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Project 5, Diffusion of neurotransmitters in the synaptic cleft, dead-
line December 12, 3pm

The dominant way of transporting signals between neurons (nerve cells) in the brain is by means of dif-
fusion of particular signal molecules calledneurotransmittersacross the synaptic cleft separating the cell
membranes of the two cells. A drawing of a synapse is given in Fig. 1.

Figure 1:Drawing of a synapse. The axon terminal is the knoblike structure and the spine of the receiving neuron is
the bottom one. The synaptic cleft is the small space betweenthe presynaptic (axon) and postsynaptic (dendritic spine)
membrane. (From Thompson: “The Brain”, Worth Publ., 2000)

Following the arrival of an action potential in the axon terminal a process is initiated in which (i)
vesicles inside the axon terminal (filled with neurotransmitter molecules) merge with the presynaptic (axon)
membrane and (ii) release neurotransmitters into the synaptic cleft. These neurotransmitters diffuse across
the synaptic cleft to receptors on the postsynaptic side which “receives” the signal. A schematic illustration
of this process is shown in Fig. 2(left). Since the transportprocess in the synaptic cleft is governed by
diffusion, we can describe it mathematically by

∂u

∂t
= D∇2u, (1)

whereu is the concentration of the particular neurotransmitter, and D is the diffusion coefficient of the
neurotransmitter in this particular environment (solventin synaptic cleft).

If we assume (i) that the neurotransmitter is released roughly equally on the “presynaptic” side of the
synaptic cleft, and (ii) that the synaptic cleft is roughly equally wide across the whole synaptic terminal,
we can, given the large area of the synaptic cleft compared toits width, assume that the neurotransmitter
concentration only varies in the direction across the synaptic cleft (from presynaptic to postsynaptic side).
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Figure 2:Left: Schematic drawing of the process of vesicle release from the axon terminal and release of transmitter
molecules into the synaptic cleft. (From Thompson: “The Brain”, Worth Publ., 2000). Right: Molecular structure of
the two important neurotransmittersglutamateandGABA.

We choose this direction to be thex-direction (see Fig. 3). In this caseu(r) = u(x), the diffusion equation
reduces to

∂u

∂t
= D

∂2u

∂x2
. (2)

Immediately after the release of a neurotransmitter into the synaptic cleft (t = 0) the concentration profile
in thex-direction is given by

u(x, t = 0) = N δ(x), (3)

whereN is the number of particle released into the synaptic cleft per area of membrane.
To get an idea over the time-dependence of the neurotransmitter concentration at the postsynaptic side

(x = d), we can look at the solution of a “free” random walk (i.e., noobstacles or particle absorbers in
either direction). The solution of Eq. (2) with the initial condition in Eq. (3) is given by (see Nelson:
Biological Physics, p. 143 or Lectures notes chapter 12.3)

u(x, t) =
N√
4πDt

e−x2/4Dt . (4)

The concentration at the postsynaptic sideu(d, t) approaches 0 in the limitt → 0 andt → ∞.
The above assumption regarding the neurotransmitter molecules undergoing a “free” random walk, is

obviously a simplification. In the true diffusion process inthe synaptic cleft the neurotransmitter molecules
will, for example, occasionally bump into the presynaptic membrane they came from. Also at the postsy-
naptic side the neurotransmitters are absorbed by receptors located on the postsynaptic cell membrane and
are thus (temporally) removed from the solution.

To approach this situation in our mathematical model we can impose the following boundary and initial
conditions withx ∈ [0, d]

u(x = 0, t > 0) = u0, u(x = d, all t) = 0, u(0 < x < d, t < 0) = 0 . (5)

x=d

x=0

x

dendrite (postsynaptic)

axon (presynaptic)

synaptic cleft

Figure 3:Schematic drawing of the synaptic cleft in our model. The black dots represent neurotransmitter molecules,
and the situation shown corresponds to the situation immediately after neurotransmitter release into the synaptic cleft.
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Hereafter we setd = 1. This corresponds to that (i) fort < 0 there are no neurotransmitters in the synaptic
cleft, (ii) for t > 0 the concentration of neurotransmitters at the presynapticboundary of the synaptic cleft
(x = 0) is keptfixedatu = u0 = 1 in our case, and (iii) that the postsynaptic receptors immediately absorb
nearby neurotransmitters so thatu = 0 on the postsynaptic side of the cleft (x = d = 1).

The full solution of the diffusion equation with boundary/initial conditions in Eq. (5) can be found in a
closed form. We will use this solution to test our numerical calculations.

We are thus looking at a one-dimensional problem

∂2u(x, t)

∂x2
=

∂u(x, t)

∂t
, t > 0, x ∈ [0, d]

or
uxx = ut,

with initial conditions, i.e., the conditions att = 0,

u(x, 0) = 0 0 < x < d

with d = 1 the length of thex-region of interest. The boundary conditions are

u(0, t) = 1 t > 0,

and
u(d, t) = 0 t > 0.

In this project we want to study the numerical stability of three methods for partial differential equations
(PDEs). These methods are

1. The explicit forward Euler algorithm with discretized versions of time given by a forward formula
and a centered difference in space resulting in

ut ≈
u(x, t+∆t)− u(x, t)

∆t
=

u(xi, tj +∆t)− u(xi, tj)

∆t

and

uxx ≈ u(x+∆x, t) − 2u(x, t) + u(x−∆x, t)

∆x2
,

or

uxx ≈ u(xi +∆x, tj)− 2u(xi, tj) + u(xi −∆x, tj)

∆x2
.

2. The implicit Backward Euler with

ut ≈
u(x, t)− u(x, t−∆t)

∆t
=

u(xi, tj)− u(xi, tj −∆t)

∆t

and

uxx ≈ u(x+∆x, t) − 2u(x, t) + u(x−∆x, t)

∆x2
,

or

uxx ≈ u(xi +∆x, tj)− 2u(xi, tj) + u(xi −∆x, tj)

∆x2
,

3. Finally we use the implicit Crank-Nicolson scheme with a time-centered scheme at(x, t+∆t/2)

ut ≈
u(x, t+∆t)− u(x, t)

∆t
=

u(xi, tj +∆t)− u(xi, tj)

∆t
.

The corresponding spatial second-order derivative reads

uxx ≈ 1

2

(

u(xi +∆x, tj)− 2u(xi, tj) + u(xi −∆x, tj)

∆x2
+

u(xi +∆x, tj +∆t)− 2u(xi, tj +∆t) + u(xi −∆x, tj +∆t)

∆x2

)

.

Note well that we are using a time-centered scheme wiht+∆t/2 as center.
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a) Find the closed form solution to this problem. You will need this in order to study the numerical
accuracy of your results. To find the closed-form solution, we will need the stationary solution
(steady-state solution). The solution to the steady-stateproblem is on the formu(x) = Ax+ b. The
solution for the steady-state caseus that obeys the above boundary conditions is

us(x) = 1− x.

You can use this solution to define a new functionv(x) = u(x) − us(x) with boundary conditions
v(0) = v(d) = 0. The latter is easier to solve both numerically and on a closed form.

b) Write down the algorithms for these three methods and the equations you need to implement. For
the implicit schemes show that the equations lead to a tridiagonal matrix system for the new values.

c) Find the truncation errors of these three schemes and investigate their stability properties.

d) Implement the three algorithms in the same code and perform tests of the solution for these three
approaches for∆x = 1/10, h = 1/100 using∆t as dictated by the stability limit of the explicit
scheme. Study the solutions at two time pointst1 andt2 whereu(x, t1) is smooth but still signifi-
cantly curved andu(x, t2) is almost linear, close to the stationary state. Remember that for solving
the tridiagonal equations you can use your code from project1.

e) Compare the solutions att1 andt2 with the analytic result for the continuous problem. Which of the
schemes would you classify as the best?

f) This part is optional but gives you an additional 20% on thefinal score! The above problem can
be solved using Monte Carlo methods and random walks. We follow here Farnell and Gibson in
Journal of Computational Physics, volume208, pages 253-265 (2005). Choose a constant step length
l0 =

√
2D∆t and equal probability for jumping left and right. Set up the algorithm for solving the

above diffusion problem and write a code to do it. Compare your results with those from the partial
differential equation solution and comment the results.

g) This part is also optional, and together with f) gives an additional 10% score. Change the above
stepsize by using a Gaussian distribution with mean value1 and standard deviation0. The step
length of the random walker is nowl0 =

√
2D∆tξ, whereξ is random number chosen from the

above Gaussian distribution. Implement this stepsize to the program from f) and compare the results
and comment.
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