
Format for delivery of report and programs

The format of the project is that of a printed file or hand-written report. The programs should
also be included with the report. Write only your candidate number on the first page of the report
and state clearly that this is your report for project 5 of FYS3150, fall 2011. There will be a box
marked ’FYS3150’ at the reception of the Department of Physics (room FV128).

Project 5, Variational Monte Carlo studies of light atoms,
deadline December 12, 3pm

For this project you can build upon program programs/chapter14/program1.cpp (or the f90 ver-
sion). You will need to parallelize exercises b-d and you should therefore use parts of project
3. You can also use the corresponding python code under the link for project 5. This has been
written by Brynjar Arnfinsson.

The aim of this project is to investigate the variational Monte Carlo method applied to light
atoms such as helium and beryllium. Various trial wave functions are to be tested and compared.
The aim is to find wave functions which reproduce the best possible theoretical ones (which are
close to the experiment) energies as best as possible. We will in the text call these energies
’experimental ones’, since they are very close to data.

Ground state energy of helium

Helium consists of two electrons and a nucleus with charge Z = 2. We are going to use the
Born-Oppenheimer approximation in modelling the system, assuming thereby that we can neglect
nucleonic degrees of freedom. The nucleus, whose extension is on the order of ∼ 10−15 m (roughly
six order of magnitude smaller than interatomic distances), is taken to be a point charge with
mass much larger than that of the electrons. Electrostatic forces constitute then the essential
contribution to the potential energy, given in this case by the attraction experienced by every
electron from the nucleus and the repulsion between the two electrons.

We label r1 the distance from electron 1 to the nucleus and similarly r2 the distance between
electron 2 and the nucleus. The contribution to the potential energy from the interactions between
the electrons and the nucleus is
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and if we add the electron-electron repulsion with r12 = |r1 − r2|, the total potential energy
V (r1, r2) is
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yielding the total Hamiltonian
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and Schrödinger’s equation reads
Ĥψ = Eψ. (4)

All equations are in so-called atomic units. The distances ri and r12 are dimensionless. To have
energies in electronvolt you need to multiply all results with 2 × E0, where E0 = 13.6 eV. The
’experimental’ energy for the ground state of helium in atomic units is a.u. is EHe = −2.9037 a.u..
The basic wave functions we will employ in this exercise are

ψT1(r1, r2, r12) = exp (−α(r1 + r2)), (5)

and

ψT2(r1, r2, r12) = exp (−α(r1 + r2)) exp

(
r12

2(1 + βr12)

)
, (6)
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with β as a new variational parameter. Your task is to perform a Variational Monte Carlo calcu-
lation using the Metropolis algorithm to compute the integral

〈H〉 =

∫
dRψ∗T (R)H(R)ψT (R)∫
dRψ∗T (R)ψT (R)

, (7)

with the above trial wave functions.

a) Find closed form expressions for the local energy (see below) for the above two trial wave
functions and explain shortly how these trial functions satisfy the cusp condition when r1 → 0
or r2 → 0 or r12 → 0. The first wave function

ΨT (r1, r2) = e−α(r1+r2)

gives a closed-form expression
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while the second wave function results in
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}
b) Compute

〈H〉 =

∫
dRΨ∗T (R)H(R)ΨT (R)∫
dRΨ∗T (R)ΨT (R)

, (8)

for the helium atom using a variational Monte Carlo method employing the Metropolis
algorithm to sample over different states. You will have to calculate

〈H〉 =

∫
P (R)EL(R)dR, (9)

where EL is the local energy. Here all calculations are performed with the trial wave function
ψT1(r1, r2, r12) only. Study the stability of your calculation as function of the number of
Monte Carlo samples and compare these results with the exact variational result

〈H〉 = α2 − 2α

(
Z − 5

16

)
. (10)

Your Monte Carlo moves are determined by

R′ = R + δ × r, (11)

where r is a random number from the uniform distribution and δ a chosen step length. In
solving this exercise you need to devise an algorithm which finds an optimal value of δ for
each variational parameter α, resulting in roughly 50% accepted moves.

Give a physical interpretation of the best value of α. Make a plot of the variance as a
function of the number of Monte Carlo cycles. You should parallelize your code as you did
in project 3.

c) Use thereafter the optimal value for α as a starting point for computing the ground state
energy of the helium atom using the trial wave functions ψT2(r1, r2, r12). In this case you
need to vary both α and β. The strategy here is to use α from the previous exercise, [1b)]
and then vary β in order to find the lowest energy as function of β. Thereafter you change
α in order to see whether you find an even lower energy and so forth.

Which one of the wave functions ψT1(r1, r2, r12) and ψT2(r1, r2, r12) would you prefer? Give
arguments for your choices.
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Ground state of beryllium atom

d) The new item you need to pay attention to is the calculation of the so-called Slater De-
terminant. This is an additional complication to your VMC calculations. If we stick to
hydrogen-like wave functions, the trial wave function for Beryllium can be written as

ψT (r1, r2, r3, r4) = Det (φ1(r1), φ2(r2), φ3(r3), φ4(r4))

4∏
i<j

exp

(
arij

(1 + βrij)

)
, (12)

where Det is a Slater determinant and the single-particle wave functions are the hydrogen
wave functions for the 1s and 2s orbitals. Their form within the variational ansatz are given
by

φ1s(ri) = e−αri , (13)

and
φ2s(ri) = (1− αri/2) e−αri/2. (14)

You can approximate the Slater determinant for the ground state of the Beryllium atom by
writing it out as

ψT (r1, r2, r3, r4) ∝ (φ1s(r1)φ2s(r2)− φ1s(r2)φ2s(r1)) (φ1s(r3)φ2s(r4)− φ1s(r4)φ2s(r3)) .
(15)

Here you can see a simple code example which implements the above expression

f o r ( i = 0 ; i < number par t i c l e s ; i++) {
argument [ i ] = 0 . 0 ;
r s i n g l e p a r t i c l e = 0 ;
f o r ( j = 0 ; j < dimension ; j++) {

r s i n g l e p a r t i c l e += r [ i ] [ j ]∗ r [ i ] [ j ] ;
}
argument [ i ] = s q r t ( r s i n g l e p a r t i c l e ) ;

}
// S l a t e r determinant , no f a c t o r s as they vanish in Metropo l i s r a t i o
wf = ( p s i 1 s ( argument [ 0 ] ) ∗ p s i 2 s ( argument [ 1 ] )

−p s i 1 s ( argument [ 1 ] ) ∗ p s i 2 s ( argument [ 0 ] ) ) ∗
( p s i 1 s ( argument [ 2 ] ) ∗ p s i 2 s ( argument [ 3 ] )
−p s i 1 s ( argument [ 3 ] ) ∗ p s i 2 s ( argument [ 2 ] ) ) ;

For beryllium we can easily implement the explicit evaluation of the Slater determinant. The
derivatives of the single-particle wave functions can be computed analytically and you should
consider using the closed form expression for the local energy (not mandatory, you can use
numerical derivatives as well although a closed form expressions speeds up your code).

For the correlation part

ΨC =
∏
i<j

g(rij) = exp

∑
i<j

arij
1 + βrij

,
we need to take into account whether electrons have equal or opposite spins since we have to
obey the electron-electron cusp condition as well. For Beryllium you can fix electrons 1 and
2 to have spin up while electrons 3 and 4 have spin down. When the electrons have equal
spins

a = 1/4,

while for opposite spins (as for the ground state of helium)

a = 1/2.
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Set up the Hamiltonian of the system and compute the ground state energy and compare
with the ’experimental’ value EBe = −14.667a.u. Run calculations with and without the
correlation part (Jastrow factor). Comment your results.

e) This part is optional but gives you an additional 20% on the final score! Compute the one-
body density function for helium with an electron in the 1s orbital using the optimal (at the
energy minimum) trial wave functions ψT1 and ψT2. The one-body density is given by

ρ(r1)1s =

∫
dr2 |ψTi(r1, r2)|2 .

The variable r1 is in cartesian coordinates. Since the 1s state is isotropic (no angle-
dependence, as applies for all s waves), there is no angle dependence. Make a plot of
the one-body density as function of r1 only for the two trial wave functions. Comment your
results and discuss also the results in case your wave function is based on only the product
of two hydrogen-like wave functions. In this case, there is no repulsion between the two
electrons and we have what is called a non-interacting case. The difference between this case
and the above trial wave functions tells a story about the role of the interaction between
two electrons and correlations built upon that. The non-interacting wave function is

ψnon−interact(r1, r2) = (2

(
Z√
4πa0

)3/2

exp (−Zr1/a0))(2

(
Z√
4πa0

)3/2

exp (−Zr2/a0)).

Here Z = 2 and a0 is the Bohr radius, which is set to one in our calculations above due to
our choice of dimensionless variables. Plot the resulting one-body density from this wave
function as well and comment your results.

f) This part is also optional but gives you an additional 10% on the final score! Compute the
one-body density for the optimal wave function of the beryllium atom, with and without
the correlation part in the wave function. You will now see two peaks, one corresponding to
the 1s part of the Slater determinant and one corresponding to the 2s part. Comment your
results. Are there differences between the role of correlations in the helium atom and the
beryllium atom?
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