Format for delivery of report and programs

The format of the project is that of a printed file or hand-terit report. The programs should also be
included with the report. Write only your candidate numbetlee first page of the report and state clearly
that this is your report for project 5 of FYS3150, fall 201hefe will be a box marked 'FYS3150’ at the
reception of the Department of Physics (room FV128).

Project 5, Diffusion of neurotransmittersin the synaptic cleft, dead-
line December 12, 3pm

The dominant way of transporting signals between neuroesséncells) in the brain is by means of dif-
fusion of particular signal molecules calledurotransmitter@cross the synaptic cleft separating the cell
membranes of the two cells. A drawing of a synapse is givengnlz
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Figure 1:Drawing of a synapse. The axon terminal is the knoblike stinecand the spine of the receiving neuron is
the bottom one. The synaptic cleft is the small space betteepresynaptic (axon) and postsynaptic (dendritic spine)
membrane. (From Thompson: “The Brain”, Worth Publ., 2000)

Following the arrival of an action potential in the axon té@med a process is initiated in which (i)
vesicles inside the axon terminal (filled with neurotrartsenimolecules) merge with the presynaptic (axon)
membrane and (ii) release neurotransmitters into the sinapft. These neurotransmitters diffuse across
the synaptic cleft to receptors on the postsynaptic sidelwheceives” the signal. A schematic illustration
of this process is shown in Fig. 2(left). Since the transpoocess in the synaptic cleft is governed by
diffusion, we can describe it mathematically by

ou 9

5~ DV*u, (1)
wherew is the concentration of the particular neurotransmittad B is the diffusion coefficient of the
neurotransmitter in this particular environment (sohiergynaptic cleft).

If we assume (i) that the neurotransmitter is released Hyugually on the “presynaptic” side of the
synaptic cleft, and (ii) that the synaptic cleft is roughtyually wide across the whole synaptic terminal,
we can, given the large area of the synaptic cleft comparéd teidth, assume that the neurotransmitter
concentration only varies in the direction across the sgioateft (from presynaptic to postsynaptic side).
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Figure 2:Left: Schematic drawing of the process of vesicle releas@ ihe axon terminal and release of transmitter
molecules into the synaptic cleft. (From Thompson: “TheiBtaWorth Publ., 2000). Right: Molecular structure of
the two important neurotransmittegitamateand GABA

We choose this direction to be thedirection (see Fig. 3). In this cas€r) = u(z), the diffusion equation

reduces to
ou 0%u

Immediately after the release of a neurotransmitter intosgmaptic cleft{ = 0) the concentration profile
in the z-direction is given by
u(z,t =0) = Nd(x), (©)]

whereN is the number of particle released into the synaptic clefpea of membrane.

To get an idea over the time-dependence of the neurotraesmmincentration at the postsynaptic side
(z = d), we can look at the solution of a “free” random walk (i.e., lustacles or particle absorbers in
either direction). The solution of Eq. (2) with the initiabredition in Eq. (3) is given by (see Nelson:
Biological Physicsp. 143 or Lectures notes chapter 12.3)

N a2
u(x’t) = ﬁe /4Dt (4)

The concentration at the postsynaptic sidé, ¢) approaches 0 in the limit— 0 andt — oc.

The above assumption regarding the neurotransmitter mielecindergoing a “free” random walk, is
obviously a simplification. In the true diffusion processtie synaptic cleft the neurotransmitter molecules
will, for example, occasionally bump into the presynaptiembrane they came from. Also at the postsy-
naptic side the neurotransmitters are absorbed by resdptmated on the postsynaptic cell membrane and
are thus (temporally) removed from the solution.

To approach this situation in our mathematical model we ogose the following boundary and initial
conditions withz € [0, d]

u(x=0,t>0)=wug, u(z=d,allt) =0, u(0<z<d,t<0)=0 . (5)
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Figure 3:Schematic drawing of the synaptic cleft in our model. Thekldots represent neurotransmitter molecules,
and the situation shown corresponds to the situation imatelgiafter neurotransmitter release into the synaptit. cle



Hereafter we sef = 1. This corresponds to that (i) for< 0 there are no neurotransmitters in the synaptic
cleft, (ii) for ¢ > 0 the concentration of neurotransmitters at the presynaptindary of the synaptic cleft
(x = 0) is keptfixedatu = uo = 1 in our case, and (iii) that the postsynaptic receptors imately absorb
nearby neurotransmitters so thet 0 on the postsynaptic side of the cleft £ d = 1).

The full solution of the diffusion equation with boundanjtial conditions in Eq. (5) can be found in a
closed form. We will use this solution to test our numericdtalations.

We are thus looking at a one-dimensional problem

O*u(x,t)  Ou(w,t)
ox2 Ot

>0,z €[0,d
or
Ugy = Ut,
with initial conditions, i.e., the conditions at= 0,
u(z,0)=0 O0<z<d
with d = 1 the length of ther-region of interest. The boundary conditions are
u(0,t)=1 ¢>0,

and
u(d,t) =0 t>0.
In this project we want to study the numerical stability aet methods for partial differential equations
(PDESs). These methods are

1. The explicit forward Euler algorithm with discretizedrsi®ns of time given by a forward formula
and a centered difference in space resulting in

_uw, 4+ A —ulz,t)  ulz, by + A) — u(wg, b))

Ut ~

At At
and
u(x + Az, t) — 2u(x,t) + u(x — Az, t)
UII ~ )
Ax?
or
u(z; + Az, tj) — 2u(m;, t;) + u(z; — Az, t;)
Ugy N .
Ax?

2. The implicit Backward Euler with
_uw,t) —ul(w, t — At) ol ty) —u(w, t; — Al)

t ~

At At
and
u(x + Az, t) — 2u(x,t) + u(x — Az, t)
UII ~ Y
Az?
or
u(z; + Az, tj) — 2u(m;, t;) + u(z; — Az, t;)
ul‘l‘ ~ ?
Ax?

3. Finally we use the implicit Crank-Nicolson scheme witlinag-centered scheme @t, ¢t + A¢/2)
Cu(w t+ A —ulz,t)  ulzg, by + A) — u(wg, b))

e At At
The corresponding spatial second-order derivative reads

1 (u(azl + Az, tj) — 2u(w;, t) + u(x; — Az, t;) N

Yoo ™5 Ax?
u(z; + Az, t; + At) — 2u(z;, t; + At) + u(x; — Az, t; + At)
Ax? '
Note well that we are using a time-centered schemetwihAt/2 as center.




a) Find the closed form solution to this problem. You will dedis in order to study the numerical

b)

d)

e

~

f)

a)

accuracy of your results. To find the closed-form solutioe, will need the stationary solution
(steady-state solution). The solution to the steady-gtatkelem is on the formu(z) = Az + b. The
solution for the steady-state caggethat obeys the above boundary conditions is

us(z) =1—=.

You can use this solution to define a new functigm) = u(x) — us(x) with boundary conditions
v(0) = v(d) = 0. The latter is easier to solve both numerically and on a ddésen.

Write down the algorithms for these three methods and guations you need to implement. For
the implicit schemes show that the equations lead to a trigial matrix system for the new values.

Find the truncation errors of these three schemes andtigage their stability properties.

Implement the three algorithms in the same code and perfests of the solution for these three
approaches foAz = 1/10, h = 1/100 using At as dictated by the stability limit of the explicit
scheme. Study the solutions at two time pointandt, whereu(x, t1) is smooth but still signifi-
cantly curved andi(z, t2) is almost linear, close to the stationary state. Rememiagrfdh solving
the tridiagonal equations you can use your code from prdject

Compare the solutions atandts with the analytic result for the continuous problem. WhidHhe
schemes would you classify as the best?

This part is optional but gives you an additional 20% on final score! The above problem can
be solved using Monte Carlo methods and random walks. Wewdllere Farnell and Gibson in
Journal of Computational Physics, volu2@8, pages 253-265 (2005). Choose a constant step length
lo = vV2DAt and equal probability for jumping left and right. Set up thgosithm for solving the
above diffusion problem and write a code to do it. Compare yesults with those from the partial
differential equation solution and comment the results.

This part is also optional, and together with f) gives aditohal 10% score. Change the above
stepsize by using a Gaussian distribution with mean valaed standard deviatiohh The step
length of the random walker is noly = v2DAt£, wheref is random number chosen from the
above Gaussian distribution. Implement this stepsizedgtbgram from f) and compare the results
and comment.



