ∆y/2)

!
= −4

ul
ij

∆t2
sin2 (ω∆t/2),

resulting in

sin (ω∆t/2) = ±
√
λ∆t

„
1

∆x2
sin2 (kx ∆x/2) +

1
∆y2

sin2 (ky ∆y/2)

«1/2
.

The squared sine functions can at most be unity. The frequency ω is real and our wave
is neither damped nor amplified.

Computational Physics I FYS3150

Two-dimensional wave equation

We have

sin (ω∆t/2) = ±
√
λ∆t

„
1

∆x2
sin2 (kx ∆x/2) +

1
∆y2

sin2 (ky ∆y/2)

«1/2
.

The squared sine functions can at most be unity. ω is real and our wave is neither
damped nor amplified. The numerical ω must also be real which is the case when
sin (ω∆t/2) is less than or equal to unity, meaning that

∆t ≤
1
√
λ

„
1

∆x2
+

1
∆y2

«−1/2
.

Computational Physics I FYS3150

Two-dimensional wave equation

We modify now the wave equation in order to consider a 2 + 1 dimensional wave
equation with a position dependent velocity, given by

∂2u
∂t2

= ∇ · (λ(x , y)∇u).

If λ is constant, we obtain the standard wave equation discussed in the two previous
points. The solution u(x , y , t) could represent a model for water waves. It represents
then the surface elevation from still water. We will model λ as

λ = gH(x , y),

with g being the acceleration of gravity and H(x , y) is the still water depth.

The function H(x , y) simulates the water depth using for example measurements of

still water depths in say a fjord or the north sea. The boundary conditions are then

determined by the coast lines as discussed in point d) below. We have assumed that

the vertical motion is negligible and that we deal with long wavelenghts λ̃ compared

with the depth of the sea H, that is λ̃/H � 1. We will also neglect Coriolis effects.

Computational Physics I FYS3150

Two-dimensional wave equation

You can discretize

∇ · (λ(x , y)∇u) =
∂

∂x

„
λ(x , y)

∂u
∂x

«
+

∂

∂y

„
λ(x , y)

∂u
∂y

«
,

as follows using again a quadratic domain for x and y :

∂

∂x

„
λ(x , y)

∂u
∂x

«
≈

1
∆x

λi+1/2,j

"
ul

i+1,j − ul
i,j

∆x

#
− λi−1/2,j

"
ul

i,j − ul
i−1,j

∆x

#!
,

and

∂

∂y

„
λ(x , y)

∂u
∂y

«
≈

1
∆y

λi,j+1/2

"
ul

i,j+1 − ul
i,j

∆y

#
− λi,j−1/2

"
ul

i,j − ul
i,j−1

∆y

#!
.

Computational Physics I FYS3150

Two-dimensional wave equation

How did we do that? Look at the derivative wrt x only:
First we compute the derivative

d
dx

„
λ(x)

du
dx

«
|x=xi ≈

1
∆x

„
λ

du
dx
|x=xi+1/2 − λ

du
dx
|x=xi−1/2

«
,

where we approximated it at the midpoint by going half a step to the right and half a
step to the left. Then we approximate

λ
du
dx
|x=xi+1/2 ≈ λxi+1/2

ui+1 − ui

∆x
,

and similarly for x = xi − 1/2.

Computational Physics I FYS3150

Two-dimensional wave equation

We assume that we can approximate the coastline with a quadratic grid. As boundary
condition at the coastline we will employ

∂u
∂n

= ∇u · n = 0,

where ∂u/∂n is the derivative in the direction normal to the boundary.

Here you must pay particular attention to the endpoints.

Computational Physics I FYS3150

Two-dimensional wave equation

We are going to model the impact of an earthquake on sea water. This is normally
modelled via an elevation of the sea bottom. We will assume that the movement of the
sea bottom is very rapid compared with the period of the propagating waves. This
means that we can approximate the bottom elevation with an initial surface elevation.
The initial conditions are then given by (with L the length of the grid)

u(x , y , 0) = f (x , y) x , y ∈ (0, L),

and
∂u/∂t |t=0 = 0 x , y ∈ (0, L).

We will approximate the initial elevation with the function

f (x , y) = A0 exp

−
»

x − xc

σx

–2
−
»

y − yc

σy

–2
!
,

where A0 is the elevation of the surface and is typically 1− 2 m. The variables σx and
σy represent the extensions of the surface elevation. In this project we will let σx = 80
km and σy = 200 km. The 2004 tsunami had extensions of approximately 200 and
1000 km, respectively.

The variables xc and yc represent the epicentre of the earthquake.

Computational Physics I FYS3150

Two-dimensional wave equation

We need also to model the sea bottom and the function λ(x , y) = gH(x , y). We
assume that we can model the sea bottom as depicted in the following figure, with a
water depth of 5000 m and a surface elevation of 2 m.

We assume the sea bottom depends only on the variable x and has depth 5000 m

before it starts increasing towards the coastline. We fix the angle θ = 1 degree. From

the figure you will be asked below to model the x dependence of H(x).

Computational Physics I FYS3150

Week 43, 20- 24 October

Numerical integration and intro to Monte Carlo methods
Monday: Repetition from last week and discussion of
project 4
Numerical integration, from the trapezoidal rule to
Gaussian quadrature
(Parallel computation postponed to project 5)
Wednesday:
Gaussian quadrature and introduction to Monte Carlo
methods (chap 8.1-8.2)

Computational Physics I FYS3150

Equal Step Methods

Generalities

Choose a step size

h =
b − a

N

where N is the number of steps and a and b the lower and upper limits of
integration.

Choose then to stop the Taylor expansion of the function f (x) at a certain
derivative.

With these approximations to f (x) perform the integration.Z b

a
f (x)dx =

Z a+2h

a
f (x)dx +

Z a+4h

a+2h
f (x)dx + . . .

Z b

b−2h
f (x)dx .

The strategy then is to find a reliable Taylor expansion for f (x) in the smaller sub

intervals. Consider e.g., evaluating
R +h
−h f (x)dx

Computational Physics I FYS3150

Equal Step Methods

Trapezoidal Rule
Taylor expansion

f (x) = f0 +
fh − f0

h
x + O(x2),

for x = x0 to x = x0 + h and

f (x) = f0 +
f0 − f−h

h
x + O(x2),

for x = x0 − h to x = x0. The error goes like O(x2). If we then evaluate the integral we
obtain Z +h

−h
f (x)dx =

h
2

(fh + 2f0 + f−h) + O(h3),

which is the well-known trapezoidal rule. Local error O(h3) = O((b − a)3/N3), and the

global error goes like ≈ O(h2).

Computational Physics I FYS3150

Equal Step Methods

Trapezoidal Rule
Easy to implement numerically through the following simple algorithm

Choose the number of mesh points and fix the step.

calculate f (a) and f (b) and multiply with h/2

Perform a loop over n = 1 to n − 1 (f (a) and f (b) are known) and sum up the
terms f (a + h) + f (a + 2h) + f (a + 3h) + · · ·+ f (b − h). Each step in the loop
corresponds to a given value a + nh.

Multiply the final result by h and add hf (a)/2 and hf (b)/2.

Computational Physics I FYS3150

Trapezoidal Rule

double trapezoidal_rule(double a, double b, int n,
double (*func)(double))

{
double trapez_sum;
double fa, fb, x, step;
int j;
step=(b-a)/((double) n);
fa=(*func)(a)/2. ;
fb=(*func)(b)/2. ;
trapez_sum=0.;
for (j=1; j <= n-1; j++){

x=j*step+a;
trapez_sum+=(*func)(x);

}
trapez_sum=(trapez_sum+fb+fa)*step;
return trapez_sum;

} // end trapezoidal_rule

Computational Physics I FYS3150

Equal Step Methods

Simpson
The first and second derivatives are given by

fh − f−h

2h
= f ′0 +

∞X
j=1

f (2j+1)
0

(2j + 1)!
h2j ,

and
fh − 2f0 + f−h

h2
= f ′′0 + 2

∞X
j=1

f (2j+2)
0

(2j + 2)!
h2j ,

results in f (x) = f0 +
fh−f−h

2h x +
fh−2f0+f−h

h2 x2 + O(x3). Inserting this formula in the
integral Z +h

−h
f (x)dx =

h
3

(fh + 4f0 + f−h) + O(h5),

which is Simpson’s rule.

Computational Physics I FYS3150

Equal Step Methods

Simpson’s rule
Note that the improved accuracy in the evaluation of the derivatives gives a better error
approximation, O(h5) vs. O(h3) . But this is just the local error approximation. Using
Simpson’s rule we arrive at the composite rule

I =

Z b

a
f (x)dx =

h
3

(f (a) + 4f (a + h) + 2f (a + 2h) + · · ·+ 4f (b − h) + fb) ,

with a global error which goes like O(h4). Algo

Choose the number of mesh points and fix the step.

calculate f (a) and f (b)

Perform a loop over n = 1 to n − 1 (f (a) and f (b) are known) and sum up the
terms 4f (a + h) + 2f (a + 2h) + 4f (a + 3h) + · · ·+ 4f (b − h). Odd values of n
give 4 as factor while even values yield 2 as factor.

Multiply the final result by h
3 .

Computational Physics I FYS3150

Equal Step Methods

The basic idea behind all integration methods is to approximate the integral

I =

Z b

a
f (x)dx ≈

NX
i=1

ωi f (xi),

where ω and x are the weights and the chosen mesh points, respectively. Simpson’s
rule gives

ω : {h/3, 4h/3, 2h/3, 4h/3, . . . , 4h/3, h/3} ,

for the weights, while the trapezoidal rule resulted in

ω : {h/2, h, h, . . . , h, h/2} .

In general, an integration formula which is based on a Taylor series using N points, will

integrate exactly a polynomial P of degree N − 1. That is, the N weights ωn can be

chosen to satisfy N linear equations

Computational Physics I FYS3150

Equal Step Methods, Polynomials and Newton-Cotes
Given n + 1 distinct points x0, . . . , xn ∈ [a, b] and n + 1 values y0, . . . , yn there exists a
unique polynomial pn with the property

pn(xj) = yj j = 0, . . . , n

In the Lagrange representation this interpolation polynomial is given by

pn =
nX

k=0

lk yk ,

with the Lagrange factors

lk (x) =
nY

i = 0
i 6= k

x − xi

xk − xi
k = 0, . . . , n

Example: n = 1

p1(x) = y0
x − x1

x0 − x1
+ y1

x − x0

x1 − x0
=

y1 − y0

x1 − x0
x −

y1x0 + y0x1

x1 − x0
,

which we recognize as the equation for a straight line.

Computational Physics I FYS3150

Equal Step Methods, Polynomials and Newton-Cotes

The polynomial interpolatory quadrature of order n with equidistant quadrature points
xk = a + kh and step h = (b − a)/n is called the Newton-Cotes quadrature formula of
order n. The integral is

Z b

a
f (x)dx ≈

Z b

a
pn(x)dx =

nX
k=0

wk f (xk)

with

wk = h
(−1)n−k

k!(n − k)!

Z n

0

nY
j = 0
j 6= k

(z − j)dz,

for k = 0, . . . , n.

Computational Physics I FYS3150

Equal Step Methods, Polynomials and Newton-Cotes

The local error for the trapezoidal rule isZ b

a
f (x)dx −

b − a
2

[f (a) + f (b)] = −
h3

12
f (2)(ξ),

and the global error (composite formula)Z b

a
f (x)dx − Th(f) = −

b − a
12

h2f (2)(ξ).

For Simpson’s rule we haveZ b

a
f (x)dx −

b − a
6

[f (a) + 4f ((a + b)/2) + f (b)] = −
h5

90
f (4)(ξ),

and the global error Z b

a
f (x)dx − Sh(f) = −

b − a
180

h4f (4)(ξ).

with ξ ∈ [a, b].

Computational Physics I FYS3150

Equal Step Methods, Polynomials and Newton-Cotes

Example:

ln2 =

Z 1

0

dx
1 + x

The Trapezoidal rule gives

ln2 ≈
1
2

(1 +
1
2

) = 0.75.

The error is 1/6 (max error) and we obtain the estimate |ln2− 0.75| ≤ 0.167. The true
error is ln2− 0.75 = −0.056. Simpson’s rule gives |ln2− 0.6944| ≤ 0.0084. The true
error is ln2− 0.6944 = −0.0012.
Normally we never use such large intervals. It is common to split the interval into many
small sub intervals and use the composite rule.

Computational Physics I FYS3150

Gaussian Quadrature

What we have done till now is called Newton-Cotes quadrature. The numerical
approximation goes like O(hn), where n is method-dependent.
A greater precision for a given amount of numerical work can be achieved if we are
willing to give up the requirement of equally spaced integration points. In Gaussian
quadrature (hereafter GQ), both the mesh points and the weights are to be determined.
The points will not be equally spaced The theory behind GQ is to obtain an arbitrary
weight ω through the use of so-called orthogonal polynomials. These polynomials are
orthogonal in some interval say e.g., [-1,1]. Our points xi are chosen in some optimal
sense subject only to the constraint that they should lie in this interval. Together with
the weights we have then 2(n + 1) (n + 1 the number of points) parameters at our
disposal.
Even though the integrand is not smooth, we could render it smooth by extracting from
it the weight function of an orthogonal polynomial, i.e., we are rewriting

I =

Z b

a
f (x)dx =

Z b

a
W (x)g(x)dx ≈

nX
i=0

ωi g(xi),

where g is smooth and W is the weight function, which is to be associated with a given

orthogonal polynomial.

Computational Physics I FYS3150

Gaussian Quadrature

Weight Functions
The weight function W is non-negative in the integration interval x ∈ [a, b] such that for
any n ≥ 0

R b
a |x |

nW (x)dx is integrable. The naming weight function arises from the
fact that it may be used to give more emphasis to one part of the interval than another.

Weight function Interval Polynomial
W (x) = 1 x ∈ [a, b] Legendre

W (x) = e−x2 −∞ ≤ x ≤ ∞ Hermite
W (x) = e−x 0 ≤ x ≤ ∞ Laguerre

W (x) = 1/(
p

1− x2) −1 ≤ x ≤ 1 Chebyshev

Computational Physics I FYS3150

Gaussian Quadrature

Methods based on Taylor series using n + 1 points will integrate exactly a
polynomial P of degree n. If a function f (x) can be approximated with a
polynomial of degree n

f (x) ≈ Pn(x),

with n + 1 mesh points we should be able to integrate exactly the polynomial Pn.

Gaussian quadrature methods promise more than this. We can get a better
polynomial approximation with order greater than n + 1 to f (x) and still get away
with only n + 1 mesh points. More precisely, we approximate

f (x) ≈ P2n+1(x),

and with only n + 1 mesh points these methods promise that

Z
f (x)dx ≈

Z
P2n+1(x)dx =

nX
i=0

P2n+1(xi)ωi ,

Computational Physics I FYS3150

Legendre

I =

Z 1

−1
f (x)dx

C(1− x2)P −m2
l P + (1− x2)

d
dx

„
(1− x2)

dP
dx

«
= 0.

C is a constant. For ml = 0 we obtain the Legendre polynomials as solutions, whereas
ml 6= 0 yields the so-called associated Legendre polynomials. The corresponding
polynomials P are

Lk (x) =
1

2k k!

dk

dxk
(x2 − 1)k k = 0, 1, 2, . . . ,

which, up to a factor, are the Legendre polynomials Lk . The latter fulfil the
orthorgonality relation Z 1

−1
Li (x)Lj (x)dx =

2
2i + 1

δij ,

and the recursion relation

(j + 1)Lj+1(x) + jLj−1(x)− (2j + 1)xLj (x) = 0.

Computational Physics I FYS3150

Laguerre

I =

Z ∞
0

f (x)dx =

Z ∞
0

xαe−x g(x)dx .

These polynomials arise from the solution of the differential equation„
d2

dx2
−

d
dx

+
λ

x
−

l(l + 1)

x2

«
L(x) = 0,

where l is an integer l ≥ 0 and λ a constant. They fulfil the orthorgonality relationZ ∞
−∞

e−xLn(x)2dx = 1,

and the recursion relation

(n + 1)Ln+1(x) = (2n + 1− x)Ln(x)− nLn−1(x).

Computational Physics I FYS3150

Hermite

In a similar way, for an integral which goes like

I =

Z ∞
−∞

f (x)dx =

Z ∞
−∞

e−x2
g(x)dx .

we could use the Hermite polynomials in order to extract weights and mesh points. The
Hermite polynomials are the solutions of the following differential equation

d2H(x)

dx2
− 2x

dH(x)

dx
+ (λ− 1)H(x) = 0.

They fulfil the orthorgonality relationZ ∞
−∞

e−x2
Hn(x)2dx = 2nn!

√
π,

and the recursion relation

Hn+1(x) = 2xHn(x)− 2nHn−1(x).

Computational Physics I FYS3150

Gaussian Quadrature, general Properties

A quadrature formula Z b

a
W (x)f (x)dx ≈

nX
i=0

ωi f (xi),

with n + 1 distinct quadrature points (mesh points) is a called a Gaussian quadrature
formula if it integrates all polynomials p ∈ P2n+1 exactly, that is

Z b

a
W (x)p(x)dx =

nX
i=0

ωi p(xi),

It is assumed that W (x) is continuous and positive and that the integralZ b

a
W (x)dx ,

exists. Note that the replacement of f → Wg is normally a better approximation due to

the fact that we may isolate possible singularities of W and its derivatives at the

endpoints of the interval.

Computational Physics I FYS3150

Gaussian Quadrature, general Properties

The weights are positive and the sequence of Gaussian quadrature formulae is
convergent if the sequence Qn of quadrature formulae

Qn(f)→ Q(f) =

Z b

a
f (x)dx ,

in the limit n→∞. Then we say that the sequence

Qn(f) =
nX

i=0

ω
(n)
i f (x (n)

i),

is convergent for all polynomials p, that is

Qn(p) = Q(p)

if there exits a constant C such that

nX
i=0

|ω(n)
i | ≤ C,

for all n which are natural numbers.

Computational Physics I FYS3150

Gaussian Quadrature, Error

Let f ∈ C2n+2[a, b], viz the space of all real or complex 2n + 2 times continuously
differentiable functions, then the error for the Gaussian quadrature formula of order n is
given by

Z b

a
W (x)f (x)dx −

nX
k=0

wk f (xk) =
f 2n+2(ξ)

(2n + 2)!

Z b

a
W (x)[qn+1(x)]2dx

where qn+1 is the chosen orthogonal polynomial and ξ ∈ [a, b]. See the lecture for a

simple example.

Computational Physics I FYS3150

Plan for Monte Carlo Lectures

This week: intro, random numbers, MC integration and
probability distribution functions (PDFs)
Next week: PDFs, MC integration and random walks.
Third week: random walks and statistical physics,
presentation of project 5.
Fourth week: Statistical physics
Fifth and sixth week: Statistical physics and quantum
Monte Carlo

Computational Physics I FYS3150

Monte Carlo Keywords

Consider it is a numerical experiment
Be able to generate random variables following a given
PDF
Find a probability distribution function (PDF).
Sampling rule for accepting a move
Compute standard deviation and other expectation values
Techniques for improving errors

Enhances algorithmic thinking!

Computational Physics I FYS3150

Probability Distribution Functions PDF

Discrete PDF continuous PDF
Domain {x1, x2, x3, . . . , xN} [a, b]
probability p(xi) p(x)dx
Cumulative Pi =

Pi
l=1 p(xl) P(x) =

R x
a p(t)dt

Positivity 0 ≤ p(xi) ≤ 1 p(x) ≥ 0
Positivity 0 ≤ Pi ≤ 1 0 ≤ P(x) ≤ 1
Monotonuous Pi ≥ Pj if xi ≥ xj P(xi) ≥ P(xj) if xi ≥ xj
Normalization PN = 1 P(b) = 1

Computational Physics I FYS3150

Expectation Values

Discrete PDF

E [xk] = 〈xk 〉 =
1
N

N∑
i=1

xk
i p(xi),

provided that the sums (or integrals)
∑N

i=1 p(xi) converge
absolutely (viz ,

∑N
i=1 |p(xi)| converges)

Continuous PDF

E [xk] = 〈xk 〉 =

∫ b

a
xk p(x)dx ,

Function f (x)

E [f k] = 〈f k 〉 =

∫ b

a
f k p(x)dx ,

Variance
σ2

f = E [f 2]− (E [f])2 = 〈f 2〉 − 〈f 〉2

Computational Physics I FYS3150

Important PDFs

uniform distribution
p(x) =

1
b − a

Θ(x − a)Θ(b − x),

which gives for a = 0, b = 1 p(x) = 1 for x ∈ [0, 1] and zero else.

exponential distribution
p(x) = αe−αx ,

with probability different from zero in [0,∞]

normal distribution (Gaussian)

p(x) =
1

√
2πσ2

exp
„
−

(x − µ)2

2σ2

«
with probability different from zero in [−∞,∞]

Computational Physics I FYS3150

Why Monte Carlo?

An example from quantum mechanics: most problems of interest in e.g., atomic,
molecular, nuclear and solid state physics consist of a large number of interacting
electrons and ions or nucleons. The total number of particles N is usually sufficiently
large that an exact solution cannot be found. Typically, the expectation value for a
chosen hamiltonian for a system of N particles is

〈H〉 =R
dR1dR2 . . . dRN Ψ∗(R1,R2, . . . ,RN)H(R1,R2, . . . ,RN)Ψ(R1,R2, . . . ,RN)R

dR1dR2 . . . dRN Ψ∗(R1,R2, . . . ,RN)Ψ(R1,R2, . . . ,RN)
,

an in general intractable problem.

This integral is actually the starting point in a Variational Monte Carlo calculation.

Gaussian quadrature: Forget it! given 10 particles and 10 mesh points for each

degree of freedom and an ideal 1 Tflops machine (all operations take the same time),

how long will it ta ke to compute the above integral? Lifetime of the universe

T ≈ 4.7× 1017s.

Computational Physics I FYS3150

More on dimensionality

As an example from the nuclear many-body problem, we have Schrödinger’s equation
as a differential equation

ĤΨ(r1, .., rA, α1, .., αA) = EΨ(r1, .., rA, α1, .., αA)

where
r1, .., rA,

are the coordinates and
α1, .., αA,

are sets of relevant quantum numbers such as spin and isospin for a system of A

nucleons (A = N + Z , N being the number of neutrons and Z the number of protons).

Computational Physics I FYS3150

Even more on dimensionality

There are

2A ×
„

A
Z

«
coupled second-order differential equations in 3A dimensions.

For a nucleus like 10Be this number is 215040. This is a truely challenging many-body

problem.

Computational Physics I FYS3150

But what do we gain by Monte Carlo Integration?

A crude approach consists in setting all weights equal 1, ωi = 1. With
dx = h = (b− a)/N where b = 1, a = 0 in our case and h is the step size. The integral

I =

Z 1

0
f (x)dx ≈

1
N

NX
i=1

f (xi),

can be rewritten using the concept of the average of the function f for a given PDF p(x)
as

E [f] = 〈f 〉 =
1
N

NX
i=1

f (xi)p(xi),

and identify p(x) with the uniform distribution, viz p(x) = 1 when x ∈ [0, 1] and zero for
all other values of x . The integral is is then the average of f over the interval x ∈ [0, 1]

I =

Z 1

0
f (x)dx ≈ E [f] = 〈f 〉.

Computational Physics I FYS3150

But what do we gain by Monte Carlo Integration?

In addition to the average value 〈f 〉 the other important quantity in a Monte-Carlo
calculation is the variance σ2 and the standard deviation σ. We define first the variance
of the integral with f for a uniform distribution in the interval x ∈ [0, 1] to be

σ2
f =

1
N

NX
i=1

(f (xi)− 〈f 〉)2p(xi),

and inserting the uniform distribution this yields

σ2
f =

1
N

NX
i=1

f (xi)
2 −

0@ 1
N

NX
i=1

f (xi)

1A2

,

or
σ2

f = E [f 2]− (E [f])2 =
“
〈f 2〉 − 〈f 〉2

”
.

which is nothing but a measure of the extent to which f deviates from its average over

the region of integration. The standard deviation is defined as the square root of the

variance.

Computational Physics I FYS3150

But what do we gain by Monte Carlo Integration?

If we consider the above results for a fixed value of N as a measurement, we could
however recalculate the above average and variance for a series of different
measurements. If each such measumerent produces a set of averages for the integral I
denoted 〈f 〉l , we have for M measurements that the integral is given by

〈I〉M =
1
M

MX
l=1

〈f 〉l .

If we can consider the probability of correlated events to be zero, we can rewrite the
variance of these series of measurements as (equating M = N)

σ2
N ≈

1
N

“
〈f 2〉 − 〈f 〉2

”
=
σ2

f
N
.

We note that the standard deviation is proportional with the inverse square root of the
number of measurements

σN ∼
1
√

N
.

The aim in Monte Carlo calculations is to have σN as small as possible after N

samples. The results from one sample represents, since we are using concepts from

statistics, a ’measurement’.

Computational Physics I FYS3150

But what do we gain by Monte Carlo Integration?

We saw that the trapezoidal rule carries a truncation error O(h2), with h the step
length.

Quadrature rules such as Newton-Cotes have a truncation error which goes like
∼ O(hk), with k ≥ 1. Recalling that the step size is defined as h = (b − a)/N,
we have an error which goes like ∼ N−k .

Monte Carlo integration is more efficient in higher dimensions. Assume that our
integration volume is a hypercube with side L and dimension d . This cube
contains hence N = (L/h)d points and therefore the error in the result scales as
N−k/d for the traditional methods.

The error in the Monte carlo integration is however independent of d and scales
as σ ∼ 1/

√
N, always!

Comparing this with traditional methods, shows that Monte Carlo integration is
more efficient than an order-k algorithm when d > 2k

Computational Physics I FYS3150

Monte Carlo Integration

With uniform distribution p(x) = 1 for x ∈ [0, 1] and zero else

I =

Z 1

0
f (x)dx ≈

1
N

NX
i=1

f (xi),

I =

Z 1

0
f (x)dx ≈ E [f] = 〈f 〉.

σ2
f =

1
N

NX
i=1

f (xi)
2 −

0@ 1
N

NX
i=1

f (xi)

1A2

,

or
σ2

f = E [f 2]− (E [f])2 =
“
〈f 2〉 − 〈f 〉2

”
.

Computational Physics I FYS3150

Brute Force Algorithm for Monte Carlo Integration

Choose the number of Monte Carlo samples N.

Make a loop over N and for every step generate a random number xi in the
interval xi ∈ [0, 1] by calling a random number generator.

Use this number to compute f (xi).

Find the contribution to the variance and the mean value for every loop
contribution.

After N samplings, compute the final mean value and the standard deviation

Computational Physics I FYS3150

Brute Force Integration

// crude mc function to calculate pi
int i, n;
long idum;
double crude_mc, x, sum_sigma, fx, variance;
cout << "Read in the number of Monte-Carlo samples" << endl;
cin >> n;
crude_mc = sum_sigma=0. ; idum=-1 ;

// evaluate the integral with the a crude Monte-Carlo method
for (i = 1; i <= n; i++){

x=ran0(&idum);
fx=func(x);
crude_mc += fx;
sum_sigma += fx*fx;

}
crude_mc = crude_mc/((double) n);
sum_sigma = sum_sigma/((double) n);
variance=sum_sigma-crude_mc*crude_mc;

Computational Physics I FYS3150

Or: another Brute Force Integration

// crude mc function to calculate pi
int main()
{

const int n = 1000000;
double x, fx, pi, invers_period, pi2;
int i;
invers_period = 1./RAND_MAX;
srand(time(NULL));
pi = pi2 = 0.;
for (i=0; i<n;i++)
{
x = double(rand())*invers_period;
// This is our sampling rule, all points accepted
fx = 4./(1+x*x);
pi += fx;
pi2 += fx*fx;

}
pi /= n; pi2 = pi2/n - pi*pi;
cout << "pi=" << pi << " sigmaˆ2=" << pi2 << endl;
return 0;

}

Computational Physics I FYS3150

Brute Force Integration

Note the call to a function which generates random numbers according to the uniform
distribution

long idum;
idum=-1 ;
.....
x=ran0(&idum);
....

or

...
invers_period = 1./RAND_MAX;
srand(time(NULL));
...
x = double(rand())*invers_period;

Computational Physics I FYS3150

Algorithm for Monte Carlo Integration, Results

N I σN
10 3.10263E+00 3.98802E-01

100 3.02933E+00 4.04822E-01
1000 3.13395E+00 4.22881E-01

10000 3.14195E+00 4.11195E-01
100000 3.14003E+00 4.14114E-01

1000000 3.14213E+00 4.13838E-01
10000000 3.14177E+00 4.13523E-01

109 3.14162E+00 4.13581E-01
We note that as N increases, the integral itself never reaches more than an agreement

to the fourth or fifth digit. The variance also oscillates around its exact value

4.13581E − 01. Note well that the variance need not be zero but one can, with

appropriate redefinitions of the integral be made smaller. A smaller variance yields also

a smaller standard deviation. This is the topic of importance sampling.

Computational Physics I FYS3150

Particles in a Box

Consider a box divided into two equal halves separated by a wall. At the beginning,
time t = 0, there are N particles on the left side. A small hole in the wall is then opened
and one particle can pass through the hole per unit time.

After some time the system reaches its equilibrium state with equally many particles in

both halves, N/2. Instead of determining complicated initial conditions for a system of

N particles, we model the system by a simple statistical model. In order to simulate this

system, which may consist of N � 1 particles, we assume that all particles in the left

half have equal probabilities of going to the right half.

Computational Physics I FYS3150

Particles in a Box

We introduce the label nl to denote the number of particles at every time on the left
side, and nr = N − nl for those on the right side. The probability for a move to the right
during a time step ∆t is nl/N. The algorithm for simulating this problem may then look
like as follows

Choose the number of particles N.

Make a loop over time, where the maximum time should be larger than the
number of particles N.

For every time step ∆t there is a probability nl/N for a move to the right.
Compare this probability with a random number x .

If x ≤ nl/N, decrease the number of particles in the left half by one, i.e.,
nl = nl − 1. Else, move a particle from the right half to the left, i.e., nl = nl + 1.
This is our sampling rule

Increase the time by one unit (the external loop).

In this case, a Monte Carlo sample corresponds to one time unit ∆t .

Computational Physics I FYS3150

Particles in a Box

// setup of initial conditions
nleft = initial_n_particles;
max_time = 10*initial_n_particles;
idum = -1;
// sampling over number of particles
for(time=0; time <= max_time; time++){
random_n = ((int) initial_n_particles*ran0(&idum));
if (random_n <= nleft){
nleft -= 1;

}
else{
nleft += 1;

}
ofile << setiosflags(ios::showpoint | ios::uppercase);
ofile << setw(15) << time;
ofile << setw(15) << nleft << endl;

}

Computational Physics I FYS3150

Radioactive Decay
Assume that a the time t = 0 we have N(0) nuclei of type X which can decay
radioactively. At a time t > 0 we are left with N(t) nuclei. With a transition probability ω,
which expresses the probability that the system will make a transition to another state
during a time step of one second, we have the following first-order differential equation

dN(t) = −ωN(t)dt ,

whose solution is
N(t) = N(0)e−ωt ,

where we have defined the mean lifetime τ of X as

τ =
1
ω
.

If a nucleus X decays to a daugther nucleus Y which also can decay, we get the
following coupled equations (project 2)

dNX (t)
dt

= −ωX NX (t),

and
dNY (t)

dt
= −ωY NY (t) + ωX NX (t).

Computational Physics I FYS3150

Radioactive Decay

Probability for a decay of a particle during a time step ∆t is

∆N(t)
N(t)∆t

= −λ

λ is inversely proportional to the lifetime

Choose the number of particles N(t = 0) = N0.

Make a loop over the number of time steps, with maximum time bigger than the
number of particles N0

At every time step there is a probability λ for decay. Compare this probability with
a random number x .

If x ≤ λ, reduce the number of particles with one i.e., N = N − 1. If not, keep the
same number of particles till the next time step. This is our sampling rule

Increase by one the time step (the external loop)

Computational Physics I FYS3150

Radioactive Decay

idum=-1; // initialise random number generator
// loop over monte carlo cycles
// One monte carlo loop is one sample
for (cycles = 1; cycles <= number_cycles; cycles++){
n_unstable = initial_n_particles;
// accumulate the number of particles per time step per trial
ncumulative[0] += initial_n_particles;
// loop over each time step
for (time=1; time <= max_time; time++){
// for each time step, we check each particle
particle_limit = n_unstable;
for (np = 1; np <= particle_limit; np++) {
if(ran0(&idum) <= decay_probability) {

n_unstable=n_unstable-1;
}

} // end of loop over particles
ncumulative[time] += n_unstable;

} // end of loop over time steps
} // end of loop over MC trials

} // end mc_sampling function

Computational Physics I FYS3150

Acceptance-Rejection Method

This is a rather simple and appealing method after von Neumann. Assume that we are
looking at an interval x ∈ [a, b], this being the domain of the PDF p(x). Suppose also
that the largest value our distribution function takes in this interval is M, that is

p(x) ≤ M x ∈ [a, b].

Then we generate a random number x from the uniform distribution for x ∈ [a, b] and a
corresponding number s for the uniform distribution between [0,M]. If

p(x) ≥ s,

we accept the new value of x , else we generate again two new random numbers x and
s and perform the test in the latter equation again.

Computational Physics I FYS3150

Acceptance-Rejection Method

As an example, consider the evaluation of the integral

I =

Z 3

0
exp (x)dx .

Obviously to derive it analytically is much easier, however the integrand could pose

some more difficult challenges. The aim here is simply to show how to implent the

acceptance-rejection algorithm. The integral is the area below the curve

f (x) = exp (x). If we uniformly fill the rectangle spanned by x ∈ [0, 3] and

y ∈ [0, exp (3)], the fraction below the curve obatained from a uniform distribution, and

multiplied by the area of the rectangle, should approximate the chosen integral. It is

rather easy to implement this numerically, as shown in the following code.

Computational Physics I FYS3150

Simple Plot of the Accept-Reject Method

Computational Physics I FYS3150

Acceptance-Rejection Method

// Loop over Monte Carlo trials n
integral =0.;
for (int i = 1; i <= n; i++){

// Finds a random value for x in the interval [0,3]
x = 3*ran0(&idum);

// Finds y-value between [0,exp(3)]
y = exp(3.0)*ran0(&idum);

// if the value of y at exp(x) is below the curve, we accept
if (y < exp(x)) s = s+ 1.0;

// The integral is area enclosed below the line f(x)=exp(x)
}

// Then we multiply with the area of the rectangle and
// divide by the number of cycles

Integral = 3.*exp(3.)*s/n

Computational Physics I FYS3150

Week 44, October 27-31

Monte Carlo integration, random numbers, random walks and
Markov chains

Monday: Repetition from last week
Monte Carlo integration, importance sampling and
transformation of variables
Random numbers and covariance
Wednesday: (Marius Lysebo)
Discussion of Markov chains and link to diffusion equation
Random walks

Computational Physics I FYS3150

Optimization and profiling

Till now we have not paid much attention to speed and possible optimization
possibilities inherent in the various compilers. We have compiled and linkes as

c++ -c mycode.cpp
c++ -o mycode.exe mycode.o

This is what we call a flat compiler option and should be used when we develop the
code. It produces normally a very large and slow code when translated to machine
instructions. We use this option for debugging and for establishing the correct program
output because every operation is done precisely as the user specified it.
It is instructive to look up the compiler manual for further instructions

man c++ > out_to_file

Computational Physics I FYS3150

Optimization and profiling

We have addtional compiler options for optimization. These may include procedure
inlining where performance may be improved, moving constants inside loops outside
the loop, identify potential parallelism, include automatic vectorization or replace a
division with a reciprocal and a multiplication if this speeds up the code.

c++ -O3 -c mycode.cpp
c++ -O3 -o mycode.exe mycode.o

This is the recommended option. But you must check that you get the same results

as previously.

Computational Physics I FYS3150

Optimization and profiling

It is also useful to profile your program under the development stage. You would then
compile with (Mac and unix/linux)

c++ -pg -O3 -c mycode.cpp
c++ -pg -O3 -o mycode.exe mycode.o

After you have run the code you can obtain the profiling option via

gprof mycode.exe > out_to_profile

When you have profiled properly your code, you must take this option as it increases

your CPU expenditure.

Computational Physics I FYS3150

Optimization and profiling

Other hints

avoid if test or call to functions inside loops, if possible.

avoid multiplication with constants inside loop is possible

Bad code

for i = 1:n
a(i) = b(i) +c*d
e = g(k)

end

Better code

temp = c*d
for i = 1:n

a(i) = b(i) + temp
end
e = g(k)

Computational Physics I FYS3150

Transformation of Variables

The starting point is always the uniform distribution

p(x)dx =

dx 0 ≤ x ≤ 1
0 else

with p(x) = 1 and satisfying Z ∞
−∞

p(x)dx = 1.

All random number generators provided in the program library generate numbers in
this domain.
When we attempt a transformation to a new variable x → y we have to conserve the
probability

p(y)dy = p(x)dx ,

which for the uniform distribution implies

p(y)dy = dx .

Computational Physics I FYS3150

Transformation of Variables

Let us assume that p(y) is a PDF different from the uniform PDF p(x) = 1 with
x ∈ [0, 1]. If we integrate the last expression we arrive at

x(y) =

Z y

0
p(y ′)dy ′,

which is nothing but the cumulative distribution of p(y), i.e.,

x(y) = P(y) =

Z y

0
p(y ′)dy ′.

This is an important result which has consequences for eventual improvements over

the brute force Monte Carlo.

Computational Physics I FYS3150

Example 1, a general Uniform Distribution

Suppose we have the general uniform distribution

p(y)dy =

(
dy

b−a a ≤ y ≤ b
0 else

If we wish to relate this distribution to the one in the interval x ∈ [0, 1] we have

p(y)dy =
dy

b − a
= dx ,

and integrating we obtain the cumulative function

x(y) =

Z y

a

dy ′

b − a
,

yielding
y = a + (b − a)x ,

a well-known result!

Computational Physics I FYS3150

Example 2, from Uniform to Exponential

Assume that
p(y) = e−y ,

which is the exponential distribution, important for the analysis of e.g., radioactive
decay. Again, p(x) is given by the uniform distribution with x ∈ [0, 1], and with the
assumption that the probability is conserved we have

p(y)dy = e−y dy = dx ,

which yields after integration

x(y) = P(y) =

Z y

0
exp (−y ′)dy ′ = 1− exp (−y),

or
y(x) = −ln(1− x).

This gives us the new random variable y in the domain y ∈ [0,∞) determined through

the random variable x ∈ [0, 1] generated by our favorite random generator.

Computational Physics I FYS3150

Example 2, from Uniform to Exponential

This means that if we can factor out exp (−y) from an integrand we may have

I =

Z ∞
0

F (y)dy =

Z ∞
0

exp (−y)G(y)dy

which we rewrite as

Z ∞
0

exp (−y)G(y)dy =

Z ∞
0

dx
dy

G(y)dy ≈
1
N

NX
i=1

G(y(xi)),

where xi is a random number in the interval [0,1].

Note that in practical implementations, our random number generators for the uniform

distribution never return exactly 0 or 1, but we we may come very close. We should

thus in principle set x ∈ (0, 1).

Computational Physics I FYS3150

Example 2, from Uniform to Exponential

The algorithm is rather simple. In the function which sets up the integral, we simply
need the random number generator for the uniform distribution in order to obtain
numbers in the interval [0,1]. We obtain y by the taking the logarithm of (1− x). Our
calling function which sets up the new random variable y may then include statements
like

.....
idum=-1;
x=ran0(&idum);
y=-log(1.-x);
.....

Computational Physics I FYS3150

Example 3
Another function which provides an example for a PDF is

p(y)dy =
dy

(a + by)n
,

with n > 1. It is normalizable, positive definite, analytically integrable and the integral is
invertible, allowing thereby the expression of a new variable in terms of the old one.
The integral Z ∞

0

dy
(a + by)n

=
1

(n − 1)ban−1
,

gives

p(y)dy =
(n − 1)ban−1

(a + by)n
dy ,

which in turn gives the cumulative function

x(y) = P(y) =

Z y

0

(n − 1)ban−1

(a + bx)n
dy ′ =,

resulting in

y =
a
b

“
(1− x)−1/(n−1) − 1

”
.

Computational Physics I FYS3150

Example 4, from Uniform to Normal

For the normal distribution, expressed here as

g(x , y) = exp (−(x2 + y2)/2)dxdy .

it is rather difficult to find an inverse since the cumulative distribution is given by the
error function erf (x).
If we however switch to polar coordinates, we have for x and y

r =
“

x2 + y2
”1/2

θ = tan−1 x
y
,

resulting in
g(r , θ) = r exp (−r2/2)drdθ,

where the angle θ could be given by a uniform distribution in the region [0, 2π].

Following example 1 above, this implies simply multiplying random numbers x ∈ [0, 1]

by 2π.

Computational Physics I FYS3150

Example 4, from Uniform to Normal
The variable r , defined for r ∈ [0,∞) needs to be related to to random numbers
x ′ ∈ [0, 1]. To achieve that, we introduce a new variable

u =
1
2

r2,

and define a PDF
exp (−u)du,

with u ∈ [0,∞). Using the results from example 2, we have that

u = −ln(1− x ′),

where x ′ is a random number generated for x ′ ∈ [0, 1]. With

x = rcos(θ) =
√

2ucos(θ),

and
y = rsin(θ) =

√
2usin(θ),

we can obtain new random numbers x , y through

x =
p
−2ln(1− x ′)cos(θ),

and
y =

p
−2ln(1− x ′)sin(θ),

with x ′ ∈ [0, 1] and θ ∈ 2π[0, 1].

Computational Physics I FYS3150

Example 4, from Uniform to Normal

A function which yields such random numbers for the normal distribution would include
statements like

.....
idum=-1;
radius=sqrt(-2*ln(1.-ran0(idum)));
theta=2*pi*ran0(idum);
x=radius*cos(theta);
y=radius*sin(theta);
.....

Computational Physics I FYS3150

Box-Mueller Method for Normal Deviates

// random numbers with gaussian distribution
double gaussian_deviate(long * idum)
{

static int iset = 0;
static double gset;
double fac, rsq, v1, v2;
if (idum < 0) iset =0;
if (iset == 0) {
do {
v1 = 2.*ran0(idum) -1.0;
v2 = 2.*ran0(idum) -1.0;
rsq = v1*v1+v2*v2;

} while (rsq >= 1.0 || rsq == 0.);
fac = sqrt(-2.*log(rsq)/rsq);
gset = v1*fac;
iset = 1;
return v2*fac;

} else {
iset =0;
return gset;

}

Computational Physics I FYS3150

Importance Sampling

With the aid of the above variable transformations we address now one of the most
widely used approaches to Monte Carlo integration, namely importance sampling.
Let us assume that p(y) is a PDF whose behavior resembles that of a function F
defined in a certain interval [a, b]. The normalization condition isZ b

a
p(y)dy = 1.

We can rewrite our integral as

I =

Z b

a
F (y)dy =

Z b

a
p(y)

F (y)

p(y)
dy .

Computational Physics I FYS3150

Importance Sampling

Since random numbers are generated for the uniform distribution p(x) with x ∈ [0, 1],
we need to perform a change of variables x → y through

x(y) =

Z y

a
p(y ′)dy ′,

where we used
p(x)dx = dx = p(y)dy .

If we can invert x(y), we find y(x) as well.

Computational Physics I FYS3150

Importance Sampling

With this change of variables we can express the integral of Eq. (355) as

I =

Z b

a
p(y)

F (y)

p(y)
dy =

Z b

a

F (y(x))

p(y(x))
dx ,

meaning that a Monte Carlo evalutaion of the above integral gives

Z b

a

F (y(x))

p(y(x))
dx =

1
N

NX
i=1

F (y(xi))

p(y(xi))
.

The advantage of such a change of variables in case p(y) follows closely F is that the
integrand becomes smooth and we can sample over relevant values for the integrand.
It is however not trivial to find such a function p. The conditions on p which allow us to
perform these transformations are

1 p is normalizable and positive definite,

2 it is analytically integrable and

3 the integral is invertible, allowing us thereby to express a new variable in terms of
the old one.

Computational Physics I FYS3150

Importance Sampling
The algorithm for this procedure is

Use the uniform distribution to find the random variable y in the interval [0,1].
p(x) is a user provided PDF.

Evaluate thereafter

I =

Z b

a
F (x)dx =

Z b

a
p(x)

F (x)

p(x)
dx ,

by rewriting Z b

a
p(x)

F (x)

p(x)
dx =

Z b

a

F (x(y))

p(x(y))
dy ,

since
dy
dx

= p(x).

Perform then a Monte Carlo sampling for

Z b

a

F (x(y))

p(x(y))
dy ,≈

1
N

NX
i=1

F (x(yi))

p(x(yi))
,

with yi ∈ [0, 1],

Evaluate the variance

Computational Physics I FYS3150

Demonstration of Importance Sampling

I =

Z 1

0
F (x)dx =

Z 1

0

1
1 + x2

dx =
π

4
.

We choose the following PDF (which follows closely the function to integrate)

p(x) =
1
3

(4− 2x)

Z 1

0
p(x)dx = 1,

resulting
F (0)

p(0)
=

F (1)

p(1)
=

3
4
.

Check that it fullfils the requirements of a PDF. We perform then the change of
variables (via the Cumulative function)

y(x) =

Z x

0
p(x ′)dx ′ =

1
3

x (4− x) ,

or
x = 2− (4− 3y)1/2

We have that when y = 0 then x = 0 and when y = 1 we have x = 1.

Computational Physics I FYS3150

Simple Code

// evaluate the integral with importance sampling
for (int i = 1; i <= n; i++){
x = ran0(&idum); // random numbers in [0,1]
y = 2 - sqrt(4-3*x); // new random numbers
fy=3*func(y)/(4-2*y); // weighted function
int_mc += fy;
sum_sigma += fy*fy;

}
int_mc = int_mc/((double) n);
sum_sigma = sum_sigma/((double) n);
variance=(sum_sigma-int_mc*int_mc);

Computational Physics I FYS3150

Test Runs and Comparison with Brute Force for
π = 3.14159

The suffix cr stands for the brute force approach while is stands for the use of
importance sampling. All calculations use ran0 as function to generate the uniform
distribution.

N Icr σcr Iis σis
10000 3.13395E+00 4.22881E-01 3.14163E+00 6.49921E-03

100000 3.14195E+00 4.11195E-01 3.14163E+00 6.36837E-03
1000000 3.14003E+00 4.14114E-01 3.14128E+00 6.39217E-03

10000000 3.14213E+00 4.13838E-01 3.14160E+00 6.40784E-03

However, it is unfair to study one-dimensional integrals with MC methods!

Computational Physics I FYS3150

Multidimensional Integrals

When we deal with multidimensional integrals of the form

I =

Z 1

0
dx1

Z 1

0
dx2 . . .

Z 1

0
dxd g(x1, . . . , xd),

with xi defined in the interval [ai , bi] we would typically need a transformation of
variables of the form

xi = ai + (bi − ai)ti ,

if we were to use the uniform distribution on the interval [0, 1]. In this case, we need a
Jacobi determinant (useful in point b of project 2)

dY
i=1

(bi − ai),

and to convert the function g(x1, . . . , xd) to

g(x1, . . . , xd)→ g(a1 + (b1 − a1)t1, . . . , ad + (bd − ad)td).

Computational Physics I FYS3150

Example, six-dimensional integral (project 2 2007)

The task of this project is to integrate in a brute force manner a six-dimensional integral
which is used to determine the ground state correlation energy between two electrons
in a helium atom. We will employ both Gauss-Legendre quadrature and Monte-Carlo
integration. We assume that the wave function of each electron can be modelled like
the single-particle wave function of an electron in the hydrogen atom. The
single-particle wave function for an electron i in the 1s state is given in terms of a
dimensionless variable (the wave function is not properly normalized)

ri = xi ex + yi ey + zi ez ,

as
ψ1s(ri) = e−αri ,

where α is a parameter and

ri =
q

x2
i + y2

i + z2
i .

We will fix α = 2, which should correspond to the charge of the helium atom Z = 2.

Computational Physics I FYS3150

Switch to spherical coordinates

Useful to change to spherical coordinates

dr1dr2 = r2
1 dr1r2

2 dr2dcos(θ1)dcos(θ2)dφ1dφ2,

and
1

r12
=

1q
r2
1 + r2

2 − 2r1r2cos(β)

with
cos(β) = cos(θ1)cos(θ2) + sin(θ1)sin(θ2)cos(φ1 − φ2))

Computational Physics I FYS3150

How do I do importance sampling in spherical
coordinates

r1,2 ∈ [0,∞), here we use the mapping r1,2 = −ln(1− ran) with ran ∈ [0, 1], a
uniform distribution point.

θ1,2 ∈ [0, π], use mapping θ1,2 = π ∗ ran with ran ∈ [0, 1] a uniform distribution
point.

φ1,2 ∈ [0, 2π], use mapping φ1,2 = 2π ∗ ran with ran ∈ [0, 1] a uniform
distribution point.

Be careful with the integrand

exp (−4(r1 + r2))r2
1 dr1r2

2 dr2dcos(θ1)dcos(θ2)dφ1dφ2q
r2
1 + r2

2 − 2r1r2cos(β)

Computational Physics I FYS3150

Example, six-dimensional integral (project 2 2007)

The ansatz for the wave function for two electrons is then given by the product of two
1s wave functions as

Ψ(r1, r2) = e−α(r1+r2).

Note that it is not possible to find an analytic solution to Schrödinger’s equation for two
interacting electrons in the helium atom.
The integral we need to solve is the quantum mechanical expectation value of the
correlation energy between two electrons, namely

〈
1

|r1 − r2|
〉 =

Z ∞
−∞

dr1dr2e−2α(r1+r2) 1
|r1 − r2|

=
5π2

162
= 0.192765711. (113)

Note that our wave function is not normalized. There is a normalization factor missing,

but for this project we don’t need to worry about that.

Computational Physics I FYS3150

Example, six-dimensional integral (project 2 2007)

a) Use Gauss-Legendre quadrature and compute the integral by integrating for
each variable x1, y1, z1, x2, y2, z2 from −∞ to∞. How many mesh points do you
need before the results converges at the level of the fourth leading digit? Hint:
the single-particle wave function e−αri is more or less zero at ri ≈ 10− 15. You
can therefore replace the integration limits −∞ and∞ with −10 and 10,
respectively. You need to check that this approximation is satisfactory.

b) Compute the same integral but now with brute force Monte Carlo and compare
your results with those from the previous point. Discuss the differences. With
bruce force we mean that you should use the uniform distribution.

c) Improve your brute force Monte Carlo calculation by using importance sampling.
Hint: use the exponential distribution. Does the variance decrease? Does the
CPU time used compared with the brute force Monte Carlo decrease in order to
achieve the same accuracy? Comment your results.

Computational Physics I FYS3150

Example, six-dimensional integral, Gauss-Legendre

double *x = new double [N];
double *w = new double [N];

// set up the mesh points and weights
gauleg(a,b,x,w, N);

// evaluate the integral with the Gauss-Legendre method
// Note that we initialize the sum

double int_gauss = 0.;
for (int i=0;i<N;i++){
for (int j = 0;j<N;j++){
for (int k = 0;k<N;k++){
for (int l = 0;l<N;l++){
for (int m = 0;m<N;m++){
for (int n = 0;n<N;n++){

int_gauss+=w[i]*w[j]*w[k]*w[l]*w[m]*w[n]

*int_function(x[i],x[j],x[k],x[l],x[m],x[n]);
}}}}}

}

Computational Physics I FYS3150

Example, six-dimensional integral, Gauss-Legendre

// this function defines the function to integrate
double int_function(double x1, double y1, double z1, double x2, double y2, double z2)
{

double alpha = 2.;
// evaluate the different terms of the exponential

double exp1=-2*alpha*sqrt(x1*x1+y1*y1+z1*z1);
double exp2=-2*alpha*sqrt(x2*x2+y2*y2+z2*z2);
double deno=sqrt(pow((x1-x2),2)+pow((y1-y2),2)+pow((z1-z2),2));
if(deno <pow(10.,-6.)) { return 0;}
else return exp(exp1+exp2)/deno;

} // end of function to evaluate

Computational Physics I FYS3150

Example, six-dimensional integral, brute force MC

double int_mc = 0.; double variance = 0.;
double sum_sigma= 0. ; long idum=-1 ;
double length=1.5; // we fix the max size of the box to L=3
double volume=pow((2*length),6.);

// evaluate the integral with importance sampling
for (int i = 1; i <= n; i++){

// x[] contains the random numbers for all dimensions
for (int j = 0; j< 6; j++) {

x[j]=-length+2*length*ran0(&idum); // Maps U[0,1] to U[-L,L]
}
fx=brute_force_MC(x);
int_mc += fx;
sum_sigma += fx*fx;

}
int_mc = int_mc/((double) n);
sum_sigma = sum_sigma/((double) n);
variance=sum_sigma-int_mc*int_mc;
....

Computational Physics I FYS3150

Example, six-dimensional integral, brute force MC

double brute_force_MC(double *x)
{

double alpha = 2.;
// evaluate the different terms of the exponential

double exp1=-2*alpha*sqrt(x[0]*x[0]+x[1]*x[1]+x[2]*x[2]);
double exp2=-2*alpha*sqrt(x[3]*x[3]+x[4]*x[4]+x[5]*x[5]);
double deno=sqrt(pow((x[0]-x[3]),2)+pow((x[1]-x[4]),2)+pow((x[2]-x[5]),2));
double value=exp(exp1+exp2)/deno;

return value;
} // end function for the integrand

Computational Physics I FYS3150

Example, six-dimensional integral, importance
sampling

double int_mc = 0.; double variance = 0.;
double sum_sigma= 0. ; long idum=-1 ;
// The ’volume’ contains 4 jacobideterminants(pi,pi,2pi,2pi) and a scaling factor 1/16
double volume=4*pow(acos(-1.),4.)*1./16;
// evaluate the integral with importance sampling
for (int i = 1; i <= n; i++){

for (int j = 0; j < 2; j++) {
y=ran0(&idum);
x[j]=-0.25*log(1.-y);

}
for (int j = 2; j < 4; j++) {

x[j] = 2*acos(-1.)*ran0(&idum);
}
for (int j = 4; j < 6; j++) {

x[j] = acos(-1.)*ran0(&idum);
}

fx=gaussian_MC(x);
....

Computational Physics I FYS3150

Example, six-dimensional integral, importance
sampling

// this function defines the integrand to integrate

double gaussian_MC(double *x)
{
double num=x[0]*x[0]*x[1]*x[1]*sin(x[4])*sin(x[5]);
double deno=sqrt(x[0]*x[0]+x[1]*x[1]-2*x[0]*x[1]*

(sin(x[4])*sin(x[5])*cos(x[2]-x[3])+cos(x[4])*cos(x[5])));
return num/deno;
} // end function for the integrand

Computational Physics I FYS3150

Test Runs and Comparison with Brute Force and
Gauss-Legendre

The suffix br stands for the brute force approach while is stands for the use of
importance sampling.

N Ibr σbr time(s) Iis σis time(s)
1E6 0.19238 3.85124E-4 0.6 0.19176 1.01515E-4 1.4

10E6 0.18607 1.18053E-4 6 0.192254 1.22430E-4 14
100E6 0.18846 4.37163E-4 57 0.192720 1.03346E-4 138

1000E6 0.18843 1.35879E-4 581 0.192789 3.28795E-5 1372

Gauss-Legendre results:

N time(s) In |In − I
20 31 0.18047 1.123E-2
30 354 0.18501 7.76E-3
40 1999 0.18653 6.24E-3
50 7578 0.18722 5.54E-3

Computational Physics I FYS3150

Example: 6-dimensional Integral

As a further example, consider the following six-dimensional integralZ ∞
−∞

dxdyg(x, y),

where
g(x, y) = exp (−x2 − y2 − (x− y)2/2),

with d = 6.

Computational Physics I FYS3150

Example: 6-dimensional Integral

We can solve this integral by employing our brute force scheme, or using importance
sampling and random variables distributed according to a gaussian PDF. For the latter,
if we set the mean value µ = 0 and the standard deviation σ = 1/

√
2, we have

1
√
π

exp (−x2),

and through

π3
Z 6Y

i=1

„
1
√
π

exp (−x2
i)

«
exp (−(x− y)2/2)dx1. . . . dx6,

we can rewrite our integral as

Z
f (x1, . . . , xd)F (x1, . . . , xd)

6Y
i=1

dxi ,

where f is the gaussian distribution.

Computational Physics I FYS3150

Brute Force I

.....
// evaluate the integral without importance sampling
// Loop over Monte Carlo Cycles

for (int i = 1; i <= n; i++){
// x[] contains the random numbers for all dimensions

for (int j = 0; j< 6; j++) {
x[j]=-length+2*length*ran0(&idum);

}
fx=brute_force_MC(x);
int_mc += fx;
sum_sigma += fx*fx;

}
int_mc = int_mc/((double) n);
sum_sigma = sum_sigma/((double) n);
variance=sum_sigma-int_mc*int_mc;

......

Computational Physics I FYS3150

Brute Force II

double brute_force_MC(double *x)
{

double a = 1.; double b = 0.5;
// evaluate the different terms of the exponential

double xx=x[0]*x[0]+x[1]*x[1]+x[2]*x[2];
double yy=x[3]*x[3]+x[4]*x[4]+x[5]*x[5];
double xy=pow((x[0]-x[3]),2)+pow((x[1]-x[4]),2)+pow((x[2]-x[5]),2);
return exp(-a*xx-a*yy-b*xy);

Computational Physics I FYS3150

Importance Sampling I

..........
// evaluate the integral with importance sampling

for (int i = 1; i <= n; i++){
// x[] contains the random numbers for all dimensions

for (int j = 0; j < 6; j++) {
x[j] = gaussian_deviate(&idum)*sqrt2;

}
fx=gaussian_MC(x);
int_mc += fx;
sum_sigma += fx*fx;

}
int_mc = int_mc/((double) n);
sum_sigma = sum_sigma/((double) n);
variance=sum_sigma-int_mc*int_mc;

.............

Computational Physics I FYS3150

Importance Sampling II

// this function defines the integrand to integrate

double gaussian_MC(double *x)
{

double a = 0.5;
// evaluate the different terms of the exponential

double xy=pow((x[0]-x[3]),2)+pow((x[1]-x[4]),2)+pow((x[2]-x[5]),2);
return exp(-a*xy);

} // end function for the integrand

Computational Physics I FYS3150

Test Runs for six-dimensional Integral

Results for as function of number of Monte Carlo samples N. The exact answer is
I ≈ 10.9626 for the integral. The suffix cr stands for the brute force approach while gd
stands for the use of a Gaussian distribution function. All calculations use ran0 as
function to generate the uniform distribution.

N Icr Igd
10000 1.15247E+01 1.09128E+01

100000 1.29650E+01 1.09522E+01
1000000 1.18226E+01 1.09673E+01

10000000 1.04925E+01 1.09612E+01

Computational Physics I FYS3150

Random Numbers

Computational Physics I FYS3150

Random Numbers

Most used are so-called ’Linear congruential’

Ni = (aNi−1 + c)MOD(M),

and to find a number in x ∈ [0, 1]
xi = Ni/M

M is called the period and should be as big as possible. The start value is N0 and is
called the seed.

The random variables should result in the uniform distribution

No correlations between numbers (zero covariance)

As big as possible period M

Fast algo

Computational Physics I FYS3150

Random Numbers

The problem with such generators is that their outputs are periodic; they will start to
repeat themselves with a period that is at most M. If however the parameters a and c
are badly chosen, the period may be even shorter.
Consider the following example

Ni = (6Ni−1 + 7)MOD(5),

with a seed N0 = 2. This generator produces the sequence
4, 1, 3, 0, 2, 4, 1, 3, 0, 2, , i.e., a sequence with period 5. However, increasing M
may not guarantee a larger period as the following example shows

Ni = (27Ni−1 + 11)MOD(54),

which still, with N0 = 2, results in 11, 38, 11, 38, 11, 38, . . . , a period of just 2.

Computational Physics I FYS3150

Random Numbers

Typical periods for the random generators provided in the program library are of the
order of ∼ 109 or larger. Other random number generators which have become
increasingly popular are so-called shift-register generators. In these generators each
successive number depends on many preceding values (rather than the last values as
in the linear congruential generator). For example, you could make a shift register
generator whose l th number is the sum of the l − i th and l − j th values with modulo M,

Nl = (aNl−i + cNl−j)MOD(M). (114)

Such a generator again produces a sequence of pseudorandom numbers but this time
with a period much larger than M. It is also possible to construct more elaborate
algorithms by including more than two past terms in the sum of each iteration. One
example is the generator of Marsaglia and Zaman (Computers in Physics 8 (1994) 117)
which consists of two congruential relations

Nl = (Nl−3 − Nl−1)MOD(231 − 69),

followed by
Nl = (69069Nl−1 + 1013904243)MOD(232),

which according to the authors has a period larger than 294.

Computational Physics I FYS3150

Random Numbers

Using modular addition, we could use the bitwise exclusive-OR (⊕) operation so that

Nl = (Nl−i)⊕ (Nl−j) (115)

where the bitwise action of ⊕ means that if Nl−i = Nl−j the result is 0 whereas if
Nl−i 6= Nl−j the result is 1. As an example, consider the case where Nl−i = 6 and
Nl−j = 11. The first one has a bit representation (using 4 bits only) which reads 0110
whereas the second number is 1011. Employing the ⊕ operator yields 1101, or
23 + 22 + 20 = 13.

In Fortran90, the bitwise ⊕ operation is coded through the intrinsic function IEOR(m, n)

where m and n are the input numbers, while in C it is given by m ∧ n.

Computational Physics I FYS3150

Random Numbers

The function ran0 implements

Ni = (aNi−1)MOD(M).

Note that c = 0 and that it cannot be initialized with N0 = 0. However, since a and
Ni−1 are integers and their multiplication could become greater than the standard 32
bit integer, there is a trick via Schrage’s algorithm which approximates the multiplication
of large integers through the factorization

M = aq + r ,

where we have defined
q = [M/a],

and
r = M MOD a.

where the brackets denote integer division. In the code below the numbers q and r are

chosen so that r < q.

Computational Physics I FYS3150

Random Numbers

To see how this works we note first that

(aNi−1)MOD(M) = (aNi−1 − [Ni−1/q]M)MOD(M),

since we can add or subtract any integer multiple of M from aNi−1. The last term
[Ni−1/q]MMOD(M) is zero since the integer division [Ni−1/q] just yields a constant
which is multiplied with M. Rewrite as

(aNi−1)MOD(M) = (aNi−1 − [Ni−1/q](aq + r))MOD(M),

Computational Physics I FYS3150

Random Numbers

It gives

(aNi−1)MOD(M) = (a(Ni−1 − [Ni−1/q]q)− [Ni−1/q]r)) MOD(M),

yielding

(aNi−1)MOD(M) = (a(Ni−1MOD(q))− [Ni−1/q]r)) MOD(M).

[Ni−1/q]r is always smaller or equal Ni−1(r/q) and with r < q we obtain always
a number smaller than Ni−1, which is smaller than M.

Ni−1MOD(q) is between zero and q − 1 then a(Ni−1MOD(q)) < aq.

Our definition of q = [M/a] ensures that this term is also smaller than M
meaning that both terms fit into a 32-bit signed integer. None of these two terms
can be negative, but their difference could.

Computational Physics I FYS3150

Random Numbers

/* ran0() is an "Minimal" random number generator of Park and Miller

** Set or reset the input value

** idum to any integer value (except the unlikely value MASK)

** to initialize the sequence; idum must not be altered between

** calls for sucessive deviates in a sequence.

** The function returns a uniform deviate between 0.0 and 1.0.

*/
double ran0(long &idum)
{

const int a = 16807, m = 2147483647, q = 127773;
const int r = 2836, MASK = 123459876;
const double am = 1./m;
long k;
double ans;
idum ˆ= MASK;
k = (*idum)/q;
idum = a*(idum - k*q) - r*k;
// add m if negative difference
if(idum < 0) idum += m;
ans=am*(idum);
idum ˆ= MASK;
return ans;

} // End: function ran0()

Computational Physics I FYS3150

Random Numbers
Important tests of random numbers are the standard deviation σ and the mean
µ = 〈x〉.
For the uniform distribution with N points we have that the average 〈xk 〉 is

〈xk 〉 =
1
N

NX
i=1

xk
i p(xi),

and taking the limit N →∞ we have

〈xk 〉 =

Z 1

0
dxp(x)xk =

Z 1

0
dxxk =

1
k + 1

,

since p(x) = 1. The mean value µ is then

µ = 〈x〉 =
1
2

while the standard deviation is

σ =
q
〈x2〉 − µ2 =

1
√

12
= 0.2886.

Computational Physics I FYS3150

Random Numbers

Number of x-values for various intervals generated by 4 random number generators,

their corresponding mean values and standard deviations. All calculations have been

initialized with the variable idum = −1.
x-bin ran0 ran1 ran2 ran3

0.0-0.1 1013 991 938 1047
0.1-0.2 1002 1009 1040 1030
0.2-0.3 989 999 1030 993
0.3-0.4 939 960 1023 937
0.4-0.5 1038 1001 1002 992
0.5-0.6 1037 1047 1009 1009
0.6-0.7 1005 989 1003 989
0.7-0.8 986 962 985 954
0.8-0.9 1000 1027 1009 1023
0.9-1.0 991 1015 961 1026
µ 0.4997 0.5018 0.4992 0.4990
σ 0.2882 0.2892 0.2861 0.2915

Computational Physics I FYS3150

Random Numbers

Since our random numbers, which are typically generated via a linear congruential
algorithm, are never fully independent, we can then define an important test which
measures the degree of correlation, namely the so-called auto-correlation function Ck

Ck =
〈xi+k xi 〉 − 〈xi 〉2

〈x2
i 〉 − 〈xi 〉2

,

with C0 = 1. Recall that σ2 = 〈x2
i 〉 − 〈xi 〉2. The non-vanishing of Ck for k 6= 0 means

that the random numbers are not independent. The independence of the random
numbers is crucial in the evaluation of other expectation values. The expectation
values which enter the definition of Ck are given by

〈xi+k xi 〉 =
1

N − k

N−kX
i=1

xi xi+k .

The correlation function is related to the covariance.

Computational Physics I FYS3150

Why Markov Chains?

We want to study a physical system which evolves towards equilibrium, from
given initial conditions.

We start with a PDF w(x0, t0) and we want to understand how it evolves with
time.

We want to reach a situation where after a given number of time steps we obtain
a steady state. This means that the system reaches its most likely state
(equilibrium situation)

Our PDF is normally a multidimensional object whose normalization constant is
impossible to find.

Analytical calculations from w(x , t) are not possible.

To sample directly from from w(x , t) is not possible.

The transition probability W is also not known.

How can we establish that we have reached a steady state? Use Markov chain
Monte Carlo

Computational Physics I FYS3150

Brownian Motion and Markov Processes

A Markov process is a random walk with a selected probability for making a move. The
new move is independent of the previous history of the system. The Markov process is
used repeatedly in Monte Carlo simulations in order to generate new random states.
The reason for choosing a Markov process is that when it is run for a long enough time
starting with a random state, we will eventually reach the most likely state of the
system. In thermodynamics, this means that after a certain number of Markov
processes we reach an equilibrium distribution. This mimicks the way a real system
reaches its most likely state at a given temperature of the surroundings.
To reach this distribution, the Markov process needs to obey two important conditions,
that of ergodicity and detailed balance. These conditions impose then constraints on
our algorithms for accepting or rejecting new random states. The Metropolis algorithm
discussed here abides to both these constraints. The Metropolis algorithm is widely
used in Monte Carlo simulations and the understanding of it rests within the
interpretation of random walks and Markov processes.

Computational Physics I FYS3150

Brownian Motion and Markov Processes

In a random walk one defines a mathematical entity called a walker, whose attributes
completely define the state of the system in question. The state of the system can refer
to any physical quantities, from the vibrational state of a molecule specified by a set of
quantum numbers, to the brands of coffee in your favourite supermarket.
The walker moves in an appropriate state space by a combination of deterministic and
random displacements from its previous position.

This sequence of steps forms a chain.

Computational Physics I FYS3150

Sequence of ingredients

We want to study a physical system which evolves towards equilibrium, from
given initial conditions.

Markov chains are intimately linked with the physical process of diffusion. We
establish this link first.

From a Markov chain we can then derive the conditions for detailed balance and
ergodicity. These are the conditions needed for obtaining a steady state.

The widely used algorithm for doing this is the so-called Metropolis algorithm, in
its refined form the Metropolis-Hastings algorithm. This is the topic for project 4.

Computational Physics I FYS3150

A simple Example

The obvious case is that of a random walker on a one-, or two- or three-dimensional
lattice (dubbed coordinate space hereafter)
Consider a system whose energy is defined by the orientation of single spins. Consider
the state i , with given energy Ei represented by the following N spins

↑ ↑ ↑ . . . ↑ ↓ ↑ . . . ↑ ↓
1 2 3 . . . k − 1 k k + 1 . . . N − 1 N

We may be interested in the transition with one single spinflip to a new state j with
energy Ej

↑ ↑ ↑ . . . ↑ ↑ ↑ . . . ↑ ↓
1 2 3 . . . k − 1 k k + 1 . . . N − 1 N

This change from one microstate i (or spin configuration) to another microstate j is the

configuration space analogue to a random walk on a lattice. Instead of jumping from

one place to another in space, we ’jump’ from one microstate to another.

Computational Physics I FYS3150

Diffusion from Markov Chain

From experiment there are strong indications that the flux of particles j(x , t), viz., the
number of particles passing x at a time t is proportional to the gradient of w(x , t). This
proportionality is expressed mathematically through

j(x , t) = −D
∂w(x , t)
∂x

, (116)

where D is the so-called diffusion constant, with dimensionality length2 per time. If the
number of particles is conserved, we have the continuity equation

∂j(x , t)
∂x

= −
∂w(x , t)
∂t

, (117)

which leads to
∂w(x , t)
∂t

= D
∂2w(x , t)
∂x2

, (118)

which is the diffusion equation in one dimension. Solved as a partial differential

equation in chapter 15, project 5.

Computational Physics I FYS3150

Diffusion from Markov Chain

With the probability distribution function w(x , t)dx we can compute expectation values
such as the mean distance

〈x(t)〉 =

Z ∞
−∞

xw(x , t)dx , (119)

or
〈x2(t)〉 =

Z ∞
−∞

x2w(x , t)dx , (120)

which allows for the computation of the variance σ2 = 〈x2(t)〉 − 〈x(t)〉2. Note well that
these expectation values are time-dependent. In a similar way we can also define
expectation values of functions f (x , t) as

〈f (x , t)〉 =

Z ∞
−∞

f (x , t)w(x , t)dx . (121)

Computational Physics I FYS3150

Diffusion from Markov Chain
Since w(x , t) is now treated as a PDF, it needs to obey the same criteria as discussed
in the previous chapter. However, the normalization conditionZ ∞

−∞
w(x , t)dx = 1 (122)

imposes significant constraints on w(x , t). These are

w(x = ±∞, t) = 0
∂nw(x , t)
∂xn

|x=±∞ = 0, (123)

implying that when we study the time-derivative ∂〈x(t)〉/∂t , we obtain after integration
by parts and using Eq. (118)

∂〈x〉
∂t

=

Z ∞
−∞

x
∂w(x , t)
∂t

dx = D
Z ∞
−∞

x
∂2w(x , t)
∂x2

dx , (124)

leading to
∂〈x〉
∂t

= Dx
∂w(x , t)
∂x

|x=±∞ − D
Z ∞
−∞

∂w(x , t)
∂x

dx , (125)

implying that
∂〈x〉
∂t

= 0. (126)

Computational Physics I FYS3150

Diffusion from Markov Chain
This means in turn that 〈x〉 is independent of time. If we choose the initial position
x(t = 0) = 0, the average displacement 〈x〉 = 0. If we link this discussion to a random
walk in one dimension with equal probability of jumping to the left or right and with an
initial position x = 0, then our probability distribution remains centered around 〈x〉 = 0
as function of time. However, the variance is not necessarily 0. Consider first

∂〈x2〉
∂t

= Dx2 ∂w(x , t)
∂x

|x=±∞ − 2D
Z ∞
−∞

x
∂w(x , t)
∂x

dx , (127)

where we have performed an integration by parts as we did for ∂〈x〉
∂t . A further

integration by parts results in

∂〈x2〉
∂t

= −Dxw(x , t)|x=±∞ + 2D
Z ∞
−∞

w(x , t)dx = 2D, (128)

leading to
〈x2〉 = 2Dt , (129)

and the variance as
〈x2〉 − 〈x〉2 = 2Dt . (130)

The root mean square displacement after a time t is thenq
〈x2〉 − 〈x〉2 =

√
2Dt . (131)

Computational Physics I FYS3150

Random walks

Consider now a random walker in one dimension, with probability R of moving to the
right and L for moving to the left. At t = 0 we place the walker at x = 0. The walker can
then jump, with the above probabilities, either to the left or to the right for each time
step. Note that in principle we could also have the possibility that the walker remains in
the same position. This is not implemented in this example. Every step has length
∆x = l . Time is discretized and we have a jump either to the left or to the right at every
time step.

I project 3 this is what you will need to code.

Computational Physics I FYS3150

Random walks

Let us now assume that we have equal probabilities for jumping to the left or to the
right, i.e., L = R = 1/2. The average displacement after n time steps is

〈x(n)〉 =
nX
i

∆xi = 0 ∆xi = ±l,

since we have an equal probability of jumping either to the left or to right. The value of
〈x(n)2〉 is

〈x(n)2〉 =

 nX
i

∆xi

!2

=
nX
i

∆x2
i +

nX
i 6=j

∆xi ∆xj = l2n.

For many enough steps the non-diagonal contribution is

NX
i 6=j

∆xi ∆xj = 0,

since ∆xi,j = ±l .

Computational Physics I FYS3150

Random walks

The variance is then
〈x(n)2〉 − 〈x(n)〉2 = l2n.

It is also rather straightforward to compute the variance for L 6= R. The result is

〈x(n)2〉 − 〈x(n)〉2 = 4LRl2n.

The variable n represents the number of time steps. If we define n = t/∆t , we can
then couple the variance result from a random walk in one dimension with the variance
from diffusion by defining the diffusion constant as

D =
l2

∆t
.

Computational Physics I FYS3150

Diffusion from Markov Chain

When solving partial differential equations such as the diffusion equation numerically,
the derivatives are always discretized. We can rewrite the time derivative as

∂w(x , t)
∂t

≈
w(i, n + 1)− w(i, n)

∆t
, (132)

whereas the gradient is approximated as

D
∂2w(x , t)
∂x2

≈ D
w(i + 1, n) + w(i − 1, n)− 2w(i, n)

(∆x)2
, (133)

resulting in the discretized diffusion equation

w(i, n + 1)− w(i, n)

∆t
= D

w(i + 1, n) + w(i − 1, n)− 2w(i, n)

(∆x)2
, (134)

where n represents a given time step and i a step in the x-direction.

Computational Physics I FYS3150

Diffusion from Markov Chain

A Markov process allows in principle for a microscopic description of Brownian motion.

As with the random walk studied in the previous section, we consider a particle which

moves along the x-axis in the form of a series of jumps with step length ∆x = l . Time

and space are discretized and the subsequent moves are statistically indenpendent,

i.e., the new move depends only on the previous step and not on the results from

earlier trials. We start at a position x = jl = j∆x and move to a new position x = i∆x

during a step ∆t = ε, where i ≥ 0 and j ≥ 0 are integers. The original probability

distribution function (PDF) of the particles is given by wi (t = 0) where i refers to a

specific position on a grid, with i = 0 representing x = 0. The function wi (t = 0) is now

the discretized version of w(x , t). We can regard the discretized PDF as a vector.

Computational Physics I FYS3150

Diffusion from Markov Chain

For the Markov process we have a transition probability from a position x = jl to a
position x = il given by

Wij (ε) = W (il − jl, ε) =

 1
2 |i − j| = 1
0 else

(135)

We call Wij for the transition probability and we can represent it, see below, as a matrix.
Our new PDF wi (t = ε) is now related to the PDF at t = 0 through the relation

wi (t = ε) = W (j → i)wj (t = 0). (136)

Computational Physics I FYS3150

Diffusion from Markov Chain

This equation represents the discretized time-development of an original PDF. Since
both W and w represent probabilities, they have to be normalized, i.e., we require that
at each time step we have X

i

wi (t) = 1, (137)

and X
j

W (j → i) = 1. (138)

The further constraints are 0 ≤ Wij ≤ 1 and 0 ≤ wj ≤ 1. Note that the probability for
remaining at the same place is in general not necessarily equal zero. In our Markov
process we allow only for jumps to the left or to the right.

Computational Physics I FYS3150

Diffusion from Markov Chain

The time development of our initial PDF can now be represented through the action of
the transition probability matrix applied n times. At a time tn = nε our initial distribution
has developed into

wi (tn) =
X

j

Wij (tn)wj (0), (139)

and defining
W (il − jl, nε) = (W n(ε))ij (140)

we obtain
wi (nε) =

X
j

(W n(ε))ij wj (0), (141)

or in matrix form
ˆw(nε) = Ŵ n(ε)ŵ(0). (142)

Computational Physics I FYS3150

Diffusion from Markov Chain

The matrix Ŵ can be written in terms of two matrices

Ŵ =
1
2

“
L̂ + R̂

”
, (143)

where L̂ and R̂ represent the transition probabilities for a jump to the left or the right,
respectively. For a 4× 4 case we could write these matrices as

R̂ =

0BB@
0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0

1CCA , (144)

and

L̂ =

0BB@
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

1CCA . (145)

Computational Physics I FYS3150

Diffusion from Markov Chain

However, in principle these are infinite dimensional matrices since the number of time
steps are very large or infinite. For the infinite case we can write these matrices
Rij = δi,(j+1) and Lij = δ(i+1),j , implying that

L̂R̂ = R̂L̂ = 1, (146)

and
L̂ = R̂−1 (147)

To see that L̂R̂ = R̂L̂ = 1, perform e.g., the matrix multiplication

L̂R̂ =
X

k

L̂ik R̂kj =
X

k

δ(i+1),kδk,(j+1) = δi+1,j+1 = δi,j , (148)

and only the diagonal matrix elements are different from zero.

Computational Physics I FYS3150

Diffusion from Markov Chain

For the first time step we have thus

Ŵ =
1
2

“
L̂ + R̂

”
, (149)

and using the properties in Eqs. (146) and (147) we have after two time steps

Ŵ 2(2ε) =
1
4

“
L̂2 + R̂2 + 2R̂L̂

”
, (150)

and similarly after three time steps

Ŵ 3(3ε) =
1
8

“
L̂3 + R̂3 + 3R̂L̂2 + 3R̂2L̂

”
. (151)

Computational Physics I FYS3150

Diffusion from Markov Chain

Using the binomial formula

nX
k=0

„
n
k

«
âk b̂n−k = (a + b)n, (152)

we have that the transition matrix after n time steps can be written as

Ŵ n(nε)) =
1
2n

nX
k=0

„
n
k

«
R̂k L̂n−k , (153)

or

Ŵ n(nε)) =
1
2n

nX
k=0

„
n
k

«
L̂n−2k =

1
2n

nX
k=0

„
n
k

«
R̂2k−n, (154)

Computational Physics I FYS3150

Diffusion from Markov Chain

and using Rm
ij = δi,(j+m) and Lm

ij = δ(i+m),j we arrive at

W (il − jl, nε) =

8<: 1
2n

„
n

1
2 (n + i − j)

«
|i − j| ≤ n

0 else
, (155)

and n + i − j has to be an even number.

Computational Physics I FYS3150

Diffusion from Markov Chain

We note that the transition matrix for a Markov process has three important properties:

It depends only on the difference in space i − j , it is thus homogenous in space.

It is also isotropic in space since it is unchanged when we go from (i, j) to
(−i,−j).

It is homogenous in time since it depends only the difference between the initial
time and final time.

If we place the walker at x = 0 at t = 0 we can represent the initial PDF with
wi (0) = δi,0. Using Eq. (142) we have

wi (nε) =
X

j

(W n(ε))ij wj (0) =
X

j

1
2n

„
n

1
2 (n + i − j)

«
δj,0, (156)

resulting in

wi (nε) =
1
2n

„
n

1
2 (n + i)

«
|i| ≤ n (157)

Computational Physics I FYS3150

Diffusion from Markov Chain

Using the recursion relation for the binomials„
n + 1

1
2 (n + 1 + i))

«
=

„
n

1
2 (n + i + 1)

«
+

„
n

1
2 (n + i)− 1

«
(158)

we obtain, defining x = il , t = nε and setting

w(x , t) = w(il, nε) = wi (nε), (159)

w(x , t + ε) =
1
2

w(x + l, t) +
1
2

w(x − l, t), (160)

and adding and subtracting w(x , t) and multiplying both sides with l2/ε we have

Computational Physics I FYS3150

Diffusion from Markov Chain

w(x , t + ε)− w(x , t)
ε

=
l2

2ε
w(x + l, t)− 2w(x , t) + w(x − l, t)

l2
, (161)

and identifying D = l2/2ε and letting l = ∆x and ε = ∆t we see that this is nothing but
the discretized version of the diffusion equation. Taking the limits ∆x → 0 and ∆t → 0
we recover

∂w(x , t)
∂t

= D
∂2w(x , t)
∂x2

,

the diffusion equation.

Computational Physics I FYS3150

Week 45, November 3-7

Markov chains, Statistical Physics, Spins Systems and Phase
Transitions

Monday: Repetition from last week, Markov chains,
detailed balance, ergodicity and entropy
Discussion of the Metropolis algorithm and how to simulate
the Boltzmann probability
Wednesday:
Presentation of project 5
How to simulate the Boltzmann probability and statistical
physics (chap 10)

Computational Physics I FYS3150

Brownian Motion and Markov Processes

We wish to study the time-development of a PDF after a given number of time steps.
We define our PDF by the function w(t). In addition we define a transition probability
W . The time development of our PDF w(t), after one time-step from t = 0 is given by

wi (t = ε) = W (j → i)wj (t = 0).

Normally we don’t know the form of W !! This equation represents the discretized
time-development of an original PDF. We can rewrite this as a

wi (t = ε) = Wij wj (t = 0).

with the transition matrix W for a random walk left or right (cannot stay in the same
position) given by

Wij (ε) = W (il − jl, ε) =

 1
2 |i − j| = 1
0 else

We call Wij for the transition probability and we represent it as a matrix.

Computational Physics I FYS3150

Brownian Motion and Markov Processes

Both W and w represent probabilities and they have to be normalized, meaning that
that at each time step we have X

i

wi (t) = 1,

and X
j

W (j → i) = 1.

Further constraints are 0 ≤ Wij ≤ 1 and 0 ≤ wj ≤ 1. We can thus write the action of W
as

wi (t + 1) =
X

j

Wij wj (t),

or as vector-matrix relation
ŵ(t + 1) = Ŵŵ(t),

and if we have that ||ŵ(t + 1)− ŵ(t)|| → 0, we say that we have reached the most
likely state of the system, the so-called steady state or equilibrium state. Another way
of phrasing this is

w(t =∞) = Ww(t =∞).

Computational Physics I FYS3150

Brownian Motion and Markov Processes, a simple
Example

Consider the simple 3× 3 matrix Ŵ

Ŵ =

0@ 1/4 1/8 2/3
3/4 5/8 0
0 1/4 1/3

1A ,

and we choose our initial state as

ŵ(t = 0) =

0@ 1
0
0

1A .

The first iteration is
wi (t = ε) = W (j → i)wj (t = 0),

resulting in

ŵ(t = ε) =

0@ 1/4
3/4
0

1A .

Computational Physics I FYS3150

Brownian Motion and Markov Processes, a simple
Example

The next iteration results in

wi (t = 2ε) = W (j → i)wj (t = ε),

resulting in

ŵ(t = 2ε) =

0@ 5/23
21/32
6/32

1A .

Note that the vector ŵ is always normalized to 1. We find the steady state of the
system by solving the linear set of equations

w(t =∞) = Ww(t =∞).

Computational Physics I FYS3150

Brownian Motion and Markov Processes, a simple
Example

This linear set of equations reads

W11w1(t =∞) + W12w2(t =∞) + W13w3(t =∞) = w1(t =∞)

W21w1(t =∞) + W22w2(t =∞) + W23w3(t =∞) = w2(t =∞)

W31w1(t =∞) + W32w2(t =∞) + W33w3(t =∞) = w3(t =∞)

(162)

with the constraint that X
i

wi (t =∞) = 1,

yielding as solution

ŵ(t =∞) =

0@ 4/15
8/15
3/15

1A .

Computational Physics I FYS3150

Brownian Motion and Markov Processes, a simple
Example

Convergence of the simple example

Iteration w1 w2 w3
0 1.00000 0.00000 0.00000
1 0.25000 0.75000 0.00000
2 0.15625 0.62625 0.18750
3 0.24609 0.52734 0.22656
4 0.27848 0.51416 0.20736
5 0.27213 0.53021 0.19766
6 0.26608 0.53548 0.19844
7 0.26575 0.53424 0.20002
8 0.26656 0.53321 0.20023
9 0.26678 0.53318 0.20005

10 0.26671 0.53332 0.19998
11 0.26666 0.53335 0.20000
12 0.26666 0.53334 0.20000
13 0.26667 0.53333 0.20000

ŵ(t =∞) 0.26667 0.53333 0.20000

In a Markov chain Monte Carlo w is normally given, we need to find W !

Computational Physics I FYS3150

Brownian Motion and Markov Processes, what is
happening?

We have after t-steps
ŵ(t) = Ŵtŵ(0),

with ŵ(0) the distribution at t = 0 and Ŵ representing the transition probability matrix.
We can always expand ŵ(0) in terms of the right eigenvectors v̂ of Ŵ as

ŵ(0) =
X

i

αi v̂i ,

resulting in
ŵ(t) = Ŵt ŵ(0) = Ŵt

X
i

αi v̂i =
X

i

λt
iαi v̂i ,

with λi the i th eigenvalue corresponding to the eigenvector v̂i .

Computational Physics I FYS3150

Brownian Motion and Markov Processes, what is
happening?

If we assume that λ0 is the largest eigenvector we see that in the limit t →∞, ŵ(t)
becomes proportional to the corresponding eigenvector v̂0. This is our steady state or
final distribution.
In our discussion below in connection with the entropy of a system and later statistical
physics and quantum physics applications, we will relate these properties to correlation
functions such as the time-correlation function.

That will allow us to define the so-called equilibration time,viz the time needed for the

system to reach its most likely state. Form that state and on we can can compute

contributions to various statistical variables.

Computational Physics I FYS3150

Brownian Motion and Markov Processes, what is
happening?

We anticipate parts of the discussion on statistical physics.
We can relate this property to an observable like the mean magnetization of say a
magnetic material. With the probabilty ŵ(t) we can write the mean magnetization as

〈M(t)〉 =
X
µ

ŵ(t)µMµ,

or as the scalar of a vector product

〈M(t)〉 = ŵ(t)m,

with m being the vector whose elements are the values ofMµ in its various
microstates µ.
Recall our definition of an expectation value with a discrete PDF p(xi):

E [xk] = 〈xk 〉 =
1
N

NX
i=1

xk
i p(xi),

provided that the sums (or integrals)
PN

i=1 p(xi) converge absolutely (viz ,
PN

i=1 |p(xi)|
converges)

Computational Physics I FYS3150

Brownian Motion and Markov Processes, what is
happening?

We rewrite the last relation as

〈M(t)〉 = ŵ(t)m =
X

i

λt
iαi v̂i mi .

If we define mi = v̂i mi as the expectation value ofM in the i th eigenstate we can
rewrite the last equation as

〈M(t)〉 =
X

i

λt
iαi mi .

Since we have that in the limit t →∞ the mean magnetization is dominated by the
largest eigenvalue λ0, we can rewrite the last equation as

〈M(t)〉 = 〈M(∞)〉+
X
i 6=0

λt
iαi mi .

Computational Physics I FYS3150

Brownian Motion and Markov Processes, what is
happening?

We define the quantity

τi = −
1

logλi
,

and rewrite the last expectation value as

〈M(t)〉 = 〈M(∞)〉+
X
i 6=0

αi mi e−t/τi .

The quantities τi are the correlation times for the system. They control also the
time-correlation functions to be discussed in connection with project 5 and chapter 10
on statistical physics.

The longest correlation time is obviously given by the second largest eigenvalue τ1,

which normally defines the correlation time discussed above. For large times, this is

the only correlation time that survives. If higher eigenvalues of the transition matrix are

well separated from λ1 and we simulate long enough, τ1 may well define the

correlation time. In other cases we may not be able to extract a reliable result for τ1.

Computational Physics I FYS3150

Entropy and Equilibrium, section 9.4

The definition of the entropy S (as a dimensionless quantity here) is

S = −
X

i

wi ln(wi), (163)

where wi is the probability of finding our system in a state i . For our one-dimensional

randow walk it represents the probability for being at position i = i∆x after a given

number of time steps. Assume now that we have N random walkers at i = 0 and t = 0

and let these random walkers diffuse as function of time. We compute then the

probability distribution for N walkers after a given number of steps i along x and time

steps j . We can then compute an entropy Sj for a given number of time steps by

summing over all probabilities i . The code used to compute these results is in

programs/chapter9/program4.cpp. Here we have used 100 walkers on a lattice of

length from L = −50 to L = 50 employing periodic boundary conditions meaning that if

a walker reaches the point x = L it is shifted to x = −L and if x = −L it is shifted to

x = L.

Computational Physics I FYS3150

Entropy

// loop over all time steps
for (int step=1; step <= time_steps; step++){
// move all walkers with periodic boundary conditions
for (int walks = 1; walks <= walkers; walks++){
if (ran0(&idum) <= move_probability) {

if (x[walks] +1 > length) {
x[walks] = -length;

}
else{

x[walks] += 1;
}

}
else {

if (x[walks] -1 < -length) {
x[walks] = length;

}
else{

x[walks] -= 1;
}

}
} // end of loop over walks

} // end of loop over trials

Computational Physics I FYS3150

Entropy

// at the final time step we compute the probability
// by counting the number of walkers at every position
for (int i = -length; i <= length; i++){
int count = 0;
for(int j = 1; j <= walkers; j++){
if (x[j] == i) {
count += 1;

}
}
probability[i+length] = count;

}

Computational Physics I FYS3150

Entropy

// Writes the results to screen
void output(int length, int time_steps, int walkers, int *probability)
{

double entropy, histogram;
// find norm of probability
double norm = 1.0/walkers;
// compute the entropy
entropy = 0.; histogram = 0.;
for(int i = -length; i <= length; i++){
histogram = (double) probability[i+length]*norm;
if (histogram > 0.0) {
entropy -= histogram*log(histogram);
}

}
cout << setiosflags(ios::showpoint | ios::uppercase);
cout << setw(6) << time_steps;
cout << setw(15) << setprecision(8) << entropy << endl;

} // end of function output

Computational Physics I FYS3150

Entropy

At small time steps the entropy is very small, reflecting the fact that we have an ordered

state. As time elapses, the random walkers spread out in space (here in one

dimension) and the entropy increases as there are more states, that is positions

accesible to the system. We say that the system shows an increased degree of

disorder. After several time steps, we see that the entropy reaches a constant value, a

situation called a steady state. This signals that the system has reached its equilibrium

situation and that the random walkers spread out to occupy all possible available

states. At equilibrium it means thus that all states are equally probable and this is not

baked into any dynamical equations such as Newton’s law of motion. It occurs because

the system is allowed to explore all possibilities. An important hypothesis is the ergodic

hypothesis which states that in equilibrium all available states of a closed system have

equal probability. This hypothesis states also that if we are able to simulate long

enough, then one should be able to trace through all possible paths in the space of

available states to reach the equilibrium situation. Our Markov process should be able

to reach any state of the system from any other state if we run for long enough.

Computational Physics I FYS3150

Detailed Balance

In a Markov Monte Carlo w is normally given, we need to
find W ! But we need to find which distribution we obtain when
the steady state has been achieved.

Markov process with transition probability from a state j to
another state i ∑

j

W (j → i) = 1

Note that the probability for remaining at the same place is not
necessarily equal zero.
PDF wi at time t = nε

wi (t) =
∑

j

W (j → i)nwj (t = 0)

∑
i

wi (t) = 1

Computational Physics I FYS3150

Detailed Balance

Detailed balance condition∑
i

W (j → i)wj =
∑

i

W (i → j)wi

Ensures that it is the correct distribution which is achieved when
equilibrium is reached.
When a Markow process reaches equilibrium we have

w(t =∞) = Ww(t =∞)

General condition at equilibrium

W (j → i)wj = W (i → j)wi

which is the detailed balance condition. Proof is simple.

Computational Physics I FYS3150

Ergodicity

It should be possible for any Markov process to reach every
possible state of the system from any starting point if the
simulations is carried out for a long enough time.
Any state in a Boltzmann distribution has a probability different
from zero and if such a state cannot be reached from a given
starting point, then the system is not ergodic.

Computational Physics I FYS3150

Example: Boltzmann Distribution

At equilibrium detailed balance gives

W (j → i)
W (i → j)

=
wi

wj

Boltzmann distribution

wi

wj
= exp (−β(Ei − Ej))

Computational Physics I FYS3150

Selection Rule

In general
W (i → j) = g(i → j)A(i → j)

where g is a selection probability while A is the probability
for accepting a move. It is also called the acceptance ratio.
With detailed balance this gives

g(j → i)A(j → i)
g(i → j)A(i → j)

= exp (−β(Ei − Ej))

Computational Physics I FYS3150

Metropolis Algorithm

For a system which follows the Boltzmann distribution the
Metropolis algorithm reads

A(j → i) =

{
exp (−β(Ei − Ej)) Ei − Ej > 0

1 else

This algorithm satisfies the condition for detailed balance and
ergodicity.

Computational Physics I FYS3150

Implementation

Establish an initial energy Eb

Do a random change of this initial state by e.g., flipping an
individual spin. This new state has energy Et . Compute then
∆E = Et − Eb

If ∆E ≤ 0 accept the new configuration.

If ∆E > 0, compute w = e−(β∆E).

Compare w with a random number r . If r ≤ w accept, else keep
the old configuration.

Compute the terms in the sums
∑

AsPs.

Repeat the above steps in order to have a large enough number
of microstates

For a given number of MC cycles, compute then expectation
values.

Computational Physics I FYS3150

Test of the Metropolis Algorithm

Want to show that the Metropolis algorithm generates the Boltzmann distribution

P(β) =
e−βE

Z
, (164)

with β = 1/kT being the inverse temperature, E is the energy of the system and Z is
the partition function. The only functions you will need are those to generate random
numbers.
We are going to study one single particle in equilibrium with its surroundings, the latter
modeled via a large heat bath with temperature T .
The model used to describe this particle is that of an ideal gas in one dimension and
with velocity −v or v . We are interested in finding P(v)dv , which expresses the
probability for finding the system with a given velocity v ∈ [v , v + dv]. The energy for
this one-dimensional system is

E =
1
2

kT =
1
2

v2, (165)

with mass m = 1.

Computational Physics I FYS3150

Test of the Metropolis Algorithm

Want to show that the Metropolis algorithm generates the Boltzmann distribution

P(β) =
e−βE

Z
, (166)

with β = 1/kT being the inverse temperature, E is the energy of the system and Z is
the partition function. The only functions you will need are those to generate random
numbers.
We are going to study one single particle in equilibrium with its surroundings, the latter
modeled via a large heat bath with temperature T .
The model used to describe this particle is that of an ideal gas in one dimension and
with velocity −v or v . We are interested in finding P(v)dv , which expresses the
probability for finding the system with a given velocity v ∈ [v , v + dv]. The energy for
this one-dimensional system is

E =
1
2

kT =
1
2

v2, (167)

with mass m = 1.

Computational Physics I FYS3150

Test of the Metropolis Algorithm, Analytic results

The partition function of the system of interest is:

Z =

Z +∞

−∞
e−βv2/2dv =

√
2πβ−1/2

The mean velocity

〈v〉 =

Z +∞

−∞
ve−βv2/2dv = 0

The expressions for 〈E〉 and σE assume the following form:

〈E〉 =

Z +∞

−∞

v2

2
e−βv2/2dv = −

1
Z
∂Z
∂β

=
1
2
β−1 =

1
2

T

〈E2〉 =

Z +∞

−∞

v4

4
e−βv2/2dv =

1
Z
∂2Z
∂β2

=
3
4
β−2 =

3
4

T 2

and
σE = 〈E2〉 − 〈E〉2 =

1
2

T 2

Computational Physics I FYS3150

Test of the Metropolis Algorithm

for(montecarlo_cycles=1; Max_cycles; montecarlo_cycles++) {
...
// change speed as function of delta v
v_change = (2*ran1(&idum) -1)* delta_v;
v_new = v_old+v_change;
// energy change
delta_E = 0.5*(v_new*v_new - v_old*v_old) ;
......
// Metropolis algorithm begins here

if (ran1(&idum) <= exp(-beta*delta_E)) {
accept_step = accept_step + 1 ;
v_old = v_new ;

}
// thereafter we must fill in P[N] as a function of
// the new speed
// upgrade mean velocity, energy and variance
}

Computational Physics I FYS3150

Test of the Metropolis Algorithm

Analytical vs numerical results. T = 4, 108 MC tries, ∆v = 0.2

Observable Analytical value Numerical value

〈v〉 0.00000 -0.00679
〈E〉 2.00000 1.99855
σE 8.00000 8.06669

Computational Physics I FYS3150

Code for Metropolis test

v_current = v0;

// start simulation
ofile.open("evsmc.dat");
for (tries = 1; tries <= MC; tries++){

v_change = (2.*ran0(&idum) - 1.) * dv;
v_trial = v_current + v_change;

// evaluate dE
delta_E = 0.5 * (v_trial * v_trial - v_current * v_current);

Computational Physics I FYS3150

Code for Metropolis test

// Metropolis test
if (delta_E <= 0) {
acceptance++; v_current = v_trial;

}
else if (ran0(&idum) <= exp(-beta * delta_E)){
acceptance++; v_current = v_trial;

}

// check if velocity value lies within given limits
if (abs(v_current) > v_max) {
cout<<"Velocity out of range."; exit(1);

}

Computational Physics I FYS3150

Code for Metropolis test

// save event in P array
address = (int) floor(v_current / dv) + N/2 + 1;
P[address]++;

// update mean velocity, mean energy and energy variance values
mean_v += v_current;
mean_E += 0.5 * v_current * v_current;
E_variance += 0.25 * v_current * v_current * v_current * v_current;

Computational Physics I FYS3150

Code for Metropolis test

// initialize model parameters
beta = 1./T; v_max = 10. * sqrt (T);
// calculate amount of P-array elements
N = 2 * (int)(v_max/dv) + 1;
// initialize P-array
P = new int [N];

for (int i=0; i < N; i++) P[i] = 0;

mean_v = 0.; mean_E = 0.; E_variance = 0.;
acceptance = 0;

}// initialize

Computational Physics I FYS3150

Most Common Ensembles in Statistical Physics

Microcanonical Canonical Grand can. Pressure can.

Exchange of heat no yes yes yes
with the environment

Exchange of particles no no yes no
with the environemt

Thermodynamical V ,M,D V ,M,D V ,M,D P,H, E
parameters E T T T

N N µ N

Potential Entropy Helmholtz PV Gibbs

Energy Internal Internal Internal Enthalpy

Computational Physics I FYS3150

Microcanonical Ensemble

Entropy
S = kB lnΩ (168)

dS =
1
T

dE +
p
T

dV −
µ

T
dN (169)

Temperature
1

kBT
=

„
∂lnΩ

∂E

«
N,V

(170)

Pressure
p

kBT
=

„
∂lnΩ

∂V

«
N,E

(171)

Chemical potential
µ

kBT
= −

„
∂lnΩ

∂N

«
V ,E

(172)

Computational Physics I FYS3150

Canonical Ensemble

Helmholtz Free Energy
F = −kBTlnZ (173)

dF = −SdT − pdV + µdN (174)

Entropy

S = kB lnZ + kBT
„
∂lnZ
∂T

«
N,V

(175)

Pressure

p = kBT
„
∂lnZ
∂V

«
N,T

(176)

Chemical Potential

µ = −kBT
„
∂lnZ
∂N

«
V ,T

(177)

Energy (internal only)

E = kBT 2
„
∂lnZ
∂T

«
V ,N

(178)

Computational Physics I FYS3150

Grand Canonical Ensemble

Potential
pV = kBTlnΞ (179)

d(pV) = SdT + Ndµ+ pdV (180)

Entropy

S = kB lnΞ + kBT
„
∂lnΞ

∂T

«
V ,µ

(181)

Particles

N = kBT
„
∂lnΞ

∂µ

«
V ,T

(182)

Pressure

p = kBT
„
∂lnΞ

∂V

«
µ,T

(183)

Computational Physics I FYS3150

Pressure Canonical Ensemble

Gibbs Free Energy
G = −kBTln∆ (184)

dG = −SdT + Vdp + µdN (185)

Entropy

S = kB ln∆ + kBT
„
∂ln∆

∂T

«
p,N

(186)

Volume

V = −kBT
„
∂ln∆

∂p

«
N,T

(187)

Chemical potential

µ = −kBT
„
∂ln∆

∂N

«
p,T

(188)

Computational Physics I FYS3150

Expectation Values

At a given temperature we have the probability distribution

Pi (β) =
e−βEi

Z
(189)

with β = 1/kT being the inverse temperature, k the Boltzmann constant, Ei is the
energy of a state i while Z is the partition function for the canonical ensemble defined
as

Z =
MX

i=1

e−βEi , (190)

where the sum extends over all states M. Pi expresses the probability of finding the

system in a given configuration i .

Computational Physics I FYS3150

Expectation Values

For a system described by the canonical ensemble, the energy is an expectation value
since we allow energy to be exchanged with the surroundings (a heat bath with
temperature T). This expectation value, the mean energy, can be calculated using the
probability distribution Pi as

〈E〉 =
MX

i=1

Ei Pi (β) =
1
Z

MX
i=1

Ei e−βEi , (191)

with a corresponding variance defined as

σ2
E = 〈E2〉 − 〈E〉2 =

1
Z

MX
i=1

E2
i e−βEi −

0@ 1
Z

MX
i=1

Ei e−βEi

1A2

. (192)

If we divide the latter quantity with kT 2 we obtain the specific heat at constant volume

CV =
1

kT 2

“
〈E2〉 − 〈E〉2

”
. (193)

Computational Physics I FYS3150

Expectation Values

We can also write

〈E〉 = −
∂lnZ
∂β

. (194)

The specific heat is

CV =
1

kT 2

∂2lnZ
∂β2

(195)

These expressions link a physical quantity (in thermodynamics) with the microphysics

given by the partition function. Statistical physics is the field where one relates

microscopic quantities to observables at finite temperature.

Computational Physics I FYS3150

Expectation Values

〈M〉 =
MX
i

Mi Pi (β) =
1
Z

MX
i

Mi e−βEi , (196)

and the corresponding variance

σ2
M = 〈M2〉 − 〈M〉2 =

1
Z

MX
i=1

M2
i e−βEi −

0@ 1
Z

MX
i=1

Mi e−βEi

1A2

. (197)

This quantity defines also the susceptibility χ

χ =
1

kT

“
〈M2〉 − 〈M〉2

”
. (198)

Computational Physics I FYS3150

Phase Transitions

NOTE: Helmholtz free energy and canonical ensemble

F = 〈E〉 − TS = −kTlnZ

meaning lnZ = −F/kT = −Fβ and

〈E〉 = −
∂lnZ
∂β

=
∂(βF)

∂β
.

and

CV = −
1

kT 2

∂2(βF)

∂β2
.

We can relate observables to various derivatives of the partition function and the free

energy. When a given derivative of the free energy or the partition function is

discontinuous or diverges (logarithmic divergence for the heat capacity from the Ising

model) we talk of a phase transition of order of the derivative.

Computational Physics I FYS3150

Phase Transitions

An important quantity is the correlation length (ξ, to be discussed next week).
The correlation length defines the length scale at which the overall properties of
a material start to differ from its bulk properties. It is the distance over which the
fluctuations of the microscopic degrees of freedom (for example the position of
atoms) are significantly correlated with each other. Usually it is of the order of
few interatomic spacings for a solid.

The correlation length ξ depends however on external conditions such as
pressure and temperature.

A phase transition is marked by abrupt macroscopic changes as external
parameters are changed, such as an increase of temperature.

The point where a phase transition takes place is called a critical point.

Computational Physics I FYS3150

Two Scenarios for Phase Transitions

1 First order/discontinuous phase transitions: Two or more states on either side of
the critical point also coexist exactly at the critical point. As we pass through the
critical point we observe a discontinuous behavior of thermodynamical functions.
The correlation length is normally finite at the critical point. Phenomena such as
hysteris occur, viz. there is a continuation of state below the critical point into one
above the critical point. This continuation is metastable so that the system may
take a macroscopically long time to readjust. Classical example, melting of ice.

2 Second order or continuous transitions: The correlation length diverges at the
critical point, fluctuations are correlated over all distance scales, which forces the
system to be in a unique critical phase. The two phases on either side of the
critical point become identical. Smooth behavior of first derivatives of the
partition function, while second derivatives diverge. Strong correlations make a
perturbative treatment impossible. Renormalization group theory (FYS4410).

Computational Physics I FYS3150

Examples of Phase Transitions

System Transition Order Parameter

Liquid-gas Condensation/evaporation Density difference ∆ρ = ρliquid − ρgas
Binary liquid mixture/Unmixing Composition difference

Quantum liquid Normal fluid/superfluid < φ >, ψ = wavefunction
Liquid-solid Melting/crystallisation Reciprocal lattice vector

Magnetic solid Ferromagnetic Spontaneous magnetisation M
Antiferromagnetic Sublattice magnetisation M

Dielectric solid Ferroelectric Polarization P
Antiferroelectric Sublattice polarisation P

Computational Physics I FYS3150

Ising Model

The model we will employ in our studies of phase transitions at finite temperature for
magnetic systems is the so-called Ising model. In its simplest form the energy is
expressed as

E = −J
NX

<kl>

sk sl − B
NX
k

sk , (199)

with sk = ±1, N is the total number of spins, J is a coupling constant expressing the

strength of the interaction between neighboring spins and B is an external magnetic

field interacting with the magnetic moment set up by the spins. The symbol < kl >

indicates that we sum over nearest neighbors only.

Computational Physics I FYS3150

Ising Model

Notice that for J > 0 it is energetically favorable for neighboring spins to be aligned.

This feature leads to, at low enough temperatures, to a cooperative phenomenon called

spontaneous magnetization. That is, through interactions between nearest neighbors,

a given magnetic moment can influence the alignment of spins that are separated from

the given spin by a macroscopic distance. These long range correlations between

spins are associated with a long-range order in which the lattice has a net

magnetization in the absence of a magnetic field. This phase is normally called the

ferromagnetic phase. With J < 0, we have a so-called antiferromagnetic case. At a

critical temperature we have a phase transition to a disordered phase, a so-called

paramagnetic phase.

Computational Physics I FYS3150

Treatment of Boundaries

With two spins, since each spin takes two values only, it means that in total we have
22 = 4 possible arrangements of the two spins. These four possibilities are

1 =↑↑ 2 =↑↓ 3 =↓↑ 4 =↓↓

What is the energy of each of these configurations?
For small systems, the way we treat the ends matters. In the first case we employ what
is called free ends. For the one-dimensional case, the energy is then written as a sum
over a single index

Ei = −J
N−1X
j=1

sj sj+1,

If we label the first spin as s1 and the second as s2 we obtain the following expression
for the energy

E = −Js1s2.

Computational Physics I FYS3150

Treatment of Boundaries

The calculation of the energy for the one-dimensional lattice with free ends for one
specific spin-configuration can easily be implemented in the following lines

for (j=1; j < N; j++) {
energy += spin[j]*spin[j+1];

}

where the vector spin[] contains the spin value sk = ±1. For the specific state E1, we
have chosen all spins up. The energy of this configuration becomes then

E1 = E↑↑ = −J.

The other configurations give
E2 = E↑↓ = +J,

E3 = E↓↑ = +J,

and
E4 = E↓↓ = −J.

Computational Physics I FYS3150

Treatment of Boundaries

We can also choose so-called periodic boundary conditions. This means that if i = N,
we set the spin number to i = 1. In this case the energy for the one-dimensional lattice
reads

Ei = −J
NX

j=1

sj sj+1,

and we obtain the following expression for the two-spin case

E = −J(s1s2 + s2s1).

If we choose to use periodic boundary conditions we can code the above expression as

jm=N;
for (j=1; j <=N ; j++) {

energy += spin[j]*spin[jm];
jm = j ;

}

Computational Physics I FYS3150

Treatment of Boundaries

State Energy (FE) Energy (PBC) Magnetization
1 =↑↑ −J −2J 2
2 =↑↓ J 2J 0
3 =↓↑ J 2J 0
4 =↓↓ −J −2J -2

Number spins up Degeneracy Energy (FE) Energy (PBC) Magnetization
2 1 −J −2J 2
1 2 J 2J 0
0 1 −J −2J -2

Computational Physics I FYS3150

Treatment of Boundaries

It is worth noting that for small dimensions of the lattice, the energy differs depending
on whether we use periodic boundary conditions or free ends. This means also that the
partition functions will be different, as discussed below. In the thermodynamic limit
however, N →∞, the final results do not depend on the kind of boundary conditions
we choose. The magnetization is however the same, defined as

Mi =
NX

j=1

sj ,

where we sum over all spins for a given configuration i .

Computational Physics I FYS3150

Treatment of Boundaries

In a similar way, we could enumerate the number of states for a two-dimensional
system consisting of two spins, i.e., a 2× 2 Ising model on a square lattice with
periodic boundary conditions. In this case we have a total of 24 = 16 states. Some
examples of configurations with their respective energies are listed here

E = −8J ↑ ↑
↑ ↑ E = 0 ↑ ↑

↑ ↓ E = 0 ↓ ↓
↑ ↓

Computational Physics I FYS3150

Treatment of Boundaries

We can group these configurations according to their total energy and magnetization.

Number spins up Degeneracy Energy Magnetization
4 1 −8J 4
3 4 0 2
2 4 0 0
2 2 8J 0
1 4 0 -2
0 1 −8J -4

Computational Physics I FYS3150

Week 46, November 10-14

Ising model, phase transitions and project 5
Monday: Repetition from last week
Discussion of the code for project 5, chapter 10.4
Discussion of project 5 and chapters 10.5 and 10.6.
Scaling laws.
Wednesday:
Discussion of results and the time-correlation function,
parts of chapters 10.5 and 10.6
Parallelization of codes, chapter 7.7 of lecture notes.

Computational Physics I FYS3150

Modelling the Ising Model

The code uses periodic boundary conditions with energy

Ei = −J
NX

j=1

sj sj+1,

In our case we have as the Monte Carlo sampling function the probability for finding the
system in a state s given by

Ps =
e−(βEs)

Z
,

with energy Es , β = 1/kT and Z is a normalization constant which defines the partition
function in the canonical ensemble

Z (β) =
X

s
e−(βEs)

This is difficult to compute since we need all states. In a calculation of the Ising model

in two dimensions, the number of configurations is given by 2N with N = L× L the

number of spins for a lattice of length L. Fortunately, the Metropolis algorithm considers

only ratios between probabilities and we do not need to compute the partition function

at all.

Computational Physics I FYS3150

Metropolis Algorithm

1 Establish an initial state with energy Eb by positioning yourself at a random
position in the lattice

2 Change the initial configuration by flipping e.g., one spin only. Compute the
energy of this trial state Et .

3 Calculate ∆E = Et − Eb . The number of values ∆E is limited to five for the Ising
model in two dimensions, see the discussion below.

4 If ∆E ≤ 0 we accept the new configuration, meaning that the energy is lowered
and we are hopefully moving towards the energy minimum at a given
temperature. Go to step 7.

5 If ∆E > 0, calculate w = e−(β∆E).

6 Compare w with a random number r . If

r ≤ w ,

then accept the new configuration, else we keep the old configuration and its
values.

7 The next step is to update various expectations values.

8 The steps (2)-(7) are then repeated in order to obtain a sufficently good
representation of states.

Computational Physics I FYS3150

Modelling the Ising Model

In the calculation of the energy difference from one spin configuration to the other, we
will limit the change to the flipping of one spin only. For the Ising model in two
dimensions it means that there will only be a limited set of values for ∆E . Actually,
there are only five possible values. To see this, select first a random spin position x , y
and assume that this spin and its nearest neighbors are all pointing up. The energy for
this configuration is E = −4J. Now we flip this spin as shown below. The energy of the
new configuration is E = 4J, yielding ∆E = 8J.

E = −4J
↑

↑ ↑ ↑
↑

=⇒ E = 4J
↑

↑ ↓ ↑
↑

Computational Physics I FYS3150

Modelling the Ising Model

The four other possibilities are as follows

E = −2J
↑

↓ ↑ ↑
↑

=⇒ E = 2J
↑

↓ ↓ ↑
↑

with ∆E = 4J,

E = 0
↑

↓ ↑ ↑
↓

=⇒ E = 0
↑

↓ ↓ ↑
↓

with ∆E = 0

Computational Physics I FYS3150

Modelling the Ising Model

E = 2J
↓

↓ ↑ ↑
↓

=⇒ E = −2J
↓

↓ ↓ ↑
↓

with ∆E = −4J and finally

E = 4J
↓

↓ ↑ ↓
↓

=⇒ E = −4J
↓

↓ ↓ ↓
↓

with ∆E = −8J. This means in turn that we could construct an array which contains all

values of eβ∆E before doing the Metropolis sampling. Else, we would have to evaluate

the exponential at each Monte Carlo sampling.

Computational Physics I FYS3150

The loop over T in main

for (double temp = initial_temp; temp <= final_temp; temp+=temp_step){
// initialise energy and magnetization
E = M = 0.;
// setup array for possible energy changes
for(int de =-8; de <= 8; de++) w[de+8] = 0;
for(int de =-8; de <= 8; de+=4) w[de+8] = exp(-de/temp);
// initialise array for expectation values
for(int i = 0; i < 5; i++) average[i] = 0.;
initialize(n_spins, temp, spin_matrix, E, M);
// start Monte Carlo computation
for (int cycles = 1; cycles <= mcs; cycles++){
Metropolis(n_spins, idum, spin_matrix, E, M, w);
// update expectation values
average[0] += E; average[1] += E*E;
average[2] += M; average[3] += M*M; average[4] += fabs(M);

}
// print results
output(n_spins, mcs, temp, average);

}

Computational Physics I FYS3150

The Initialise function

void initialize(int n_spins, double temp, int **spin_matrix,
double& E, double& M)
{

// setup spin matrix and intial magnetization
for(int y =0; y < n_spins; y++) {
for (int x= 0; x < n_spins; x++){
spin_matrix[y][x] = 1; // spin orientation for the ground state
M += (double) spin_matrix[y][x];

}
}
// setup initial energy
for(int y =0; y < n_spins; y++) {
for (int x= 0; x < n_spins; x++){
E -= (double) spin_matrix[y][x]*

(spin_matrix[periodic(y,n_spins,-1)][x] +
spin_matrix[y][periodic(x,n_spins,-1)]);

}
}

}// end function initialise

Computational Physics I FYS3150

The periodic function

A compact way of dealing with periodic boundary conditions is given as follows:

// inline function for periodic boundary conditions
inline int periodic(int i, int limit, int add) {

return (i+limit+add) % (limit);

with the following example from the function initialise

E -= (double) spin_matrix[y][x]*
(spin_matrix[periodic(y,n_spins,-1)][x] +
spin_matrix[y][periodic(x,n_spins,-1)]);

Computational Physics I FYS3150

Alternative way for periodic boundary conditions

A more pedagogical way is given by the (here Fortran as example) program

DO y = 1,lattice_y
DO x = 1,lattice_x

right = x+1 ; IF(x == lattice_x) right = 1
left = x-1 ; IF(x == 1) left = lattice_x
up = y+1 ; IF(y == lattice_y) up = 1
down = y-1 ; IF(y == 1) down = lattice_y
energy=energy - spin_matrix(x,y)*(spin_matrix(right,y)+&

spin_matrix(left,y)+spin_matrix(x,up)+ &
spin_matrix(x,down))

magnetization = magnetization + spin_matrix(x,y)
ENDDO

ENDDO
energy = energy*0.5

Computational Physics I FYS3150

Computing ∆E and ∆M
The energy difference between a state E1 and a state E2 with zero magnetic field is

∆E = E2 − E1 = J
NX

<kl>

s1
k s1

l − J
NX

<kl>

s2
k s2

l ,

which we can rewrite as

∆E = −J
NX

<kl>

s2
k (s2

l − s1
l),

where the sum now runs only over the nearest neighbors k of the spin. Since the spin
to be flipped takes only two values, s1

l = ±1 and s2
l = ±1, it means that if s1

l = 1, then
s2

l = −1 and if s1
l = −1, then s2

l = 1. The other spins keep their values, meaning that
s1

k = s2
k . If s1

l = 1 we must have s1
l − s2

l = 2, and if s1
l = −1 we must have

s1
l − s2

l = −2. From these results we see that the energy difference can be coded
efficiently as

∆E = 2Js1
l

NX
<k>

sk ,

where the sum runs only over the nearest neighbors k of spin l
The difference in magnetisation is given by the difference s1

l − s2
l = ±2, or in a more

compact way as
M2 = M1 + 2s2

l ,

where M1 and M2 are the magnetizations before and after the spin flip, respectively.

Computational Physics I FYS3150

The Metropolis function

// loop over all spins
for(int y =0; y < n_spins; y++) {
for (int x= 0; x < n_spins; x++){
int ix = (int) (ran1(&idum)*(double)n_spins); // RANDOM SPIN
int iy = (int) (ran1(&idum)*(double)n_spins); // RANDOM SPIN
int deltaE = 2*spin_matrix[iy][ix]*

(spin_matrix[iy][periodic(ix,n_spins,-1)]+
spin_matrix[periodic(iy,n_spins,-1)][ix] +
spin_matrix[iy][periodic(ix,n_spins,1)] +
spin_matrix[periodic(iy,n_spins,1)][ix]);

if (ran1(&idum) <= w[deltaE+8]) {
spin_matrix[iy][ix] *= -1; // flip one spin and accept new spin config

M += (double) 2*spin_matrix[iy][ix];
E += (double) deltaE;

}
}

}

Computational Physics I FYS3150

Expectation Values

double norm = 1/((double) (mcs));// divided by total number of cycles
double Eaverage = average[0]*norm;
double E2average = average[1]*norm;
double Maverage = average[2]*norm;
double M2average = average[3]*norm;
double Mabsaverage = average[4]*norm;
// all expectation values are per spin, divide by 1/n_spins/n_spins
double Evariance = (E2average- Eaverage*Eaverage)/n_spins/n_spins;
double Mvariance = (M2average - Mabsaverage*Mabsaverage)/n_spins/n_spins;
ofile << setiosflags(ios::showpoint | ios::uppercase);
ofile << setw(15) << setprecision(8) << temp;
ofile << setw(15) << setprecision(8) << Eaverage/n_spins/n_spins;
ofile << setw(15) << setprecision(8) << Evariance/temp/temp;
ofile << setw(15) << setprecision(8) << Maverage/n_spins/n_spins;
ofile << setw(15) << setprecision(8) << Mvariance/temp;
ofile << setw(15) << setprecision(8) << Mabsaverage/n_spins/n_spins << endl;

Computational Physics I FYS3150

Analytic Results: one-dimensional Ising model
For the one-dimensional Ising model we can compute rather easily the exact partition
function for a system of N spins. Let us consider first the case with free ends. The
energy reads

E = −J
N−1X
j=1

sj sj+1.

The partition function for N spins is given by

ZN =
X

s1=±1

· · ·
X

sN =±1

exp (βJ
N−1X
j=1

sj sj+1), (200)

and since the last spin occurs only once in the last sum in the exponential, we can
single out the last spin as followsX

sN =±1

exp (βJsN−1sN) = 2cosh(βJ). (201)

The partition function consists then of a part from the last spin and one from the
remaining spins resulting in

ZN = ZN−12cosh(βJ). (202)

Computational Physics I FYS3150

Analytic Results: one-dimensional Ising model

We can repeat this process and obtain

ZN = (2cosh(βJ))N−2Z2, (203)

with Z2 given by
Z2 =

X
s1=±1

X
s2=±1

exp (βJs1s2) = 4cosh(βJ), (204)

resulting in
ZN = 2(2cosh(βJ))N−1. (205)

In the thermodynamical limit where we let N →∞, the way we treat the ends does not
matter. However, since our computations will always be carried out with a limited value
of N, we need to consider other boundary conditions as well. Here we limit the
attention to periodic boundary conditions.

Computational Physics I FYS3150

Analytic Results: one-dimensional Ising model

We can then calculate the mean energy with free ends from the above formula for the
partition function using

〈E〉 = −
∂lnZ
∂β

= −(N − 1)Jtanh(βJ). (206)

Helmholtz’s free energy is given by

F = −kBTlnZN = −NkBTln (2cosh(βJ)) . (207)

The specific heat in one-dimension with free ends is

CV =
1

kT 2

∂2

∂β2
lnZN = (N − 1)k

„
βJ

cosh(βJ)

«2
. (208)

Note well that this expression for the specific heat from the one-dimensional Ising

model does not diverge, thus we do not have a second order phase transition.

Computational Physics I FYS3150

Analytic Results: one-dimensional Ising model
If we use periodic boundary conditions, the partition function is given by

ZN =
X

s1=±1

· · ·
X

sN =±1

exp (βJ
NX

j=1

sj sj+1), (209)

where the sum in the exponential runs from 1 to N since the energy is defined as

E = −J
NX

j=1

sj sj+1.

We can then rewrite the partition function as

ZN =
X
{si =±1}

NY
i=1

exp (βJsi si+1), (210)

where the first sum is meant to represent all lattice sites. Introducing the matrix T̂ (the
so-called transfer matrix)

T̂ =

„
eβJ e−βJ

e−βJ eβJ

«
, (211)

Computational Physics I FYS3150

Analytic Results: one-dimensional Ising model

ZN =
X
{si =±1}

T̂s1s2 T̂s2s3 . . . T̂sN s1 = Tr T̂N . (212)

The 2× 2 matrix T̂ is easily diagonalized with eigenvalues λ1 = 2cosh(βJ) and
λ2 = 2sinh(βJ). Similarly, the matrix T̂N has eigenvalues λN

1 and λN
2 and the trace of

T̂N is just the sum over eigenvalues resulting in a partition function

ZN = λN
1 + λN

2 = 2N
“

[cosh(βJ)]N + [sinh(βJ)]N
”
. (213)

Helmholtz’s free energy is in this case

F = −kBTln(λN
1 + λN

2) = −kBT
{

Nln(λ1) + ln
(

1 + (
λ2

λ1
)N
)}

(214)

which in the limit N →∞ results in F = −kBTNln(λ1)

Computational Physics I FYS3150

Analytic Results: one-dimensional Ising model

Hitherto we have limited ourselves to studies of systems with zero external magnetic
field, viz B = 0. We will mostly study systems which exhibit a spontaneous
magnitization. It is however instructive to extend the one-dimensional Ising model to
B 6= 0, yielding a partition function (with periodic boundary conditions)

ZN =
X

s1=±1

· · ·
X

sN =±1

exp (β
NX

j=1

(Jsj sj+1 +
B
2

(si + sj+1)), (215)

which yields a new transfer matrix with matrix elements t11 = eβ(J+B), t1−1 = e−βJ ,
t−11 = eβJ and t−1−1 = eβ(J−B) with eigenvalues

λ1 = eβJ cosh(βJ) +
“

e2βJ sinh2(βB) + exp−(β2J)
”1/2

, (216)

and
λ2 = eβJ cosh(βJ)−

“
e2βJ sinh2(βB) + exp−(β2J)

”1/2
. (217)

Computational Physics I FYS3150

Analytic Results: one-dimensional Ising model

It is now useful to compute the expectation value of the magnetisation per spin

〈M/N〉 =
1

NZ

MX
i

Mi e−βEi = −
1
N
∂F
∂B

, (218)

resulting in

〈M/N〉 =
sinh(βB`

sinh2(βB) + exp−(β2J)
´1/2

. (219)

We see that for B = 0 the magnetisation is zero. This means that for a

one-dimensional Ising model we cannot have a spontaneous magnetization. And there

is no second order phase transition as well.

Computational Physics I FYS3150

Mean Field Theory and the Ising Model

In studies of phase transitions we are interested in minimizing the free energy by
varying the average magnetization, which is the order parameter (disappears at TC).
In mean field theory the local magnetization is a treated as a constant, all effects from
fluctuations are neglected. A way to achieve this is to rewrite by adding and subtracting
the mean magnetization 〈s〉

si sj = (si − 〈s〉+ 〈s〉)(si − 〈s〉+ 〈s〉) ≈ 〈s〉2 + 〈s〉(si − 〈s〉) + 〈s〉(sj − 〈s〉), (220)

where we have ignored terms of the order (si − 〈s〉)(si − 〈s〉), which leads to

correlations between neighbouring spins. In mean field theory we ignore correlations.

Computational Physics I FYS3150

Mean Field Theory and the Ising Model

This means that we can rewrite the Hamiltonian

E = −J
NX

<ij>

sk sl − B
NX
i

si , (221)

as
E = −J

X
<ij>

〈s〉2 + 〈s〉(si − 〈s〉) + 〈s〉(sj − 〈s〉)− B
X

i

si , (222)

resulting in
E = −(B + zJ〈s〉)

X
i

si + zJ〈s〉2, (223)

with z the number of nearest neighbours for a given site i . We can define an effective
field which all spins see, namely

Beff = (B + zJ〈s〉). (224)

Computational Physics I FYS3150

Mean Field Theory and the Ising Model

How do we get 〈s〉)?
Here we use the canonical ensemble. The partition function reads in this case

Z = e−NzJ〈s〉2/kT (2cosh(Beff/kT))N , (225)

with a free energy

F = −kTlnZ = −NkTln(2) + NzJ〈s〉2 − NkTln (cosh(Beff/kT)) (226)

and minimizing F wrt 〈s〉 we arrive at

〈s〉 = tanh(2cosh (Beff/kT)) . (227)

Computational Physics I FYS3150

Connecting to Landau Theory

Close to the phase transition we expect 〈s〉 to become small and eventually vanish. We
can then expand F in powers of 〈s〉 as

F = −NkTln(2) + NzJ〈s〉2 − NkT − BN〈s〉+ NkT
„

1
2
〈s〉2 +

1
12
〈s〉4 + . . .

«
, (228)

and using 〈M〉 = N〈s〉 we can rewrite as

F = F0 − B〈M〉+
1
2

a〈M〉2 +
1
4

b〈M〉4 + . . . (229)

Computational Physics I FYS3150

Connecting to Landau Theory

Let 〈M〉 = m and

F = F0 +
1
2

am2 +
1
4

bm4 +
1
6

cm6 (230)

F has a minimum at equilibrium F ′(m) = 0 and F ′′(m) > 0

F ′(m) = 0 = m(a + bm2 + cm4),

and if we assume that m is real we have two solutions

m = 0,

or

m2 =
b
2c

„
−1±

q
1− 4ac/b2

«

Computational Physics I FYS3150

Second Order Phase Transition

Can describe both first and second-order phase transitions. Here we consider the
second case. Assume b > 0 and a� 1 small since we want to study a perturbation
around m = 0. We reach the critical point when a = 0.

m2 =
b
2c

„
(−1±

q
1− 4ac/b2

«
≈ −a/b

Assume that
a(T) = α(T − TC),

with α > 0 and TC the critical temperature where the magnetization vanishes. If a is
negative we have two solutions

m = ±
p
−a/b = ±

s
α(TC − T)

b

m evolves continuously to the critical temperature where F = 0 for T ≤ TC (see

separate graph).

Computational Physics I FYS3150

Entropy and Specific Heat

We can now compute the entropy

S = −
„
∂F
∂T

«
For T ≥ TC we have m = 0 and

S = −
„
∂F0

∂T

«
and for T ≤ TC

S = −
„
∂F0

∂T

«
− α2(TC − T)/2b,

and we see that there is a smooth crossover at TC .

Computational Physics I FYS3150

Entropy and Specific Heat

We can now compute the specific heat

CV = T
„
∂S
∂T

«
and TC we get a discontinuity of

∆CV = −α2/2b,

signalling a second-order phase transition. Landau theory gives irrespective of
dimension critical exponents

m ∼ (TC − T)β ,

and
CV ∼ (TC − T)α,

with β = 1/2 and α = 1. It predicts a phase transition for one dimension as well. For

the Ising model there is no phase transition for d = 1. In two dimensions we have

β = 1/8 and α = 0.

Computational Physics I FYS3150

Correlation Length

Another quantity (given by the covariance) is the correlation function

Gij = 〈Si Sj 〉 − 〈Si 〉〈Sj 〉. (231)

and the correlation length

ξ−1 = − lim
r→∞

∂

∂r
lnG(r), (232)

with r = |i − j|.

Computational Physics I FYS3150

Scaling Results

Near TC we can characterize the behavior of many physical quantities by a power law
behavior. As an example, the mean magnetization is given by

〈M(T)〉 ∼ (T − TC)β , (233)

where β is a so-called critical exponent. A similar relation applies to the heat capacity

CV (T) ∼ |TC − T |−α , (234)

the susceptibility
χ(T) ∼ |TC − T |γ . (235)

and the correlation length
ξ(T) ∼ |TC − T |−ν . (236)

α = 0, β = 1/8, γ = 7/4 and ν = 1. Below we will derive these coefficients from finite

size scaling theories.

Computational Physics I FYS3150

Scaling Results

Through finite size scaling relations it is possible to relate the behavior at finite lattices
with the results for an infinitely large lattice. The critical temperature scales then as

TC(L)− TC(L =∞) ∼ aL−1/ν , (237)

〈M(T)〉 ∼ (T − TC)β → L−β/ν , (238)

CV (T) ∼ |TC − T |−γ → Lγ/ν , (239)

and
χ(T) ∼ |TC − T |−α → Lα/ν . (240)

We can compute the slope of the curves for M, CV and χ as function of lattice sites

and extract the exponent ν.

Computational Physics I FYS3150

Analytic Results: two-dimensional Ising model

The analytic expression for the Ising model in two dimensions was obtained in 1944 by
the Norwegian chemist Lars Onsager (Nobel prize in chemistry). The exact partition
function for N spins in two dimensions and with zero magnetic field H is given by

ZN =
h
2cosh(βJ)eI

iN
, (241)

with

I =
1

2π

Z π

0
dφln

»
1
2

“
1 + (1− κ2sin2φ)1/2

”–
, (242)

and
κ = 2sinh(2βJ)/cosh2(2βJ). (243)

Computational Physics I FYS3150

Analytic Results: two-dimensional Ising model

The resulting energy is given by

〈E〉 = −Jcoth(2βJ)

»
1 +

2
π

(2tanh2(2βJ)− 1)K1(q)

–
, (244)

with q = 2sinh(2βJ)/cosh2(2βJ) and the complete elliptic integral of the first kind

K1(q) =

Z π/2

0

dφp
1− q2sin2φ

. (245)

Computational Physics I FYS3150

Analytic Results: two-dimensional Ising model

Differentiating once more with respect to temperature we obtain the specific heat given
by

CV =
4kB

π
(βJcoth(2βJ))2

n
K1(q)− K2(q)− (1− tanh2(2βJ))

hπ
2

+ (2tanh2(2βJ)− 1)K1(q)
io
,

with

K2(q) =

Z π/2

0
dφ
q

1− q2sin2φ. (246)

is the complete elliptic integral of the second kind. Near the critical temperature TC the
specific heat behaves as

CV ≈ −
2

kBπ

„
J

TC

«2
ln
˛̨̨̨
1−

T
TC

˛̨̨̨
+ const. (247)

Computational Physics I FYS3150

Analytic Results: two-dimensional Ising model

In theories of critical phenomena one has that

CV ∼
˛̨̨̨
1−

T
TC

˛̨̨̨−α
, (248)

and Onsager’s result is a special case of this power law behavior. The limiting form of
the function

limα→0
1
α

(Y−α − 1) = −lnY , (249)

meaning that the analytic result is a special case of the power law singularity with

α = 0.

Computational Physics I FYS3150

Analytic Results: two-dimensional Ising model

One can also show that the mean magnetization per spin is

»
1−

(1− tanh2(βJ))4

16tanh4(βJ)

–1/8

for T < TC and 0 for T > TC . The behavior is thus as T → TC from below

M(T) ∼ (TC − T)1/8

The susceptibility behaves as

χ(T) ∼ |TC − T |−7/4

Computational Physics I FYS3150

Going Parallel with MPI

In project 5 it will be useful to parallelize the code. An example
of code for the Ising model can be found under project 5. Task
parallelism: the work of a global problem can be divided into a
number of independent tasks, which rarely need to synchronize.
Monte Carlo simulation or integrations are examples of this. It is
almost embarrassingly trivial to parallelize Monte Carlo codes.
MPI is a message-passing library where all the routines have
corresponding C/C++-binding

MPI_Command_name

and Fortran-binding (routine names are in uppercase, but can
also be in lower case)

MPI_COMMAND_NAME

Computational Physics I FYS3150

What is Message Passing Interface (MPI)? Yet
another library!

MPI is a library, not a language. It specifies the names, calling
sequences and results of functions or subroutines to be called
from C or Fortran programs, and the classes and methods that
make up the MPI C++ library. The programs that users write in
Fortran, C or C++ are compiled with ordinary compilers and
linked with the MPI library.
MPI is a specification, not a particular implementation. MPI
programs should be able to run on all possible machines and
run all MPI implementetations without change.
An MPI computation is a collection of processes
communicating with messages.
See chapter 7.7 of lecture notes for more details.

Computational Physics I FYS3150

MPI

MPI is a library specification for the message passing interface,
proposed as a standard.

independent of hardware;
not a language or compiler specification;
not a specific implementation or product.

A message passing standard for portability and ease-of-use.
Designed for high performance.
Insert communication and synchronization functions where
necessary.

Computational Physics I FYS3150

Demands from the HPC community

In the field of scientific computing, there is an ever-lasting wish
to do larger simulations using shorter computer time.
Development of the capacity for single-processor computers
can hardly keep up with the pace of scientific computing:

processor speed
memory size/speed

Solution: parallel computing!

Computational Physics I FYS3150

The basic ideas of parallel computing

Pursuit of shorter computation time and larger simulation
size gives rise to parallel computing.
Multiple processors are involved to solve a global problem.
The essence is to divide the entire computation evenly
among collaborative processors. Divide and conquer.

Computational Physics I FYS3150

A rough classification of hardware models

Conventional single-processor computers can be called
SISD (single-instruction-single-data) machines.
SIMD (single-instruction-multiple-data) machines
incorporate the idea of parallel processing, which use a
large number of process- ing units to execute the same
instruction on different data.
Modern parallel computers are so-called MIMD
(multiple-instruction- multiple-data) machines and can
execute different instruction streams in parallel on different
data.

Computational Physics I FYS3150

Shared memory and distributed memory

One way of categorizing modern parallel computers is to
look at the memory configuration.
In shared memory systems the CPUs share the same
address space. Any CPU can access any data in the
global memory.
In distributed memory systems each CPU has its own
memory. The CPUs are connected by some network and
may exchange messages.
A recent trend is ccNUMA
(cache-coherent-non-uniform-memory- access) systems
which are clusters of SMP (symmetric multi-processing)
machines and have a virtual shared memory.

Computational Physics I FYS3150

Different parallel programming paradigms

Task parallelism the work of a global problem can be
divided into a number of independent tasks, which rarely
need to synchronize. Monte Carlo simulation is one
example. Integration is another. However this paradigm is
of limited use.
Data parallelism use of multiple threads (e.g. one thread
per processor) to dissect loops over arrays etc. This
paradigm requires a single memory address space.
Communication and synchronization between processors
are often hidden, thus easy to program. However, the user
surrenders much control to a specialized compiler.
Examples of data parallelism are compiler-based
parallelization and OpenMP directives.

Computational Physics I FYS3150

Different parallel programming paradigms

Message-passing all involved processors have an
independent memory address space. The user is
responsible for partition- ing the data/work of a global
problem and distributing the subproblems to the
processors. Collaboration between processors is achieved
by explicit message passing, which is used for data
transfer plus synchronization.
This paradigm is the most general one where the user has
full control. Better parallel efficiency is usually achieved by
explicit message passing. However, message-passing
programming is more difficult.

Computational Physics I FYS3150

SPMD

Although message-passing programming supports MIMD, it
suffices with an SPMD (single-program-multiple-data) model,
which is flexible enough for practical cases:

Same executable for all the processors.
Each processor works primarily with its assigned local
data.
Progression of code is allowed to differ between
synchronization points.
Possible to have a master/slave model. The standard
option in Monte Carlo calculations and numerical
integration.

Computational Physics I FYS3150

Today’s situation of parallel computing

Distributed memory is the dominant hardware
configuration. There is a large diversity in these machines,
from MPP (massively parallel pro cessing) systems to
clusters of off-the-shelf PCs, which are very cost-effective.
Message-passing is a mature programming paradigm and
widely accepted. It often provides an efficient match to the
hardware. It is primarily used for the distributed memory
systems, but can also be used on shared memory systems.

In these lectures we consider only message-passing for writing
parallel programs.

Computational Physics I FYS3150

Overhead present in parallel computing

Uneven load balance: not all the processors can perform
useful work at all time.
Overhead of synchronization.
Overhead of communication.
Extra computation due to parallelization.

Due to the above overhead and that certain part of a sequential
algorithm cannot be parallelized we may not achieve an optimal
parallelization.

Computational Physics I FYS3150

Parallelizing a sequential algorithm

Identify the part(s) of a sequential algorithm that can be
executed in parallel. This is the difficult part,
Distribute the global work and data among P processors.

Computational Physics I FYS3150

Process and processor

We refer to process as a logical unit which executes its
own code, in an MIMD style.
The processor is a physical device on which one or several
processes are executed.
The MPI standard uses the concept process consistently
throughout its documentation.
However, we only consider situations where one processor
is responsible for one process and therefore use the two
terms interchangeably.

Computational Physics I FYS3150

Bindings to MPI routines

MPI is a message-passing library where all the routines have
corresponding C/C++-binding

MPI_Command_name

and Fortran-binding (routine names are in uppercase, but can
also be in lower case)

MPI_COMMAND_NAME

The discussion in these slides focuses on the C++ binding.

Computational Physics I FYS3150

Communicator

A group of MPI processes with a name (context).
Any process is identified by its rank. The rank is only
meaningful within a particular communicator.
By default communicator MPI COMM WORLD contains all
the MPI processes.
Mechanism to identify subset of processes.
Promotes modular design of parallel libraries.

Computational Physics I FYS3150

The 6 most important MPI routines

MPI Init - initiate an MPI computation
MPI Finalize - terminate the MPI computation and clean up
MPI Comm size - how many processes participate in a
given MPI communicator?
MPI Comm rank - which one am I? (A number between 0
and size-1.)
MPI Send - send a message to a particular pro cess within
an MPI communicator
MPI Recv - receive a message from a particular pro cess
within an MPI communicator

Computational Physics I FYS3150

The first MPI C/C++ program

Let every process write ”Hello world” on the standard output.
This is program2.cpp of chapter 7.

using namespace std;
#include <mpi.h>
#include <iostream>
int main (int nargs, char* args[])
{
int numprocs, my_rank;
// MPI initializations
MPI_Init (&nargs, &args);
MPI_Comm_size (MPI_COMM_WORLD, &numprocs);
MPI_Comm_rank (MPI_COMM_WORLD, &my_rank);
cout << "Hello world, I have rank " << my_rank << " out of "

<< numprocs << endl;
// End MPI
MPI_Finalize ();

Computational Physics I FYS3150

The Fortran program

PROGRAM hello
INCLUDE "mpif.h"
INTEGER:: size, my_rank, ierr

CALL MPI_INIT(ierr)
CALL MPI_COMM_SIZE(MPI_COMM_WORLD, size, ierr)
CALL MPI_COMM_RANK(MPI_COMM_WORLD, my_rank, ierr)
WRITE(*,*)"Hello world, I’ve rank ",my_rank," out of ",size
CALL MPI_FINALIZE(ierr)

END PROGRAM hello

Computational Physics I FYS3150

Note 1

The output to screen is not ordered since all processes are
trying to write to screen simultaneously. It is then the operating
system which opts for an ordering. If we wish to have an
organized output, starting from the first process, we may rewrite
our program as in the next example (program3.cpp), see again
chapter 7.7 of lecture notes.

Computational Physics I FYS3150

Ordered output with MPI Barrier

int main (int nargs, char* args[])
{
int numprocs, my_rank, i;
MPI_Init (&nargs, &args);
MPI_Comm_size (MPI_COMM_WORLD, &numprocs);
MPI_Comm_rank (MPI_COMM_WORLD, &my_rank);
for (i = 0; i < numprocs; i++) {}
MPI_Barrier (MPI_COMM_WORLD);
if (i == my_rank) {
cout << "Hello world, I have rank " << my_rank <<

" out of " << numprocs << endl;}
MPI_Finalize ();

Computational Physics I FYS3150

Note 2

Here we have used the MPI Barrier function to ensure that that
every process has completed its set of instructions in a
particular order. A barrier is a special collective operation that
does not allow the processes to continue until all processes in
the communicator (here MPI COMM WORLD have called
MPI Barrier . The barriers make sure that all processes have
reached the same point in the code. Many of the collective
operations like MPI ALLREDUCE to be discussed later, have
the same property; viz. no process can exit the operation until
all processes have started. However, this is slightly more
time-consuming since the processes synchronize between
themselves as many times as there are processes. In the next
Hello world example we use the send and receive functions in
order to a have a synchronized action.

Computational Physics I FYS3150

Ordered output with MPI Recv and MPI Send

.....
int numprocs, my_rank, flag;
MPI_Status status;
MPI_Init (&nargs, &args);
MPI_Comm_size (MPI_COMM_WORLD, &numprocs);
MPI_Comm_rank (MPI_COMM_WORLD, &my_rank);
if (my_rank > 0)
MPI_Recv (&flag, 1, MPI_INT, my_rank-1, 100,

MPI_COMM_WORLD, &status);
cout << "Hello world, I have rank " << my_rank << " out of "
<< numprocs << endl;
if (my_rank < numprocs-1)
MPI_Send (&my_rank, 1, MPI_INT, my_rank+1,

100, MPI_COMM_WORLD);
MPI_Finalize ();

Computational Physics I FYS3150

Note 3

The basic sending of messages is given by the function
MPI SEND, which in C/C++ is defined as

int MPI_Send(void *buf, int count,
MPI_Datatype datatype,
int dest, int tag, MPI_Comm comm)}

This single command allows the passing of any kind of variable,
even a large array, to any group of tasks. The variable buf is
the variable we wish to send while count is the number of
variables we are passing. If we are passing only a single value,
this should be 1. If we transfer an array, it is the overall size of
the array. For example, if we want to send a 10 by 10 array,
count would be 10× 10 = 100 since we are actually passing
100 values.

Computational Physics I FYS3150

Note 4

Once you have sent a message, you must receive it on another
task. The function MPI RECV is similar to the send call.

int MPI_Recv(void *buf, int count, MPI_Datatype datatype,
int source,
int tag, MPI_Comm comm, MPI_Status *status)

The arguments that are different from those in MPI SEND are
buf which is the name of the variable where you will be storing
the received data, source which replaces the destination in the
send command. This is the return ID of the sender.
Finally, we have used MPI Status status; where one can
check if the receive was completed.
The output of this code is the same as the previous example,
but now process 0 sends a message to process 1, which
forwards it further to process 2, and so forth.
Armed with this wisdom, performed all hello world greetings,
we are now ready for serious work.

Computational Physics I FYS3150

Integrating π

Examples
Go to the webpage
and click on the
programs link
Go to MPI and then
chapter 7
Look at program5.ccp
and program6.cpp.
(Fortran version also
available).
These codes
compute π using the
rectangular and
trapezoidal rules.

Computational Physics I FYS3150

Integration algos

The trapezoidal rule (example6.cpp)

I =

Z b

a
f (x)dx = h (f (a)/2 + f (a + h) + f (a + 2h) + · · ·+ f (b − h) + fb/2) .

Another very simple approach is the so-called midpoint or rectangle method. In this
case the integration area is split in a given number of rectangles with length h and
heigth given by the mid-point value of the function. This gives the following simple rule
for approximating an integral

I =

Z b

a
f (x)dx ≈ h

NX
i=1

f (xi−1/2),

where f (xi−1/2) is the midpoint value of f for a given rectangle. This is used in

example5.cpp.

Computational Physics I FYS3150

Dissection of example 5

1 // Reactangle rule and numerical integration
2 using namespace std;
3 #include <mpi.h>
4 #include <iostream>

5 int main (int nargs, char* args[])
6 {
7 int numprocs, my_rank, i, n = 1000;
8 double local_sum, rectangle_sum, x, h;
9 // MPI initializations
10 MPI_Init (&nargs, &args);
11 MPI_Comm_size (MPI_COMM_WORLD, &numprocs);
12 MPI_Comm_rank (MPI_COMM_WORLD, &my_rank);

Computational Physics I FYS3150

Dissection of example 5

After the standard initializations with MPI such as MPI Init, MPI Comm size and
MPI Comm rank, MPI COMM WORLD contains now the number of processes defined
by using for example

mpiexec -np 10 ./prog.x

In line 4 we check if we have read in from screen the number of mesh points n. Note
that in line 7 we fix n = 1000, however we have the possibility to run the code with a
different number of mesh points as well. If my rank equals zero, which correponds to
the master node, then we read a new value of n if the number of arguments is larger
than two. This can be done as follows when we run the code

mpiexec -np 10 ./prog.x 10000

Computational Physics I FYS3150

Dissection of example 5

13 // Read from screen a possible new vaue of n
14 if (my_rank == 0 && nargs > 1) {
15 n = atoi(args[1]);
16 }
17 h = 1.0/n;
18 // Broadcast n and h to all processes
19 MPI_Bcast (&n, 1, MPI_INT, 0, MPI_COMM_WORLD);
20 MPI_Bcast (&h, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD);
21 // Every process sets up its contribution to the integral
22 local_sum = 0.;
23 for (i = my_rank; i < n; i += numprocs) {
24 x = (i+0.5)*h;
25 local_sum += 4.0/(1.0+x*x);
26 }
27 local_sum *= h;

In line 17 we define also the step length h. In lines 19 and 20 we use the broadcast

function MPI Bcast. We use this particular function because we want data on one

processor (our master node) to be shared with all other processors. The broadcast

function sends data to a group of processes.

Computational Physics I FYS3150

Dissection of example 5

The MPI routine MPI Bcast transfers data from one task to a group of others. The
format for the call is in C++ given by the parameters of

MPI_Bcast (&n, 1, MPI_INT, 0, MPI_COMM_WORLD);.
MPI_Bcast (&h, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD);

in a case of a double. The general structure of this function is

MPI_Bcast(void *buf, int count, MPI_Datatype datatype, int root, MPI_Comm comm).

All processes call this function, both the process sending the data (with rank zero) and
all the other processes in MPI COMM WORLD. Every process has now copies of n
and h, the number of mesh points and the step length, respectively.

We transfer the addresses of n and h. The second argument represents the number of

data sent. In case of a one-dimensional array, one needs to transfer the number of

array elements. If you have an n ×m matrix, you must transfer n ×m. We need also to

specify whether the variable type we transfer is a non-numerical such as a logical or

character variable or numerical of the integer, real or complex type.

Computational Physics I FYS3150

Dissection of example 5

28 if (my_rank == 0) {
29 MPI_Status status;
30 rectangle_sum = local_sum;
31 for (i=1; i < numprocs; i++) {
32 MPI_Recv(&local_sum,1,MPI_DOUBLE,MPI_ANY_SOURCE,500,

MPI_COMM_WORLD,&status);
33 rectangle_sum += local_sum;
34 }
35 cout << "Result: " << rectangle_sum << endl;
36 } else
37 MPI_Send(&local_sum,1,MPI_DOUBLE,0,500,MPI_COMM_WORLD);
38 // End MPI
39 MPI_Finalize ();
40 return 0;
41 }

Computational Physics I FYS3150

Dissection of example 5

In lines 23-27, every process sums its own part of the final sum used by the rectangle
rule. The receive statement collects the sums from all other processes in case
my rank == 0, else an MPI send is performed. If we are not the master node, we
send the results, else they are received and the local results are added to final sum.
The above can be rewritten using the MPI allreduce, as discussed in the next example.

The above function is not very elegant. Furthermore, the MPI instructions can be

simplified by using the functions MPI Reduce or MPI Allreduce. The first function takes

information from all processes and sends the result of the MPI operation to one process

only, typically the master node. If we use MPI Allreduce, the result is sent back to all

processes, a feature which is useful when all nodes need the value of a joint operation.

We limit ourselves to MPI Reduce since it is only one process which will print out the

final number of our calculation, The arguments to MPI Allreduce are the same.

Computational Physics I FYS3150

MPI reduce

Call as

MPI_reduce(void *senddata, void* resultdata, int count,
MPI_Datatype datatype, MPI_Op, int root, MPI_Comm comm)

The two variables senddata and resultdata are obvious, besides the fact that one
sends the address of the variable or the first element of an array. If they are arrays they
need to have the same size. The variable count represents the total dimensionality, 1
in case of just one variable, while MPI Datatype defines the type of variable which is
sent and received.
The new feature is MPI Op. It defines the type of operation we want to do. In our case,
since we are summing the rectangle contributions from every process we define
MPI Op = MPI SUM. If we have an array or matrix we can search for the largest og
smallest element by sending either MPI MAX or MPI MIN. If we want the location as
well (which array element) we simply transfer MPI MAXLOC or MPI MINOC. If we want
the product we write MPI PROD.
MPI Allreduce is defined as

MPI_Alreduce(void *senddata, void* resultdata, int count,
MPI_Datatype datatype, MPI_Op, MPI_Comm comm)}.

Computational Physics I FYS3150

Dissection of example 6

// Trapezoidal rule and numerical integration usign MPI, example 6
using namespace std;
#include <mpi.h>
#include <iostream>

// Here we define various functions called by the main program

double int_function(double);
double trapezoidal_rule(double , double , int , double (*)(double));

// Main function begins here
int main (int nargs, char* args[])
{

int n, local_n, numprocs, my_rank;
double a, b, h, local_a, local_b, total_sum, local_sum;
double time_start, time_end, total_time;

Computational Physics I FYS3150

Dissection of example 6

// MPI initializations
MPI_Init (&nargs, &args);
MPI_Comm_size (MPI_COMM_WORLD, &numprocs);
MPI_Comm_rank (MPI_COMM_WORLD, &my_rank);
time_start = MPI_Wtime();
// Fixed values for a, b and n
a = 0.0 ; b = 1.0; n = 1000;
h = (b-a)/n; // h is the same for all processes
local_n = n/numprocs;
// make sure n > numprocs, else integer division gives zero
// Length of each process’ interval of
// integration = local_n*h.
local_a = a + my_rank*local_n*h;
local_b = local_a + local_n*h;

Computational Physics I FYS3150

Dissection of example 6

total_sum = 0.0;
local_sum = trapezoidal_rule(local_a, local_b, local_n,

&int_function);
MPI_Reduce(&local_sum, &total_sum, 1, MPI_DOUBLE,

MPI_SUM, 0, MPI_COMM_WORLD);
time_end = MPI_Wtime();
total_time = time_end-time_start;
if (my_rank == 0) {
cout << "Trapezoidal rule = " << total_sum << endl;
cout << "Time = " << total_time

<< " on number of processors: " << numprocs << endl;
}
// End MPI
MPI_Finalize ();
return 0;

} // end of main program

We use MPI reduce to collect data from each process. Note also the use of the

function MPI Wtime.

Computational Physics I FYS3150

Dissection of example 6

// this function defines the function to integrate
double int_function(double x)
{

double value = 4./(1.+x*x);
return value;

} // end of function to evaluate

Computational Physics I FYS3150

Dissection of example 6

Implementation of the trapezoidal rule.

// this function defines the trapezoidal rule
double trapezoidal_rule(double a, double b, int n,

double (*func)(double))
{

double trapez_sum;
double fa, fb, x, step;
int j;
step=(b-a)/((double) n);
fa=(*func)(a)/2. ;
fb=(*func)(b)/2. ;
trapez_sum=0.;
for (j=1; j <= n-1; j++){
x=j*step+a;
trapez_sum+=(*func)(x);

}
trapez_sum=(trapez_sum+fb+fa)*step;
return trapez_sum;

} // end trapezoidal_rule

Computational Physics I FYS3150

Strategies

Develop codes locally, run with some few processes and
test your codes. Do benchmarking, timing and so forth on
local nodes, for example your laptop. You can install
MPICH2 on your laptop (most new laptos come with dual
cores). You can test with one node at the lab.
When you are convinced that your codes run correctly, you
start your production runs on available supercomputers, in
our case titan.uio.no.

Computational Physics I FYS3150

Research Computing Services

hpc@usit.uio.no
Computational Physics requires High Performance
Computing (HPC) resources
USIT and the Research Computing Services (RCS)
provides HPC resources and HPC support
Resources: titan.uio.no
Support: 14 people
Contact: hpc@usit.uio.no

Computational Physics I FYS3150

titan.uio.no
hpc@usit.uio.no

Titan

Hardware
546 X2200m2, 7 X4200, Magnum 3456 IB switch
174 Dell 1425, + 20 HP DL385 servers
EVA8K 120 TB storage
Dual core Intel and AMD (∼ 2500 cores in total)
Quad-core intel
Infiniband and ethernet
From 4GB to 64GB RAM
Heterogenous cluster!

Computational Physics I FYS3150

Titan

Software
Batch system: Sun Grid Engine (SGE)
Message Passing Interface (MPI):

Scampi
MPICH2
OpenMPI

Compilers: GCC, Intel, Portland and Pathscale
Optimized math libraries and scientific applications
All you need may be found under /site
Available software: http:
//www.hpc.uio.no/index.php/Titan_software

Computational Physics I FYS3150

http://www.hpc.uio.no/index.php/Titan_software
http://www.hpc.uio.no/index.php/Titan_software

Getting started

Batch systems
A batch system controls the use of the cluster resources
Submits the job to the right resource
Monitors the job while executing
Restarts the job in case of failure
Takes care of priorities and queues to control execution
order of unrelated jobs

Sun Grid Engine

SGE is the batch system used on Titan
Jobs are executed either interactively or through job scripts
Useful commands: showq, qlogin, qsub
http:
//www.hpc.uio.no/index.php/FAQ#QUEUE_SYSTEM

Computational Physics I FYS3150

http://www.hpc.uio.no/index.php/FAQ#QUEUE_SYSTEM
http://www.hpc.uio.no/index.php/FAQ#QUEUE_SYSTEM

Getting started

Modules
Different compilers, MPI-versions and applications need
different sets of user environment variables
The modules package lets you load and remove the
different variable sets
Useful commands:

List available modules: module avail
Load module: module load <environment>
Unload module: module unload <environment>
Currently loaded: module list

http://www.hpc.uio.no/index.php/FAQ#MODULES

Computational Physics I FYS3150

http://www.hpc.uio.no/index.php/FAQ#MODULES

Example

Interactively

l o g i n to t i t a n
$ ssh t i t a n . u io . no
ask for 4 cpus
$ q log in −P fys3150 −pe mpi 4
we want to use the scampi module
$ module load scampi
$ mkdir −p fys3150 / mpiexample /
$ cd fys3150 / mpiexample /
download program5 . cpp from the course pages :
$ wget h t t p : / / t i n y u r l . com/39 hrah / program5 . cpp
compile the program
$ mpic++ −O3 −o program5 . x program5 . cpp
and execute i t
$ mpiexec . / program5 . x
Result : 3.14159
f i n i shed , so logg ing out
$ ex i t

Computational Physics I FYS3150

The job script

job.sge

! / b in / sh
4 cpus wi th mpi (or other communication)
#$ −pe mpi 4
10 mins o f wa l l t ime
#$ − l s r t =0:10:0
p r o j e c t fys3150
#$ −P fys3150
we need 512 MB of memory per process
#$ − l s vmem=512M
name of job
#$ −N program5

source / s i t e / b in / jobsetup

load the module used when we compiled the program
module load scampi

s t a r t program
/ s i t e / b in / mpiexec . / program5 . x

#END OF SCRIPT

Computational Physics I FYS3150

Example

Submitting

l o g i n to t i t a n
$ ssh t i t a n . u io . no
we want to use the module scampi
$ module load scampi
$ cd fys3150 / mpiexample /
compile the program
$ mpic++ −O3 −o program5 . x program5 . cpp
and submit i t
$ qsub job . sge
$ ex i t

Computational Physics I FYS3150

Example

Checking execution

check i f j ob i s running :
$ qs ta t −u mhjensen
job−ID p r i o r name user s ta te submit / s t a r t a t queue

s l o t s ja−task−ID
−−

379931 2.50073 rec tang le mhjensen r 10/17/2008 06:02:39 normal@compute
−13−6. l o c a l 4

r e s u l t s are in rec tang le . o379931
$ cat rec tang le . o379931
S t a r t i n g job 379931 on node compute−13−6. l o c a l a t Thu Jan 17 06:02:39 CET 2008
Creat ing / work /379931. undef ined . d
Result : 3.14159
Terminat ing job 379931 on compute−13−6. l o c a l a t Thu Jan 17 06:02:44 CET 2008
De le t ing / work /379931. undef ined . d

Computational Physics I FYS3150

Tips and admonitions

Tips
Titan FAQ: http://www.hpc.uio.no/index.php/FAQ
man-pages, e.g. man qsub

Ask us

Admonitions
Remember to exit from qlogin-sessions; the resource is
reserved for you untill you exit
Don’t run jobs on login-nodes; these are only for compiling
and editing files

Computational Physics I FYS3150

http://www.hpc.uio.no/index.php/FAQ

Week 47, November 17-21

Ising model, phase transitions, project 5 and quantum Monte
Carlo

Monday: Repetition from last week
Discussion of project 5 and definition of correlation time
and equilibration time (optional part of project 5).
Discussion of Wolff’s algorithm for calculations close to
critical point (optional part of project 5).
Wednesday:
Quantum Monte Carlo, last part of lectures. Chapter
11.1-11.3.

Three small messages: 1) Remember to sign up for the exam.
2) Evaluation form. 3) Blitz actually works on Titan.

Computational Physics I FYS3150

Covariance

The mean value of a random variable X with range x1, x2, . . . ,N is

〈x〉 = µ =
1
N

NX
i=1

xi p(xi),

and the variance is

〈σ2〉 =
1
N

NX
i=1

(xi − 〈x〉)2p(xi) =
1
N

NX
i=1

〈(xi − µi)
2〉.

Assume now that we have two independent sets of measurements X1 and X2 with

corresponding mean and variance µ1 and µ2 and 〈σ2〉X1 and 〈σ2〉X2 .

Computational Physics I FYS3150

Covariance

It follows that if we define the new stochastic variable

Y = X1 + X2,

we have
µY = µ1 + µ2,

and

〈σ2〉Y = 〈(Y − µY)2〉 = 〈(X1 − µ1)2〉+ 〈(X2 − µ2)2〉+ 2〈(X1 − µ1)(X2 − µ2)〉.

Computational Physics I FYS3150

Covariance

It is useful to define the so-called covariance, given by

〈cov(X1,X2)〉 = 〈(X1 − µ1)(X2 − µ2)〉

where we consider the averages µ1 and µ2 as the outcome of two separate
measurements. The covariance measures thus the degree of correlation between
variables. We can then rewrite the variance of Y as

〈σ2〉Y =
2X

j=1

〈(Xj − µj)
2〉+ 2cov(X1,X2),

which in our notation becomes

〈σ2〉Y = 〈σ2〉X1 + 〈σ2〉X2 + 2cov(X1,X2).

Computational Physics I FYS3150

Covariance

If X1 and X2 are two independent variables we can show that the covariance is zero,
but one cannot deduce from a zero covariance whether the variables are independent
or not. If our random variables which we generate are truely random numbers, then the
covariance should be zero.
A way to measure the correlation between two sets of stochastic variables is the
so-called correlation function ρ(X1,X2) defined as

ρ(X1,X2) =
〈cov(X1,X2)〉q
〈σ2〉X1 〈σ2〉X2

.

Computational Physics I FYS3150

Covariance

Obviously, if the covariance is zero due to the fact that the variables are independent,
then the correlation is zero. This quantity is often called the correlation coefficient
between X1 and X2. We can extend this analysis to a set of stochastic variables
Y = (X1 + X2 + · · ·+ XN). We now assume that we have N different measurements of
the mean and variance of a given variable. Each measurement consists again of N
measurements, although we could have chosen the latter to be different from N. As an
example, every evening for N days you measure N throws of two dice. The mean and
variance are defined as above. The total mean value is defined as

〈µY 〉 =
NX

i=1

〈µi 〉.

Computational Physics I FYS3150

Covariance

The total variance is however now defined as

〈σ2〉Y = 〈(Y − µY)2〉 =
NX

j=1

〈(Xj − µj)〉2 =
NX

j=1

〈σ2〉Xj
+ 2

NX
j<k

〈(Xj − µj)〉〈(Xk − µk)〉,

or

〈σ2〉Y =
NX

j=1

〈σ2〉Xj
+ 2

NX
j<k

cov(Xj ,Xk).

If the variables are independent, the covariance is zero and the variance is reduced to

〈σ2〉Y =
NX

j=1

〈σ2〉Xj
,

Computational Physics I FYS3150

Time Auto-correlation Function

The so-called time-displacement autocorrelation φ(t) for the magnetization is given by

φ(t) =

Z
dt ′
ˆ
M(t ′)− 〈M〉

˜ ˆ
M(t ′ + t)− 〈M〉

˜
,

which can be rewritten as

φ(t) =

Z
dt ′
h
M(t ′)M(t ′ + t)− 〈M〉2

i
,

where 〈M〉 is the average value of the magnetization andM(t) its instantaneous
value. We can discretize this function as follows, where we used our set of computed
valuesM(t) for a set of discretized times (our Monte Carlo cycles corresponding to a
sweep over the lattice)

φ(t) =
1

tmax − t

tmax−tX
t′=0

M(t ′)M(t ′+ t)−
1

tmax − t

tmax−tX
t′=0

M(t ′)×
1

tmax − t

tmax−tX
t′=0

M(t ′+ t).

Computational Physics I FYS3150

Correlation Time, how to compute

// define m-value at each cycle within loop over cycles
m_matrix[cycles] = Maverage/(n_spins**2)/cycles
// Then compute phi(i) as (in pseudocode)

for i = 1, mcs
r = 1.0/(mcs-i)
s = 0.0; v = 0.0; p= 0.0
for j = 1, mcs-i

p = p+ m_matrix(j)*m_matrix(j+i)
s = s+ m_matrix(j)
v = v+ m_matrix(j+i)

end for
phi(i) = r*p-r*r*s*v

end for

Computational Physics I FYS3150

Time Auto-correlation Function

One should be careful with times close to tmax, the upper limit of the sums becomes
small and we end up integrating over a rather small time interval. This means that the
statistical error in φ(t) due to the random nature of the fluctuations inM(t) can
become large.
One should therefore choose t � tmax.
Note also that we could replace the magnetization with the mean energy, or any other
expectation values of interest.

The time-correlation function for the magnetization gives a measure of the correlation

between the magnetization at a time t ′ and a time t ′ + t . If we multiply the

magnetizations at these two different times, we will get a positive contribution if the

magnetizations are fluctuating in the same direction, or a negative value if they

fluctuate in the opposite direction. If we then integrate over time, or use the discretized

version of, the time correlation function φ(t) should take a non-zero value if the

fluctuations are correlated, else it should gradually go to zero. For times a long way

apart the magnetizations are most likely uncorrelated and φ(t) should be zero.

Computational Physics I FYS3150

Time Auto-correlation Function

We can derive the correlation time by observing that our Metropolis algorithm is based
on a random walk in the space of all possible spin configurations. Our probability
distribution function ŵ(t) after a given number of time steps t could be written as

ŵ(t) = Ŵtŵ(0),

with ŵ(0) the distribution at t = 0 and Ŵ representing the transition probability matrix.
We can always expand ŵ(0) in terms of the right eigenvectors of v̂ of Ŵ as

ŵ(0) =
X

i

αi v̂i ,

resulting in
ŵ(t) = Ŵt ŵ(0) = Ŵt

X
i

αi v̂i =
X

i

λt
iαi v̂i ,

with λi the i th eigenvalue corresponding to the eigenvector v̂i .

Computational Physics I FYS3150

Time Auto-correlation Function

If we assume that λ0 is the largest eigenvector we see that in the limit t →∞, ŵ(t)
becomes proportional to the corresponding eigenvector v̂0. This is our steady state or
final distribution.
We can relate this property to an observable like the mean magnetization. With the
probabilty ŵ(t) (which in our case is the Boltzmann distribution) we can write the mean
magnetization as

〈M(t)〉 =
X
µ

ŵ(t)µMµ,

or as the scalar of a vector product

〈M(t)〉 = ŵ(t)m,

with m being the vector whose elements are the values ofMµ in its various

microstates µ.

Computational Physics I FYS3150

Time Auto-correlation Function
We rewrite this relation as

〈M(t)〉 = ŵ(t)m =
X

i

λt
iαi v̂i mi .

If we define mi = v̂i mi as the expectation value ofM in the i th eigenstate we can
rewrite the last equation as

〈M(t)〉 =
X

i

λt
iαi mi .

Since we have that in the limit t →∞ the mean magnetization is dominated by the the
largest eigenvalue λ0, we can rewrite the last equation as

〈M(t)〉 = 〈M(∞)〉+
X
i 6=0

λt
iαi mi .

We define the quantity

τi = −
1

logλi
,

and rewrite the last expectation value as

〈M(t)〉 = 〈M(∞)〉+
X
i 6=0

αi mi e−t/τi .

Computational Physics I FYS3150

Time Auto-correlation Function

The quantities τi are the correlation times for the system. They control also the
auto-correlation function discussed above. The longest correlation time is obviously
given by the second largest eigenvalue τ1, which normally defines the correlation time
discussed above. For large times, this is the only correlation time that survives. If
higher eigenvalues of the transition matrix are well separated from λ1 and we simulate
long enough, τ1 may well define the correlation time. In other cases we may not be
able to extract a reliable result for τ1. Coming back to the time correlation function φ(t)
we can present a more general definition in terms of the mean magnetizations 〈M(t)〉.
Recalling that the mean value is equal to 〈M(∞)〉 we arrive at the expectation values

φ(t) = 〈M(0)−M(∞)〉〈M(t)−M(∞)〉,

resulting in
φ(t) =

X
i,j 6=0

miαi mjαj e−t/τi ,

which is appropriate for all times.

Computational Physics I FYS3150

Correlation Time

If the correlation function decays exponentially

φ(t) ∼ exp (−t/τ)

then the exponential correlation time can be computed as the average

τexp = −〈
t

log| φ(t)
φ(0)
|
〉.

If the decay is exponential, thenZ ∞
0

dtφ(t) =

Z ∞
0

dtφ(0) exp (−t/τ) = τφ(0),

which suggests another measure of correlation

τint =
X

k

φ(k)

φ(0)
,

called the integrated correlation time.

Computational Physics I FYS3150

Time Auto-correlation Function

Here we mention that one can show, using scaling relations, that at the critical
temperature the correlation time τ relates to the lattice size L as

τ ∼ Ld+z ,

with d the dimensionality of the system. For the Metropolis algorithm based on a single
spin-flip process, Nightingale and Blöte obtained z = 2.1665± 0.0012. This is a rather
high value, meaning that our algorithm is not the best choice when studying properties
of the Ising model near TC .

We can understand this behavior by studying the development of the two-dimensional

Ising model as function of temperature.

Computational Physics I FYS3150

Time Auto-correlation Function
Cooling the system down to the critical temperature we observe clusters pervading
larger areas of the lattice. The reason for the large correlation time (and the parameter
z) for the single-spin flip Metropolis algorithm is the development of these large
domains or clusters with all spins pointing in one direction. It is quite difficult for the
algorithm to flip over one of these large domains because it has to do it spin by spin,
with each move having a high probability of being rejected due to the ferromagnetic
interaction between spins. Since all spins point in the same direction, the chance of
performing the flip

E = −4J
↑

↑ ↑ ↑
↑

=⇒ E = 4J
↑

↑ ↓ ↑
↑

leads to an energy difference of ∆E = 8J. Using the exact critical temperature

kBTC/J ≈ 2.2.69, we obtain a probability exp−(8/2.269) = 0.029429 which is rather

small. The increase in large correlation times due to increasing lattices can be

diminished by using so-called cluster algorithms, such as that introduced by Ulli Wolff

in 1989 and the Swendsen-Wang algorithm from 1987. The two-dimensional Ising

model with the Wolff or Swendsen-Wang algorithms exhibits a much smaller correlation

time, with the variable z = 0.25± 001. Here, instead of flipping a single spin, one flips

an entire cluster of spins pointing in the same direction.

Computational Physics I FYS3150

Better Algorithm needed

Monte Carlo simulations close to a phase transition are affected by critical slowing
down. In the 2-D Ising system, the correlation length becomes very large, and the
correlation time, which measures the number of steps between independent Monte
Carlo configurations behaves like

τ ∼ ξz ,

with z ≈ 2.1 for the Metropolis algorithm. The exponent z is called the dynamic critical
exponent, The maximum possible value for ξ in a finite system of N = L× L spins is
ξ ∼ L, because ξ cannot be larger than the lattice size! This implies that τ ∼ Lz ≈ N.
This makes simulations difficult because the Metropolis algorithm time scales like N, so
the time to generate independent Metropolis configurations scales like

Nτ ∼ N2 = L4.

If the lattice size
L→

√
10L ≈ 3.2L

, the simulation time increases by a factor of 100.

Computational Physics I FYS3150

Better Algorithm needed

There is a simple physical argument which helps understand why z = 2, The

Metropolis algorithm is a local algorithm, i.e., one spin is tested and flipped at a time.

Near TC the system develops large domains of correlated spins which are difficult to

break up. So the most likely change in configuration is the movement of a whole

domain of spins. But one Metropolis sweep of the lattice can move a domain at most by

approximately one lattice spacing in each time step. This motion is stochastic, i.e., like

a random walk. The distance traveled in a random walk scales like
√

time, so to move a

domain a distance of order ξ takes τ ∼ ξ2 Monte Carlo steps. This argument suggests

that the way to speed up a Monte Carlo simulation near TC is to use a non-local

algorithm.

Computational Physics I FYS3150

Swendsen-Wang Algorithm, Ising Model

The essential idea of this algorithm suggested by R.H. Swendsen and J.-S. Wang,
Phys. Rev. Lett. 58, 86 (1987), is to identify clusters of like spins and treat each cluster
as a giant spin to be flipped according to a random criterion. It is necessary that the
algorithm obey the detailed balance condition. Swendsen and Wang found the
following algorithm based on ideas from percolation theory.

Computational Physics I FYS3150

Swendsen-Wang Algorithm, Ising Model

Freeze/delete bonds: The 2− D square lattice, periodic boundary conditions, has
N = L× L spins and 2N bonds between spins. Construct a bond lattice as follows:

If the bond connects opposite spins, then delete it, i.e., temporarily uncouple the
two spins. Note that opposite spins have a higher bond energy +J if J > 0 and
thus a higher effective temperature. So if J is large we are effectively ”melting”
the bond.

If the bond connects like spins (both up or both down), then delete the bond with
probability e−2J/(kBT) , i.e., generate a random deviate r and delete the bond if
r < e−2J/(kBT) . Note that a like-spin pair has bond energy −J : so the change
in energy in flipping one spin of the pair, i.e., in going from like to unlike spins is
E = 2J . Bonds which survive this test are ”frozen”. The probability of this
happening is 1− e−2J/(kBT) . If T = 0 all like-spin bonds get frozen, while at
T =∞ the freezing probability is zero and all the bonds melt.

Note that constructing the bond lattice takes time of O(N) because there are 2N

bonds.

Computational Physics I FYS3150

Swendsen-Wang Algorithm, Ising Model

After the bond lattice has been set up, the spins are decomposed into clusters. A
cluster is simply a domain of spins connected to one another by frozen bonds.
The lattice obviously decomposes into clusters in a unique way, and the
decomposition is a deterministic problem. Cluster decomposition is potentially
time consuming. A naive algorithm can take time of O(N2), so it is essential to
use a decomposition algorithm that scales linearly with lattice size like
Metropolis!

Spin Up date: So far, constructing the bond lattice and identifying clusters has
not changed any of the spins. The spins in each cluster are now ”frozen” and the
bonds between different clusters have been deleted. Each cluster is now
updated by assigning a random new value ±1 to all of the spins simultaneously,
i.e., generate a random deviate r and flip all spins in that cluster if r < 0.5. Note
that T does not play a role in this flipping decision. The spin update step scales
like the number of clusters which is < N . Swendsen and Wang showed that
z ≈ 0.35 for this algorithm in the 2− D Ising model. Assuming that each
Swendsen-Wang step scales like N , the running time for the simulation scales
like

Nτ ∼ Nξ0.35 ∼ NL0.35 ∼ N1.175

which is much better than O(N2) with Metropolis.

Computational Physics I FYS3150

Wolff Algorithm, Ising Model

Two years after Swendsen and Wang published their algorithm, U. Wolff, Phys. Rev.
Lett. 62, 361 (1989) published an even more efficient algorithm based on constructing
and flipping one single cluster at a time Freeze/delete bonds: The 2− D square lattice,
periodic boundary conditions, has N = L× L spins and 2N bonds between spins.
Construct a bond lattice as follows:

Choose a random spin in the lattice

Look at the nearest neighbors of that spin. If they point in the same direction as
the seed spin, add them to the cluster with a probability Padd = 1− e−2J/(kBT) as
in the Swendsen-Wang algo.

For each spin that is added, examine each ot its neighbors. If they point in the
same direction, add each with the probability Padd. Repeat till no more neighbors
to consider for inclusions.

Flip the cluster.

Computational Physics I FYS3150

Wolff Algorithm, Detailed Balance

Consider two states of the total lattice, i a and j . They differ from one another by the
flipping of a single cluster of similarly oriented spins. The crucial thing to notice is the
way the spins are oriented around the edge of the cluster. The bonds between these
spins and the ones in the cluster have to be broken when the cluster is flipped. This
means that the bonds which are not broken in going from i to j must be broken when
we flip back again from j to i
When we move from i to j we break m bonds in order to flip the cluster. These bonds
represent pairs of similarly oriented spins which are not added to the cluster. The
probability of not adding a spin is 1− Padd. If we break m bonds we have a selection
probability (1− Padd)m.

If there are n bonds to break in the reverse move, then the selection probability is

(1− Padd)n.

Computational Physics I FYS3150

Wolff Algorithm, Detailed Balance

An important condition we require that our Markov chain should satisfy is that of
detailed balance. At equilibrium detailed balance gives thus

W (j → i)
W (i → j)

=
wi

wj
.

We model the transition probability as W (j → i) = g(j → i)A(j → i), where g is the
selection probability and A is the acceptance probability. Our cluster algo gives

g(j → i)A(j → i)
g(i → j)A(i → j)

=
wi

wj
,

which with the Boltzmann distribution results in

(1− Padd)m−n A(j → i)
A(i → j)

= e−β(Ei−Ej).

Computational Physics I FYS3150

Wolff Algorithm, Detailed Balance

The change between the two states depends on the number of broken bonds. For each
broken bond of the m ones the change is (Ising model, you must figure out what this
means for the Potts model) +2J. For each broken bond for the reverse process (total
n) we an energy change −2J. That means that we get

(1− Padd)m−n A(j → i)
A(i → j)

= e−β2J(m−n),

which we rewrite as
A(j → i)
A(i → j)

=
“

eβ2J (1− Padd)
”n−m

,

and using the fact that Padd = 1− e−2J/(kBT) we obtain a ratio between the acceptance
probabilities as

A(j → i)
A(i → j)

= 1

The cluster is always flipped. We make the acceptance ratios for both forward and

backward moves equal unity. Note that we need not go through the whole lattice to flip

a cluster, this should be contrasted with the Swendsen-Wang also. Wolff showed that

z ≈ 0.25 for this algorithm.

Computational Physics I FYS3150

Quantum Monte Carlo and Schrödinger’s equation

For one-body problems (one dimension)

−
~2

2m
∇2Ψ(x , t) + V (x , t)Ψ(x , t) = ı~

∂Ψ(x , t)
∂t

,

P(x , t) = Ψ(x , t)∗Ψ(x , t)

P(x , t)dx = Ψ(x , t)∗Ψ(x , t)dx

Interpretation: probability of finding the system in a region between x and x + dx .
Always real

Ψ(x , t) = R(x , t) + ıI(x , t)

yielding
Ψ(x , t)∗Ψ(x , t) = (R − ıI)(R + ıI) = R2 + I2

Variational Monte Carlo uses only P(x , t)!!

Computational Physics I FYS3150

Quantum Monte Carlo and Schrödinger’s equation

Petit digression
Choose τ = it/~.
The time-dependent (1-dim) Schrödinger equation becomes then

∂Ψ(x , τ)

∂τ
=

~2

2m
∂2Ψ(x , τ)

∂x2
− V (x , τ)Ψ(x , τ).

With V = 0 we have a diffusion equation in complex time with diffusion constant

D =
~2

2m
.

Used in diffusion Monte Carlo calculations. Topic for FYS4410, Computational Physics

II

Computational Physics I FYS3150

Quantum Monte Carlo and Schrödinger’s equation

Conditions which Ψ has to satisfy:

1 Normalization Z ∞
−∞

P(x , t)dx =

Z ∞
−∞

Ψ(x , t)∗Ψ(x , t)dx = 1

meaning that Z ∞
−∞

Ψ(x , t)∗Ψ(x , t)dx <∞

2 Ψ(x , t) and ∂Ψ(x , t)/∂x must be finite

3 Ψ(x , t) and ∂Ψ(x , t)/∂x must be continuous.

4 Ψ(x , t) and ∂Ψ(x , t)/∂x must be single valued

Square integrable functions.

Computational Physics I FYS3150

First Postulate

Any physical quantity A(~r , ~p) which depends on position~r and momentum ~p has a
corresponding quantum mechanical operator by replacing ~p −i~~5, yielding the
quantum mechanical operator bA = A(~r ,−i~ ~5).

Quantity Classical definition QM operator
Position ~r b̃r = ~r
Momentum ~p b̃p = −i~~5
Orbital momentum ~L = ~r × ~p b̃L = ~r × (−i~~5)

Kinetic energy T = (~p)2/2m bT = −(~2/2m)(~5)2

Total energy H = (p2/2m) + V (~r) bH = −(~2/2m)(~5)2 + V (~r)

Computational Physics I FYS3150

Second Postulate

The only possible outcome of an ideal measurement of the physical quantity A are the
eigenvalues of the corresponding quantum mechanical operator bA.

bAψν = aνψν ,

resulting in the eigenvalues a1, a2, a3, · · · as the only outcomes of a measurement.

The corresponding eigenstates ψ1, ψ2, ψ3 · · · contain all relevant information about the

system.

Computational Physics I FYS3150

Third Postulate

Assume Φ is a linear combination of the eigenfunctions ψν for bA,

Φ = c1ψ1 + c2ψ2 + · · · =
X
ν

cνψν .

The eigenfunctions are orthogonal and we get

cν =

Z
(Φ)∗ψνdτ.

From this we can formulate the third postulate:

When the eigenfunction is Φ, the probability of obtaining the value aν as the outcome

of a measurement of the physical quantity A is given by |cν |2 and ψν is an

eigenfunction of bA with eigenvalue aν .

Computational Physics I FYS3150

Third Postulate

As a consequence one can show that:
when a quantal system is in the state Φ, the mean value or expectation value of a
physical quantity A(~r , ~p) is given by

〈A〉 =

Z
(Φ)∗bA(~r ,−i~~5)Φdτ.

We have assumed that Φ has been normalized, viz.,
R

(Φ)∗Φdτ = 1. Else

〈A〉 =

R
(Φ)∗bAΦdτR
(Φ)∗Φdτ

.

Computational Physics I FYS3150

Fourth Postulate

The time development of of a quantal system is given by

i~
∂Ψ

∂t
= bHΨ,

with bH the quantal Hamiltonian operator for the system.

Computational Physics I FYS3150

Week 48, November 24-28

Quantum Monte Carlo and repetition
Monday: Repetition from last week
Quantum Monte Carlo, last part of lectures. Chapter
11.1-11.4.
Wednesday: Repetition of course and discussion of oral
exam.

Computational Physics I FYS3150

Quantum Monte Carlo

Most quantum mechanical problems of interest in e.g., atomic, molecular, nuclear and
solid state physics consist of a large number of interacting electrons and ions or
nucleons. The total number of particles N is usually sufficiently large that an exact
solution cannot be found. Typically, the expectation value for a chosen hamiltonian for a
system of N particles is

〈H〉 =R
dR1dR2 . . . dRN Ψ∗(R1,R2, . . . ,RN)H(R1,R2, . . . ,RN)Ψ(R1,R2, . . . ,RN)R

dR1dR2 . . . dRN Ψ∗(R1,R2, . . . ,RN)Ψ(R1,R2, . . . ,RN)
,

an in general intractable problem.

Computational Physics I FYS3150

Quantum Monte Carlo

As an example from the nuclear many-body problem, we have Schrödinger’s equation
as a differential equation

ĤΨ(r1, .., rA, α1, .., αA) = EΨ(r1, .., rA, α1, .., αA)

where
r1, .., rA,

are the coordinates and
α1, .., αA,

are sets of relevant quantum numbers such as spin and isospin for a system of A

nucleons (A = N + Z , N being the number of neutrons and Z the number of protons).

Computational Physics I FYS3150

Quantum Monte Carlo

There are

2A ×
„

A
Z

«
coupled second-order differential equations in 3A dimensions.

For a nucleus like 10Be this number is 215040. This is a truely challenging many-body

problem.

Computational Physics I FYS3150

Quantum Monte Carlo

Given a hamiltonian H and a trial wave function ΨT , the variational principle states that
the expectation value of 〈H〉, defined through

〈H〉 =

R
dRΨ∗T (R)H(R)ΨT (R)R

dRΨ∗T (R)ΨT (R)
,

is an upper bound to the ground state energy E0 of the hamiltonian H, that is

E0 ≤ 〈H〉.

In general, the integrals involved in the calculation of various expectation values are

multi-dimensional ones. Traditional integration methods such as the Gauss-Legendre

will not be adequate for say the computation of the energy of a many-body system.

Computational Physics I FYS3150

Quantum Monte Carlo

The trial wave function can be expanded in the eigenstates of the hamiltonian since
they form a complete set, viz.,

ΨT (R) =
X

i

ai Ψi (R),

and assuming the set of eigenfunctions to be normalized one obtainsP
n a2

nEnP
n a2

n
≥ E0.

In general, the integrals involved in the calculation of various expectation values are

multi-dimensional ones.

Computational Physics I FYS3150

Quantum Monte Carlo

In most cases, a wave function has only small values in large parts of configuration
space, and a straightforward procedure which uses homogenously distributed random
points in configuration space will most likely lead to poor results. This may suggest that
some kind of importance sampling combined with e.g., the Metropolis algorithm may
be a more efficient way of obtaining the ground state energy. The hope is then that
those regions of configurations space where the wave function assumes appreciable
values are sampled more efficiently.

Computational Physics I FYS3150

Quantum Monte Carlo

The tedious part in a VMC calculation is the search for the variational minimum. A

good knowledge of the system is required in order to carry out reasonable VMC

calculations. This is not always the case, and often VMC calculations serve rather as

the starting point for so-called diffusion Monte Carlo calculations (DMC). DMC is a way

of solving exactly the many-body Schrödinger equation by means of a stochastic

procedure. A good guess on the binding energy and its wave function is however

necessary. A carefully performed VMC calculation can aid in this context.

Computational Physics I FYS3150

Quantum Monte Carlo

Construct first a trial wave function ψαT (R), for a many-body system consisting of
N particles located at positions R = (R1, . . . ,RN). The trial wave function
depends on α variational parameters α = (α1, . . . , αN).

Then we evaluate the expectation value of the hamiltonian H

〈H〉 =

R
dRΨ∗Tα (R)H(R)ΨTα (R)R

dRΨ∗Tα (R)ΨTα (R)
. (250)

Thereafter we vary α according to some minimization algorithm and return to the
first step.

Computational Physics I FYS3150

Quantum Monte Carlo

Choose a trial wave function ψT (R).

P(R) =
|ψT (R)|2R
|ψT (R)|2 dR

.

This is our new probability distribution function (PDF).

〈E〉 =

R
dRΨ∗(R)H(R)Ψ(R)R

dRΨ∗(R)Ψ(R)
,

where Ψ is the exact eigenfunction.

EL(R) =
1

ψT (R)
HψT (R),

the local energy, which, together with our trial PDF yields

〈H〉 =

Z
P(R)EL(R)dR.

Computational Physics I FYS3150

Quantum Monte Carlo

Algo:

Initialisation: Fix the number of Monte Carlo steps. Choose an initial R and
variational parameters α and calculate

˛̨
ψαT (R)

˛̨2.

Initialise the energy and the variance and start the Monte Carlo calculation
(thermalize)

1 Calculate a trial position Rp = R + r ∗ step where r is a
random variable r ∈ [0,1].

2 Metropolis algorithm to accept or reject this move

w = P(Rp)/P(R).

3 If the step is accepted, then we set R = Rp. Update
averages

Finish and compute final averages.

Computational Physics I FYS3150

Quantum Monte Carlo

The radial Schrödinger equation for the hydrogen atom can be written as

−
~2

2m
∂2u(r)

∂r2
−
„

ke2

r
−

~2l(l + 1)

2mr2

«
u(r) = Eu(r),

or with dimensionless variables

−
1
2
∂2u(ρ)

∂ρ2
−

u(ρ)

ρ
+

l(l + 1)

2ρ2
u(ρ)− λu(ρ) = 0,

with the hamiltonian

H = −
1
2
∂2

∂ρ2
−

1
ρ

+
l(l + 1)

2ρ2
.

Use variational parameter α in the trial wave function

uαT (ρ) = αρe−αρ.

Computational Physics I FYS3150

Quantum Monte Carlo

Inserting this wave function into the expression for the local energy EL gives

EL(ρ) = −
1
ρ
−
α

2

„
α−

2
ρ

«
.

α 〈H〉 σ2 σ/
√

N
7.00000E-01 -4.57759E-01 4.51201E-02 6.71715E-04
8.00000E-01 -4.81461E-01 3.05736E-02 5.52934E-04
9.00000E-01 -4.95899E-01 8.20497E-03 2.86443E-04
1.00000E-00 -5.00000E-01 0.00000E+00 0.00000E+00
1.10000E+00 -4.93738E-01 1.16989E-02 3.42036E-04
1.20000E+00 -4.75563E-01 8.85899E-02 9.41222E-04
1.30000E+00 -4.54341E-01 1.45171E-01 1.20487E-03

Computational Physics I FYS3150

Quantum Monte Carlo

We note that at α = 1 we obtain the exact result, and the variance is zero, as it should.
The reason is that we then have the exact wave function, and the action of the
hamiltionan on the wave function

Hψ = constant× ψ,

yields just a constant. The integral which defines various expectation values involving
moments of the hamiltonian becomes then

〈Hn〉 =

R
dRΨ∗T (R)Hn(R)ΨT (R)R

dRΨ∗T (R)ΨT (R)
= constant×

R
dRΨ∗T (R)ΨT (R)R
dRΨ∗T (R)ΨT (R)

= constant.

Computational Physics I FYS3150

Quantum Monte Carlo

The helium atom consists of two electrons and a nucleus with charge Z = 2. The
contribution to the potential energy due to the attraction from the nucleus is

−
2ke2

r1
−

2ke2

r2
,

and if we add the repulsion arising from the two interacting electrons, we obtain the
potential energy

V (r1, r2) = −
2ke2

r1
−

2ke2

r2
+

ke2

r12
,

with the electrons separated at a distance r12 = |r1 − r2|.

Computational Physics I FYS3150

Quantum Monte Carlo

The hamiltonian becomes then

bH = −
~2∇2

1
2m

−
~2∇2

2
2m

−
2ke2

r1
−

2ke2

r2
+

ke2

r12
,

and Schrödingers equation reads bHψ = Eψ.

All observables are evaluated with respect to the probability distribution

P(R) =
|ψT (R)|2R
|ψT (R)|2 dR

.

generated by the trial wave function. The trial wave function must approximate an exact

eigenstate in order that accurate results are to be obtained. Improved trial wave

functions also improve the importance sampling, reducing the cost of obtaining a

certain statistical accuracy.

Computational Physics I FYS3150

Quantum Monte Carlo

Choice of trial wave function for Helium: Assume r1 → 0.

EL(R) =
1

ψT (R)
HψT (R) =

1
ψT (R)

„
−

1
2
∇2

1 −
Z
r1

«
ψT (R) + finite terms.

EL(R) =
1

RT (r1)

−

1
2

d2

dr2
1
−

1
r1

d
dr1
−

Z
r1

!
RT (r1) + finite terms

For small values of r1, the terms which dominate are

lim
r1→0

EL(R) =
1

RT (r1)

„
−

1
r1

d
dr1
−

Z
r1

«
RT (r1),

since the second derivative does not diverge due to the finiteness of Ψ at the origin.

Computational Physics I FYS3150

Quantum Monte Carlo

This results in
1

RT (r1)

dRT (r1)

dr1
= −Z ,

and
RT (r1) ∝ e−Zr1 .

A similar condition applies to electron 2 as well. For orbital momenta l > 0 we have

1
RT (r)

dRT (r)

dr
= −

Z
l + 1

.

Similalry, studying the case r12 → 0 we can write a possible trial wave function as

ψT (R) = e−α(r1+r2)er12/2.

The last equation can be generalized to

ψT (R) = φ(r1)φ(r2) . . . φ(rN)
Y
i<j

f (rij),

for a system with N electrons or particles.

Computational Physics I FYS3150

Exam FYS3150/4150, place FV329, Lab

Place and duration
10/12-17/12.
duration: ∼ 45 min
ca 20-25 min for discussion of the project, your
presentation, reproduction of results, test runs etc
20-25 min for questions from one of the five topics listed
below.
Check final exam list by the end of this week, see
webpage. Changes must be communicated to me at
mhjensen@fys.uio.no.

Computational Physics I FYS3150

Exam FYS3150/4150

How to prepare your Talk
You can use slides, ps, pdf, ppt etc files (projector and slide
projector at room FV329). Latex example on webpage.
Choose among projects 4 and 5.
10 mins (3-5 slides) for your presentation, rest of 10-15
mins questions and test of code from classfronter

You should discuss (briefly)
The mathematical model and the physics
Your algorithm and how you implemented it, with perhaps a
selected calculation
How you dealt with eventual comments and your
corrections of these
Any improvement you can think of
And: we welcome your critiscism of the project.

Computational Physics I FYS3150

Exam FYS3150/4150

Pensum/syllabus
Go to http://www.uio.no/studier/emner/matnat/
fys/FYS3150/h08/ and click on syllabus.

Computational Physics I FYS3150

http://www.uio.no/studier/emner/matnat/fys/FYS3150/h08/
http://www.uio.no/studier/emner/matnat/fys/FYS3150/h08/

Exam FYS3150/4150

Topics
Linear algebra and eigenvalue problems. (Lecture notes
chapters 4.1-4.4 and 12.1-12.7 and projects 1 and 3), Blitz
is not part of the curriculum.
Numerical integration, standard methods and Monte Carlo
methods (Lecture notes chapters 7.1-7.4 and 8), MPI is not
part of the curriculum
Monte Carlo methods in physics (Lecture notes chapters 9
and 10, project 5)
Ordinary differential equations (Lecture notes chapters 13
and 14.1-14.3 and project 2)
Partial differential equations (Lecture notes chapter 15,
project 4)

Computational Physics I FYS3150

Exam FYS3150/4150

Linear algebra and eigenvalue problems, chapters 4.1-4.4, 6.4
and 12.1-12.7

Know Gaussian elimination and LU decomposition (project
1)
How to solve linear equations (project 1)
How to obtain the inverse and the determinant of a real
symmetric matrix
Cholesky and tridiagonal matrix decomposition (project 1)
Householder’s tridiagonalization technique and finding
eigenvalues based on this
Jacobi’s method for finding eigenvalues (project 3)
Cubic spline, chapter 6.4.

Computational Physics I FYS3150

Exam FYS3150/4150

Numerical integration, standard methods and Monte Carlo
methods (7.1-7.4 and 8)

Trapezoidal, rectangle and Simpson’s rules
Gaussian quadrature, emphasis on Legendre polynomials,
but you need to know about other polynomials as well.
Brute force Monte Carlo integration
Random numbers (simplest algo, ran0) and probability
distribution functions, expectation values
Improved Monte Carlo integration and importance
sampling.
MPI chapter 7.7 is not part of curriculum.

Computational Physics I FYS3150

Exam FYS3150/4150

Monte Carlo methods in physics (9 and 10)
Random walks and Markov chains and relation with
diffusion equation (project 5)
Metropolis algorithm, detailed balance and ergodicity
(project 5)
Aplications to Ising model (project 5)

Computational Physics I FYS3150

Exam FYS3150/4150

Ordinary differential equations (13 and 14.1-14.3)
Euler’s method and improved Euler’s method, truncation
errors
Runge Kutta methods, 2nd and 4th order, truncation errors
(project 2)
How to implement a second-order differential equation,
both linear and non-linear. How to make your equations
dimensionless.
Boundary value problems, Numerov’s method, shooting
and matching method (chap 14.1-14.3).

Computational Physics I FYS3150

Exam FYS3150/4150

Partial differential equations
Set up diffusion, Poisson and wave equations up to 2
spatial dimensions and time
Set up the mathematical model and algorithms for these
equations, with boundary and initial conditions. The
stability conditions for the diffusion equation.
Explicit, implicit and Crank-Nicolson schemes, and how to
solve them. Remember that they result in triangular
matrices.
How to compute the Laplacian in Poisson’s equation.
How to solve the wave equation in one and two dimensions
(project 5).

Computational Physics I FYS3150

Other courses in Computational Science at UiO

Bachelor/Master/PhD Courses
INF-MAT3350/4350 Numerical linear algebra
MAT-INF3300/3310/4300/4310, PDEs and Sobolev spaces
I and II
INF-MAT3360/4360 PDEs
INF5620/5630/5640 Numerical methods for PDEs, finite
element method
MEK4550 Finite element in solid state mechanics
FYS4410 Computational physics II (Parallelization (MPI),
object orientation, classical statistical physics, simulation of
phase transitions and quantum mechanical systems with
many interacting particles, Monte Carlo, DFT and other
many-body methods)
AST5340 Numerical Simulation, Methods in numerical
simulation in hydrodynamics and plasma physics applied
to astrophysical problems

Computational Physics I FYS3150

Moralism...

. . . and it is feared that the French public, always impatient to
come to a conclusion, eager to know the connections between
general principles and the immediate questions that have
aroused their passions, may be disheartened because they will
be unable to move on at once.
That is a disadvantage I am powerless to overcome, unless it
be by forewarning and forearming those readers who zealously
seek the truth. There is no royal road to science, and only
those who do not dread the fatiguing climb of its steep paths
have a chance of gaining its luminous summits.
Karl Marx, preface to the french edition of Capital (Progress
Publishers, Moscow, 1954).

Computational Physics I FYS3150

AND, GOOD LUCK TO YOU ALL!

Computational Physics I FYS3150

	Main Talk

