
Cython: Interfacing Python with C

Jørgen Høgberget, FV309

Department of Fabulous Physics
University of Oslo, N-0316 Oslo, Norway

Computational Physics

Computational Physics Cython: Interfacing Python with C

Interfacing? Cython?

Interfacing: Creating a bridge of communication between different programming
languages.

Why? Python objects (strings, integers, floats) are not general for all languages.

The ’real world’ language analogue.

We need something to interpret the python objects, translate them, and explain
the translation to C.

This is Cython’s job!

The ’real world’ translator analogue.

Computational Physics Cython: Interfacing Python with C

Why use interfacing? Python vs. C++

C is fast whereas Python is slow.

C can be an abstract mess to newcomers, whereas Python is beautiful and
intuitive (art).

C code usually takes longer to implement (pointers, declarations, segmentation
faults, compilation), whereas Python is straight forward with excellent error
handling.

Getting (large) C codes to be structured and provide a sufficient error feedback
usually requires a high(er) understanding of the language.

Expanding/altering a (large) Python code is very simple in comparison to C/C++.

Computational Physics Cython: Interfacing Python with C

Summary, basic idea

You take the best of two worlds and combine them to fit your
needs.

Computational Physics Cython: Interfacing Python with C

Illustrative example

Computational Physics Cython: Interfacing Python with C

Illustrative example

Computational Physics Cython: Interfacing Python with C

Illustrative example

Computational Physics Cython: Interfacing Python with C

Cython? Why bother?

Reduces program runtime by 50-100 times if done correctly, depending on the
complexity of the code.

Requires very little additional work: 90% of the job is writing the python code!

All Cythonic statements are seperate lines: No need to alter the original code
structures.

Compilation is automatic, all you need to specify is a name.

Cython fully supports the familiar Numpy arrays.

Sections left without any Cython ’seasoning’ are run with Python.

Computational Physics Cython: Interfacing Python with C

A small Python example: 42.5s runtime

from numpy import *

def ca lc () :
n = 10000000
s = 0
c = zeros (n)
for i in range (n) :

c [i] = 1 ;
c [i] +=1;
c [i] −=1;
c [i] *=2 ;
c [i] / = 2 ;
c [i] /= c [i]
s += c [i]

return s / n

pr in t ca lc ()

Computational Physics Cython: Interfacing Python with C

The same thing in standard c++: 0.24s runtime

double ca lc () {
i n t i , n ;
double s ;
n = 10000000;
double * c = new double [n] ;
for (i = 0 ; i <n ; i ++){

c [i] = 1 ;
c [i] += 1 ;
c [i] −= 1;
c [i] *= 2 ;
c [i] /= 2 ;
c [i] /= c [i] ;
s += c [i] ;

}

return s / n ;
}

Computational Physics Cython: Interfacing Python with C

A small Cython example: 0.24s runtime

import numpy as np
c impor t numpy as np
c impor t cython

ctypedef np . f l o a t t DTYPE t

@cython . boundscheck (False)
cdef double ca lc () :

cdef i n t i , n
cdef double s
cdef np . ndarray [DTYPE t] c

. . . (100% equ iva len t code) . . .

Computational Physics Cython: Interfacing Python with C

Cython strategy

Strategy:

Copy your Python code and rename it with .pyx

Copy-paste the import statements.

Assuming your Python code is bug-free, turn off array boundschecks.

Declare variables used in the slow regions of the code.

Remember: Profile your code. No need to cythonize everything.

Computational Physics Cython: Interfacing Python with C

Compiling the linked library

Copy-paste the setup.py file:

from distutils.core import setup
from distutils.extension import Extension
from Cython.Distutils import build_ext

numpy = "/local/lib/python2.5/site-packages/numpy/core/include/"

setup(
cmdclass = {’build_ext’: build_ext},
ext_modules = [Extension("my_lib", ["superfast.pyx"],

include_dirs = [numpy])]
)

Create the linked library by running the setup.py file. Then you may simply
import it:

...$ python setup.py build_ext --inplace

...$ python -c "import my_lib"

Computational Physics Cython: Interfacing Python with C

Example: Project1 FYS3150

C++ -O3, Python and Cython with n = 1000 scaled with 10−4:

C++ with O3 optimization: 1.88s.

Python: 110s.

Cython with one of the original functions cythonized: 2.4s.

Computational Physics Cython: Interfacing Python with C

Exp, sqrt, log etc. in Cython

from l i b c . math c impor t exp as c exp

#RHS f u n c t i o n and the corresponding exact s o l u t i o n
o f Poisson ’ s eq .

cdef double f (double x) :
return 100* c exp (−10*x)

Computational Physics Cython: Interfacing Python with C

Profiling in Python

>>> import profile
>>> profile.run(’profile_me.main()’,sort=1)
total time used: 30.6238 s

1000031 function calls in 19.126 CPU seconds

Ordered by: internal time

ncalls tottime ... percall filename:lineno(function)
1 10.265 ... 19.069 profile_me.py:8(speed_me_up)

1000000 8.731 ... 0.000 profile_me.py:5(<lambda>)
3 0.073 ... 0.024 :0(range)

...

1 0.000 0.000 prof..(set_boundaries)

Do not bother optimizing set_boundaries()..!

Computational Physics Cython: Interfacing Python with C

	Main Talk

