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Digital filter examples 

• Moving average filter: 

 

 

• 1. order low pass filter:  y[n] = (1-a)*y[n-1] + a*x[n] 

– E.g. with a = 0.2 

 

 

• Note: moving average and low pass filtering will result in a 

delay (lag) in the output! 

 

 

 

 

 

Note: x[n] is the measurement at time n 

          y[n] is the filter output at time n 



Multi-sensor systems 

Data processing  

algorithm 

 

(Estimator) 

 

Computer 

 Sensor 1 

Sensor 2 

Sensor n 

. 
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States 
• Position 

• Velocity 

• Acceleration 

• Attitude/orientation 

Parameters 
• Sensor errors, such as 

bias/offset 

Can be implemented in real-time on an embedded system, 

or as part of post-processing of sensor data on a PC 



Two-sensor data fusion example 

• Both sensors take a measurement z of a constant but unknown 

parameter x, in the presence of noise v with standard deviation σ 

• z1 = x + v1     and   z2 = x + v2 

 

Question: How to combine the two measurements to produce an optimal 

estimate of 𝑥  of the unknown parameter x? 

 

Answer: 

 

• 𝑥 = 𝑘1𝑧1 + 1 − 𝑘1 𝑧2    (the estimate is a linear combination of the measurements) 
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• Check: What happens if 𝜎1
2 = 𝜎2

2, or if 𝜎1 or 𝜎2 is equal to zero? 

 

 

 

 

 

 

 



Reference frame for multi-sensor fusion 

• Data measured in different coordinate frames (S1 and S3 in example) 

• Before data fusion all vector measurements must be transformed into 

a common coordinate system M 

M 

S1 

S3 
B 

1S Bp

3S Bp

MBp

B = body frame 



An inertial reference frame is a coordinate system 

that does not rotate, and is either fixed in three-

dimensional space or moves in a straight line at 

constant velocity (with zero acceleration). 

Newton's laws are valid only in an inertial 

reference frame; remember F = ma 

 



Example: Tilt-compensated compass 

1) Rotate measurements to a common phone frame (NED): 

3) De-rotate magnetometer readings (level the sensor) to correct for phone orientation: 

Bcorrected  =                       Bp 

N 

E 

D 

The Horizontal component of the Earth’s magnetic 

field is used for compassing, since it points to North   

Application Note 

2) Calculate the roll and pitch angles φ and θ from the accelerometer  

  

N 

E 

D 

http://cache.freescale.com/files/sensors/doc/app_note/AN4248.pdf


Example of multipoint measurements 

4DSpace 

Sounding rocket with daughter payloads  



 

 GNC: Unmanned Aircraft System (UAS)  

GNC : Guidance, Navigation and Control OBC: Onboard computer 

Estimated states 

OBC 

Control law  Data  

fusion  



Guidance example 

Figure from Palumbo, Johns Hopkins APL Technical Digest 



Estimation 

 

• In dynamic systems (systems which vary with time) the variables 

are called states.  

 

• Parameters are variables that do not vary with time. 

 

• Sometimes the states/parameters of a system are not or cannot be 

measured directly. 

 

• Any measurements are corrupted by noise and other sensor errors 

 

• In addition to finding and estimate of the unknown parameters we 

also want to estimate the uncertainty in our estimate  

 

 



Estimator 
 

• An estimator is a data processing algorithm. 

 

• Often a need to combine measurements from different 

sensors with different data sample rates and accuracies.  

 

• An optimal estimator combines all the available 

information (about the system and sensors). 

 

• The estimator is optimal when it minimizes the estimation 

error in a well-defined statistical sense, based on a 

criterion of optimality.  

 



Standard deviation 

σ = 

The standard deviation is 

the amount of variation 

from the mean 



Multi-sensor data fusion 

• Gives reduced uncertainty! 

• Makes the system more robust! 

1 for sensor B 

1 for sensor A 

1 for sensor fusion 



Covariance 

• Covariance provides a measure of the strength of the 

correlation between two or more sets of random variables 

• For uncorrelated variables: cov(X,Y) = 0 

• cov(X,X) = var(X) = σ2 

 

• Covariance matrix: 

– A covariance matrix is a matrix whose element in the i, j 

position is the covariance between the i th and j th elements 

of a random vector 

– The diagonal elements of the covariance matrix is the 

variances 

– The off-diagonal elements represent the covariance 



System of linear equations I 

• A general system of m linear equations with n unknowns xi can 

be written as: 

 

 

 

 

• This can be written as a matrix equation of the form: 

 

 

     where 

 



System of linear equations II 

• If the number of measurements (number of equations) is equal 

to the number of unknowns xi (m = n), the unknowns can be 

found from the inverse solution: 

x = A-1b    (In Matlab: x = A\b,  or x = inv(A)*b) 

 

• In the more common case, there are more measurements 

(equations) than unknown (m > n). This is called an over 

determined systems. Then, a Least squares method can be 

used to estimate the unknown parameters. 



Batch vs. recursive estimator 

• Batch processing: 

– All available measurements are processed at one time 

 

• Recursive processing: 

– Measurements are processed as they become available 

• Required computer storage is kept at a minimum 

 

 



Linear Least-Squares (LS) Estimation 

Model (static system) - The Measurement equation: 

 

LS Cost function to be minimized: 

Explicit Solution for the optimal estimate: 

z  : measurement  (column) vector 

H : measurement matrix 

x  : (column) vector of unknowns 

v  : noise vector 

T : The transpose of a matrix/vector 

 

R : Measurement covariance matrix (weighting) 

    : Estimate (solution) 

P :  Covariance matrix of the  

      estimate (solution)  

 

 
This is a batch estimator - all the 

measurements are processed at the same time. 

LS used for nonrandom (deterministic), time-

invariant parameters  

The estimated error of the estimate 



1D model example – curve fitting 

• Measured gyro rotation rate z (in voltage) as a function of 

applied rate table rotation rate ω (in deg/sec) . 

 
1D Model: 

Model as a matrix  

equation: 

Simplest case: R = I (identity matrix)        R falls out of the LS-equations  



Weighted Least Squares 

• The traditional least squares solution places equal emphasis on each 

measurement. 

• However, measurements are often made with unequal precision (e.g. 

due to different sensor accuracies). Therefore, we want to add a 

weight such that the more precise measurements are given more 

importance. 

 

 

 

 

• The R matrix (weighting matrix) can be selected as a diagonal matrix 

with the variance of the sensor measurements on the diagonal. 

• If the R matrix is selected to be an identity matrix (similar to not include 

the R matrix in the equations), all measurements are weighted equally. 

• R is the measurement error covariance matrix. 

 



The reqursive LS estimator 

Predicted measurement Measurement 



Filtering 

• In estimation the term filtering refers to estimating parameters (the 

state vector) describing the system at the current time, based on all 

past measurements. So, filtering in estimation theory includes more 

than just filtering noise, such as a low pass filter. 

 

• Offline (non RT) processing makes it possible to obtain more accurate 

estimates. A smoother produces improved estimates by making use 

of data both before and after any given time point of interest. 

outliers 



Kalman filter (KF) I 

• One of the most widely used estimation algorithms. 

• The Kalman filter is used for random parameters (which can be 

time varying). 

• In the 1960s, the Kalman filter was applied to navigation for the Apollo 

Project, which required estimates of the trajectories of manned 

spacecraft going to the Moon and back.  

• Later the Kalman filter has been applied for all kinds of navigation and 

tracking applications. 

• The Kalman filter is a recursive estimator 

• The Kalman filter is the optimal minimum mean square error 

(MMSE) estimator for linear, Gaussian systems. 

• MMSE one possible (and very often used) optimization criteria  

• “Gives a best fit (to observed measurements) in a statistical sense” 

 



Kalman filter (KF) II 

• Two sorts of information are utilized: 

– Measurements from sensors. 

– Mathematical models of the system  

• describing how the different states depend on each 

other, and how the measurements depend on the states. 

 

 

 

 

 

 

• In addition the accuracy of the measurements and the model 

must be specified. 

 

 

Model (dynamic system): 

 



Kalman filter III 

• The Kalman filter produces estimates of the true values of 

measurements by predicting a value, estimating the uncertainty 

of the predicted value, and computing a weighted average of 

the predicted value and the measured value. The most weight 

is given to the value with the least uncertainty. The estimates 

produced by the method tend to be closer to the true values 

than the original measurements because the weighted average 

has a better estimated uncertainty than either of the values that 

went into the weighted average. From Wikipedia 

 



Kalman filter equations 

Model time-predicted value of the states 

Estimate at the previous time step 

Predicted error (covariance matrix) 

Optimal gain (K) calculation 

Estimated states 

Estimated error (covariance matrix) 



Estimation in nonlinear systems  

 

• Based on linearization (taylor series expanion) of the non-linear 

equations 

• Requires an initial estimate of the parameters close to the true 

parameter values, in order to ensure that the data processing 

algorithm converges to the true solution 

• This makes non-linear (in the unknown parameters/states) problems 

much more complicated! 

• Most real-world problems are non-linear! 

 



Example: GPS position calculation 

• The measured pseudorange 𝑃 𝑘 from a satellite k can be expressed as 

(since we can assume no clock error in the satellite): 

𝑃 𝑘 = (𝑋𝑘 − 𝑥)2+ (𝑌𝑘 − 𝑦)2+ (𝑍𝑘 − 𝑧)2+  𝑑 + 𝑣 =  𝜌𝑘  +  𝑑 + 𝑣    

• 𝑐𝜏 = d is the position error due to receiver clock error, (Xk,Yk,Zk) is the 

known position of satellite k, (x,y,c) is the true receiver position, and v is  

zero mean Gaussian white noise with variance σ2 

• This is a nonlinear problem on the form: 

where  

ℎ(𝒙) =  (𝑋𝑘 − 𝑥)2+ (𝑌𝑘 − 𝑦)2+(𝑍𝑘 − 𝑧)2+  𝑑 

  

• x = [x, y, z , 𝑑]T are the unknown parameters to be estimated. 

 

 



Example: Attitude determination 
Simulated rocket angular rates 

“Real-time” filter result 

Post processing (non real-time) result 

Post-processing using a smoother will  

give more accurate results then what is 

possible using a real-time filter, since 

more information is available!  



NOT THE OPTIMAL SOLUTION, BUT EASIER TO IMPLEMENT  

Alternatives to the Kalman filter 



Alpha filter – a first-order approach 

• If you have a measurement 𝑥 𝑘, you can apply a first order filter: 

    

   𝑥 𝑘 = (1 − 𝛼)𝑥 𝑘 + 𝛼𝑥 𝑘 

 

• 𝑥 𝑘 is the updated (from measurements) estimate at time k 

• 𝑥 𝑘 is the predicted (time propagated) estimate at time k, from a model: 

𝑥 𝑘 = f(𝑥 𝑘−1) 
– Data fusion example: rate gyro measurement used for predicting a rotation angle 

and an accelerometer used as an inclinometer to measure the absolute angle. 

• 𝛼 is a scalar gain between 0 and 1 (typically constant) 

• If no measurements 𝑥 𝑘  are available, 𝛼 is set to 0  only prediction 

• This approach will filter out noise, but a good 𝛼 must be found from 

“trial and error” (possibly with some “guidelines”) 

• Not as good as a Kalman filter!  

– Not an optimal solution! 

 

 

 

 

g 

ω 



Complimentary filter for data fusion 

• Another  simpler alternative to the Kalman filter 

– Not an optimal solution for a properly modelled random process. 

– Can be a good solution if the signals are not well-modelled, and/or 

the signal-to-noise ratio in the measurements are high. 

 

• The idea behind the complementary filter is to take slow 

moving signals and fast moving signals and combine 

them. 

– The filter is based on an analysis in the frequency domain. 

 

• The complementary filter fuses the sensor1 and sensor2 data 

by passing the former through a 1st-order low pass and the 

latter through a 1st-order high pass filter and adding the outputs. 

 

• Possibly easy to implement on a embedded processor. 

 

 



Complimentary filter architectures 

• Assume two sensors that take a measurement z of a constant but 

unknown parameter x, in the presence of noise v. 

• z1 = x + v1     and   z2 = x + v2 

• Assume that the noise in z2 is mostly high frequency, and the noise in 

z1 is mostly low frequency. 

• Two possible complimentary filter architectures to estimate x: 

 

HP 

LP 

z1 z1 

 

z2 
z2 

 

𝑥  

𝑥  

+ 

+ 
+ 

- 
v2 - v1  

Error measurement 

LP 

Video YouTube 

- v1 approximation  

https://www.youtube.com/watch?v=6iSl4WL1PkI


acc axis 

Example from MIT 

To limit gyro drift 

Complementary filter - balance robot 

𝜃 𝑘 = 𝛼 𝜃𝑘−1 + 𝜔𝑘∆𝑡 + (1 − 𝛼)𝑎𝑘  

Example: α = 0.98  



Complimentary INS/GPS integration 

with KF 

• A very common INS/GPS integration 

• INS solution only when GPS not available 

• Error grows with time without GPS data 

GPS 

INS 

Kalman  

filter + 

- 
+ 

State + GPS error 

State + INS error 

 INS error estimate  

- 

State estimate 

GPS error – INS error 

update rate: 1 – 50 Hz  

update rate: ~1 kHz  

Gyroscopes & 

accelerometers 
Position + velocity 



Control 



On/off (bang-bang) controller 

•  A controller that switches between two states; e.g. either 

completely on or completely off 

• Examples: 

– Most common residential thermostats are bang–bang controllers. 



PID controller 

• Proportional-Integral-Derivative (PID) algorithm is the most 

common control algorithm 

– Used for heating and cooling systems, fluid level monitoring, flow 

control, and pressure control. 

• Calculates a term proportional to the error - the P term. 

• Calculates a term proportional to the integral of the error - 

the I term. 

• Calculates a term proportional to the derivative of the error - 

the D term. 

• The three terms - the P, I and D terms, are added together to 

produce a control signal that is applied to the system being 

controlled 

• Sometimes only a PI controller is used 

 

 

 

 

 

 

 

• Sometimes only a PI controller is used 

 



PID controller II 

• A PID controller continuously calculates an error value as the difference 

between a measured process variable and a desired setpoint. 

• The controller attempts to minimize the error over time, by adjustment of a 

control variable u(t) , such as the position of a control valve. 

 

 

 

• P accounts for present values of the error. 

• I accounts for past values of the error, accumulates over time. 

• D accounts for possible future values of the  

error, based on its current rate of change. 

• Must tune the coefficients Kp, Ki og Kd 

– E.g. with Ziegler–Nichols method 

 

Figure from wikipedia 

In general PID does not provide optimal control, 

since no modelling of the process is used 



PID controller tuning example 

undershoot 

overshoot 


