INSTRUMENTATION

using

-‘t sl * : pordli: ; * : e o'l \.1'-‘
\ % S T
oy et .
P AP 5

kd k LS
. L -ﬁ-l IF
# o 4
W ". =k b
B
: 2
T i



History of this lecture

In real mode, the registers on the 10-bus can be accessed directly
from the C-program.

In the mid-90's some instrumentation was done - here at UiO - using
Microsoft DOS. Here the hardware could be accessed directly, since
MS-DOS runs in real mode.

With Windows came more complicated procedures for accessing the
hardware. It was observed that Linux has a way of accessing the
hardware directly (ioperm) - which led to the first version of this lecture.



Devices and drivers - definition

device

The hardware, attached to some kind of bus. In instrumentation we
are mainly concerned with one type of device: an interface between
an internal bus and the external world. It could be an external bus
(e.g. USB) or signal (e.g. audio).

Examples of PC devices: parallel port controller, USB controller,
sound card, graphics card, network interface controller (NIC).

driver

Software that handles a device. It typically takes care of reading data
from and writing data to the device, but first it usually needs to detect
the (presence of the) device and set it up properly.



Mission:
Perform a measurement or control a signal
on an interface (e.g. parallel port).

Method:
v standard IBM-PC type of computer @
v free/opensource OS based on Linux kernel

» only use free/opensource code

(It is possible to install LabView and various other proprietary and freeware software in Linux.
But this lecture focuses on using the general free tools that come with the Linux distribution.)



THINK CONCEPT —
NOT APPLICATION

The originally intended approach is that one would use bundled
or freely available fools. Instead of deciding which of several
ready-made apps are best suited, general fools are combined to
achieve the exact functionality that is wanted.

Compare this to:

Purchasing (or pirate-copying) an application Y, more or less
suited to solve problem X. Some apps can be used as tools, but
most often they are not good bricks for building.



DISPOSITION OF THIS LECTURE

(1) “THEORY”
(2) PRACTICAL DEMO



Control signal using real-mode

|O-device@0x3f8

|O-data bus

|O-address bus

data bus

RAM




|_
Y.

1K

— <
—
— -
- -
— -
— -
O o
- -
— -
— -
— O
— -
- -
— -
=

Q

™
—

Controlling a signal: Test-setup with LED on data-line O
on the parallel port



Measurement

| computer
analog digital |
signal AD value
Conve;ter |/O-device
A data
measurement , reference value | adldress value
probe (calibration) - value
* physical size
physical world | Y
CPU

register




A/D

Measurement in real-mode

printer

|—> |O-device@0x123

|O-device@0x171 J

|O-data bus

. |O-address bus

data bus

RAM

inb 0x123, ax
outb ax, Ox171




We didn't get real :-)

The operatingsystem (OS)
of modern computers doesn't
use real-mode. Why not?

(Real-mode means that the programs running on the computer have direct
access to the hardware, i.e. the cpu-instructions use the physical addresses

to access the RAM and hardware devices directly. Modern operatingsystems
allow user-applications only restricted access to RAM space, and the hardware
cannot normally be accessed directly from the user-application.)



“*hacker attack” from the outside?
okay ..

but ...

what about

" Copyright mackaycartoons.net.
- Reprinted with permission from
the artist.

bugs that “attack” from the inside?



Two mechanisms to Increase
the reliablility of the operatingsystem

» protected mode — user programs are not
allowed to run all kinds of CPU-instructions

- address mapping — the programs use logical
addresses (virtual addresses) that point into a
table of physical addresses. A program cannot
“reach” all memory regions in RAM,; it can
access only regions “given” (allocated) to the
program by the OS.



NMemory mapping:

a process appears to see all
memory locations, but most
addresses are not assigned
and can't be used, while the
rest are mapped into one or

more regions of the actual
physical RAM

Protects the other
processes' RAM from
- computer viruses

- USEr errors

- code bugs

process
1

process 1 can
access just this
part of RAM

Physical
RAM

process 2 can
access just this
part of RAM

Simple example: Two processes
each have been assigned one
region of the physical RAM



NMemory mapping:

a process appears to see all
memory locations, but most
addresses are not assigned
and can't be used, while the
rest are mapped into one or

a region that
process 1 can

more regions of the actual access
physical RAM

Physical
Protects the other RAM

processes' RAM from
- computer viruses

- USEer errors

- code bugs

process
2

a region that
process 2 can
access

not assigned
to process 2

a region that
process 2 can
access

A process typically has access
to several separate regions of
the physical RAM



Physical
address space
(array of
bytes)

RAM

—~—

block of
PAGE_SIZE
number of bytes

block |
#1000

block of
PAGE_SIZE
number of bytes

block
#1142

block
#1155

physical address =
1155 * PAGE_SIZE + 7845

G5 L

G¥8.

Page table

— T

1000

1142

1155

index 2178

8L1¢

ssalppe |eolbo)

G¥8.

Principle of memory mapping. CPU-instructions use logical addresses. The CPU
looks these up in a table to obtain the physical address to use on the address bus.



Three important mechanisms

For reliability: Protected mode,
memory mapping

For flexibility: Multitasking

Each one makes it more challenging to write a driver.



Multitasking

 Process-thread is divided between the
processes

* Programs apparently run simultaneously
e In reality, fragments of each thread run in turn

« This implies that programs often are in a state
of having to wait for the CPU (i.e. they are put
asleep and then woken up later)



Three important mechanisms

For reliability: Protected mode,
memory mapping

For flexibility: Multitasking

Each one makes it more challenging to write a driver.



Multitasking

(CPU-instructions) 10

12

16

Process 3

Process 5

Process 2

Process 6

Process 1 rocess 4



Data corruption

In a multitasking environment, data (variables) can be manipulated by
several processes. For example, several processes might be using the
serial driver.

As a result, one instance can change data (a variable in the driver
code) while another instance is working on the same data!

Hence a locking-mechanism must be added to the driver so that other
iInstances will wait until an instance is done manipulating the data.

If you want to learn about how to use semaphores, spinlocks or take
other measures to avoid data corruption in a driver, see chapter 5 of
the book

Linux Device Drivers, 3" edition,
http://lwn.net/images/pdf/LDD3/ch05.pdf.

It is difficult to add protection to a driver later. The driver should be
designed with protection in mind from the very start.


http://lwn.net/images/pdf/LDD3/ch05.pdf

How can the user perform
measurements and control
signals when the hardware
IS 1solated from the user's

code?




User-programs

—

: Software libraries
ioperm N

Linux kernel

:

Hardware

ASAS[
[ENIIIA

Cm

Shell model. Protected mode. User programs have to use system calls to gain access to the
kernel. Only the kernel has access to the hardware. One exception is the use of ioperm().



IPC - InterProcess Communication

There are in fact many ways for processes to communicate with each other, and for each pr
to communicate with the kernel

4 V signal il A

system call

unix socket

ioperm() ardware

(named) pipe

VFS
User space < shared memor User space
process #1 i process #2 KERNEL
message queue mmap
sysfs/procfs

semaphore (lock)

\ F-ile on | jwnetlink socket
HDD




The most usual way of
userspace<->kernel communication:

The system call

When the user process executes a special kind of
instruction, the CPU switches mode and starts
executing code in kernel context, i.e.

» code which is part of the kernel starts running
(while the user process is put on hold - waiting)
 the kernel code is allowed to use cpu-instructions
that are not allowed in user mode



Another way of userspace<->kernel
communication: Special filesystems

Two filesystems exist, with (virtual) files that can be used (among other things) to
get information about a device or control a device. These special filesystems allow
the userspace process to communicate with the kernel (without using a system

caII
{/sfs (/sys filesystem) - read/write files here to get info about or control drivers
« procfs (/proc filesystem) - additional information/control not available in sysfs

sysfs is

« an in-memory filesystem - a tree of directories and files

 usually mounted at /sys

« a way for processes in userspace to obtain information about devices
in the kernel (by simply reading from a file under /sys)

* also a way for processes in userspace to control devices and

drivers in the kernel (by simply writing to a file under /sys)

* intended to replace procfs for some applications



Examples of files in /proc
ﬂ:ind the model of the harddrive: \

mycomputer> cat /proc/scsi/scsi

Attached devices:

Host: scsi0 Channel: 00 Id: 00 Lun: 00
Vendor: ATA  Model: ST3320620AS  Rev: 3.AA
Type: Direct-Access ANSI SCSI revision: 05

\ /
~

If the computer has two network cards, enable packet
forwarding from one to the other:

root@mycomputer# echo 1 > /proc/sys/net/ipv4/ip_forward

. /




Another way to do IPC:
Sockets

Sockets are means of communication. Sockets can be a special files (unix sockets) or
ip-addresses (network communication). Data written to the socket by one process can
be read by the other. Special system calls are used: socket(), bind(), accept(), connect().

Example:

mycomputer> Is -I /dev/log
srw-rw-rw- 1 root root 0 Mar 7 10:35 /dev/log

Various processes can sen%
\ log-messages to /dev/log.
The background process
with the letter 's' in syslogd will read and
the output from 'Is -, forward them to the
i seElEe approriate place, such

as a logfile or email

Special files that start




Another way to do IPC:

Pipes are means of communicati(!g!]g@&n processes on the local computer.
Named pipes are special files that two processes can open and use to exchange
data. The unix pipeline consists of processes that send data from one to the other
via pipes:

du -ks | grep -v brynjar | grep -v turid | sort -n | tee diskbruk.txt

Example of a named pipe:

mycomputer> Is -l /dev/initctl
pPrw------- 1 root root 0 Apr 5 02:07 /dev/initctl

A

Special files that start
with the letter 'p' in
the output from'Is -I',
are (named) pipes.

N _




A privileged user with more access:
The “root” user

= s allowed to run more system calls, e.qg.
loperm()

= has access to all files in the system

= has a considerably larger chance of
damaging the reliable operation of the system
= root-user should mainly be used for system
administration tasks and (some) system
maintenance “background programs”, so
called “daemons”



Here we will focus on three alternative
mechanisms for userspace<->hardware
communication

1) Establish communication with an existing standard
driver by opening a device-file (i.e. we use VFS). Then
exchange data by writing to and reading from open file.

2) A process running as root calls the ioperm() system
call to create direct access from the process (user space)
to hardware registers. After that, data can be written
directly to (or read directly from) the hardware registers.

3) Loading our own driver into the kernel. The driver will
use VFS. This means we can use standard read() and
write() to exchange data with the hardware.



More details about how we can communicate with our
hardware, and a 4th way that is not mentioned in the book:

(1) use an existing driver
(runs in kernel space - is compiled in or is loaded as a kernel module)
** BEST WAY, IF APPROPRIATE DRIVER EXISTS

(2) use ioperm() system call to allow direct
addressing of a (limited) range of io-adresses
from a privileged (root) program

*** REQUIRES ROOT-ACCESS

(3) write a new kernel module (which is

loaded into the kernel by the root-user)

*** REQUIRES KNOW-HOW AND CAUTION

*** ERROR IN DRIVER CAN MAKE THE
SYSTEM UNRELIABLE

(4) write a minimalistic root-prog using FUSE, then
write a userprogram to access the root-prog
using the file-operations fread/fwrite



Use of existing or specifically developed driver. Read
operation.

user programs

—

shared libraries

kernel

driver

hardware

read()
system call

Data is transferred from the hardware via a driver and VFS (virtual files
in the kernel, when the user-program calls fread() (standard C-library ft



Use of existing or specifically developed driver. Write
operation.

user programs

_~ shared libraries

hardware

write()
system call

Data is transferred to the hardware via the driver and VFS in the kernel,
when the user-program calls fwrite() (standard C-library function-call).



UuscEr programs
~~ shared libs

Linux kernel
@\

hardware

FUSE
runs as
normal user

read/write
system call

FUSE allows the driver to be implemented as a root-program in
userspace while the main application program is run as a normal user.



The devicefile has a number that iIs associated
with a driver: The major number.

When a driver is written, a uniqgue major number must be dedicated to it. The number i
in the driver. The devicefile will then refer to this number. In this manner, we get in touc

right driver when we open the devicefile.

mycomputer> Is -l /dev/ttyS0
crw-rw---- 1 root uucp 4, 64 Feb 15 14:06 /dev/itySO

/

@

Major number
- selects which
driver to use

V4

_4

Minor number
- Is passed as an
argument to the

driver
4

mycomputer> grep ttyS /proc/devices
4 ttyS



A driver acting as a frontend to
a selection of “home made” drivers:

The miscellaneous driver

mycomputer> Is -l /dev/myfile
crw-rw---- 1 root root 10, 200 Feb 15 14:06 /dev/myfile

Minor number
Major number - now instructs the
- 10 selects the miscellaneous
miscellaneous driver which
" driver W \'subdriver' to use /

For a simple 'homemade’ driver one can use the “misc” driver as the m.
The minor number will select which 'homemade' driver to use.



udev - a recent development

udev saves us the need to create files in the /dev directory. The driver itself can
now - via udev - create the files in /dev that it wants. When the kernel detects new
hardware it signals this via a socket (between the kernel and userspace)

that udev is listening to.

Traditionally - and in the demo - the devicefile is created manually
mknod /dev/example ¢ 10 200
and the number 200 is 'hardwired' into the driver. But more recently
it has become normal to have the major number created dynamically, by
using the kernel call (in the driver):
int alloc_chrdev_region(dev_t *dev, unsigned int firstminor,
unsigned int count, char *name);
and then have udev create the devicefile.

Obsolete concepts: functionality of devfs, hotplug and HAL are now in udev



Every file has an accessmode, a kind of code that is stored along
with the file and that determines which users have access to read

and/or write to it:

mycomputer> Is - /dev/ttyS0O
crw-rw---- 1 root stud 4, 64 Feb 15 14:06 /dev/ttyS0O

-—

all others have no rights

users in the group 'stud’ can (r)ead and (w)rite

the file is a devicefile for a character-device



A given user is given access to certain files. In that way the user also
gains access to the kernel and the hardware, thanks to VFS:

kernelspace ——— glibc function
4_. 7 "
serialbus-driver _-¥  open() fopen(‘/dev/ttySQ")
(major# = 4) o N glibc function
47 J system call fclose()
xocopen() 47 aeesl glibc function ?
//.-’ [ ] X _>
xxx_release() “ ure il system call —® fread() user-
xxx_read() 4- """ reriel] - glibc function - program
| system call . fprintf()
xxx_write() -j------; - »  write()
| userspace

fp = fopen(“/dev/ttyS0”, “rw”);
fprintf(fp, “this is a test”);
fgets(fp, *measured_value);

Standard C-library-call fprintf() in turn uses syscall write(), fgets() uses syscall read(), fopen() use:
open(). In the driver there is a function that implements each fileoperation system call. (This partic
mentions the serial driver, a driver that is not dealt with further in the textbook or the lecture.)



Create and use a driver-program

Action: editing a textfile with extension .c
Tool: texteditor-program, e.g. textbased Emacs

\

Action: Compiling the sourcecode into executable code
Tool: The C-compiler in GCC

/\

Action: Load exec code into kernel

Tools: insmod or modprobe.

Your own kernel module - a driver in the
kernel (or kernel-part of a complex driver that
also has a part in userspace)

Action: Run the program
Tool: The shell BASH

Root-program or just normal user-program
(a driver in userspace)




Preparation for demonstration
- understanding the code

We are going to demonstrate how to write a driver. That is,
we will present the sourcecode of a driver.

We'll compile this code and confirm that it works as
intended.

But first we'll look closely at the code, one logical part
at a time.



Sourcecode
1- the functionality we want

Our functionality in the driver is to control dataline 0 on the parallel port. We will
implement this functionality in the programming language “C”. The functionality is
taken care of by the following C-code:

#define PORTADDRESS 0x378 /* usually 0x378, perhaps 0x278 */

if (kjernebuffer[0] =="1") {
outb(1, PORTADDRESS);
} else {
outb(0, PORTADDRESS);

}

When we compile the above code, the result is (machine language) instructions for
the CPU. Because the instructions will run in kernel context, the outb instruction is
allowed/permitted. What this instruction does, is to send a datavalue to the hardware
at the given portaddress.



Sourcecode
2 — talking to the driver

The driver will reside (live) in kernel space. In order to use the driver we have to
somehow send some data to it. The “talking” will take place in userspace, where
all the normal programs run. This is how the OS is designed - in order to ensure
stable operation. To pass our data (actually the first char in an array of char) from
userspace to (our driver in) kernelspace, the following code can be used:

static char *kjernebuffer;
our_write( ..., const char *brukerbuffer) {

copy_from_user(kjernebuffer, brukerbuffer, antall_tegn);

The OS will call our function our write when we write to the devicefile from userspace.
The data from userspace arrives in char array brukerbuffer. All the OS “magic” is taken
care of by copy from_user, which copies data from one virtual address space to another.



Sourcecode
2 — talking to the driver

The driver will reside (live) in kernel space. In order to use the driver we have to
somehow send some data to it. The “talking” will take place in userspace, where
all the normal programs run. This is how the OS is designed - in order to ensure
stable operation. To pass our data (actually the first char in an array of char) from
userspace to (our driver in) kernelspace, the following code can be used:

static char *kjernebuffer;
our_write( ..., const char *brukerbuffer) {

copy_from_user(kjernebuffer, brukerbuffer, antall_tegn);

The OS will call our function our write when we write to the devicefile from userspace.
The data from userspace arrives in char array brukerbuffer. All the OS “magic” is taken
care of by copy from_user, which copies data from one virtual address space to another.



Sourcecode
3 —telling VFS what to do

The OS cannot read our minds. It doesn't know that we want our function our write
to be called when we write to our devicefile. The following code will tell VFS that we
want our_write() to be called when our userspace program calls the standard
input/output-function write():

struct file_operations our_fileoperations ={ ..., write: our_write, ... };
struct miscdevice our_device = { ..., &our_fileoperations };
static int our_init(void) { misc_register(&our device); ...};

module_init(our init);



Sourcecode
4 — |et devicefile find its driver

Somehow the OS must be told, when we open the file, which driver to use. To achieve
this, the file and the driver share an identification number called the *

#define 200
struct miscdevice our_device = { , "our name", &our_fileoperations };

To create a devicefile pointing to devicedriver 200 of the misc handler, use this command:

mknod /dev/ourfilename ¢ 10 200

*In our example the MAJOR NUMBER points to the miscellaneous devices handler and the
points to the actual driver. For standard/inbuilt drivers — e.g. the serialport driver — the
driver is located by its MAJOR NUMBER directly, and the miscellaneous devices handler isn't used.



Practical demonstration

The audience will observe while |

a) use Emacs to edit and gcc to compile the driver in the
traditional unix “text-based” way

b) load the driver into the kernel using insmod

c) control the current passing through the LED located on the
back of the computer — | am writing either “1” or “0” to the
driverfile — the LED lits up when | type a “1” and turns off
when | type a “0”



Practical demonstration
- In multiple terminal windows

To compile eks5.c:
mycomputer> make
mycomputer> cp eks5.ko /tmp

To send '1' to the driver:

To load the new kernel module: mycomputer> echo 1 > /dev/eks5
root@mycomputer# cd /tmp
root@mycomputer# insmod eks5.ko To send something else to the driver:

_ mycomputer> echo a > /dev/eks5
To see new messages in the system log:

root@mycomputer# tail -f /var/log/messages

To create the device file:
root@mycomputer# mknod /dev/eks5 ¢ 10 200

To give all users write-access to the devicefile:
root@mycomputer# chmod o+w /dev/eks5

This is the last slide of the lecture.
The example files can be found at http://tid.uio.no/pcbasert/linux/



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50

