UNIVERSITETET I OSLO

Det matematisk-naturvitenskapelige fakultet

Exam in: FYS 4110 Non-relativistic quantum mechanics
Day of exam: Thursday, December 4, 2008
Exam hours: 3 hours, beginning at 14:30
This examination paper consists of 3 pages
Permitted materials: Calculator
Øgrim og Lian or Angell og Lian: Størrelser og enheter i fysikken
Rottmann: Matematisk formelsamling
Language: The solutions may be written in Norwegian or English depending on your own preference.

Make sure that your copy of this examination paper is complete before you begin.

PROBLEM 1

Spin half particle in a harmonic oscillator potential

A spin half particle is moving in a one-dimensional harmonic oscillator potential (in the x direction) under the influence of a constant magnetic field (in the z-direction). The Hamiltonian is

$$
\begin{equation*}
\hat{H}=\hbar \omega_{0}\left(\hat{a}^{\dagger} \hat{a}+\frac{1}{2}\right)+\frac{1}{2} \hbar \omega_{1} \sigma_{z}+\lambda \hbar\left(\hat{a}^{\dagger} \sigma_{-}+\hat{a} \sigma_{+}\right) \tag{1}
\end{equation*}
$$

where the first term is the harmonic oscillator part with ω_{0} as the oscillator frequency, the second term is the spin energy due to the magnetic field, with ω_{1} as the spin precession frequency, and the third term is a coupling term between the spin and the position coordinate of the particle. The spin flip operators are defined as $\sigma_{ \pm}=\frac{1}{2}\left(\sigma_{x} \pm i \sigma_{y}\right), \hat{a}$ and \hat{a}^{\dagger} are the standard lowering and raising operators of the harmonic oscillator and $\sigma_{x}, \sigma_{y}, \sigma_{z}$ are the Pauli spin matrices.

When $\lambda=0$, the spin and position of the particle are uncoupled and the energy eigenstates are $|n, m\rangle$ with $n=0,1,2, \ldots$ as the harmonic oscillator quantum number and $m= \pm 1$ as the spin quantum number, corresponding to spin up/down along the z-axis. When $\lambda \neq 0$, the unperturbed eigenstates will pairwise be coupled by the Hamiltonian, so that $|n,+1\rangle$ is coupled to $|n+1,-1\rangle$.
a) Consider the two-dimensional subspace spanned by basis vectors $|0,+1\rangle$ and $|1,-1\rangle$. Show that in this space the Hamiltonian takes the form of a 2×2 matrix which can be written as

$$
H=\hbar \Delta\left(\begin{array}{cc}
\cos \theta & \sin \theta \tag{2}\\
\sin \theta & -\cos \theta
\end{array}\right)+\hbar \epsilon \mathbb{1}
$$

with $\mathbb{1}$ as the 2 x 2 identity matrix. Determine $\Delta \cos \theta, \Delta \sin \theta$ and ϵ.
b) Find the energies and eigenstates of H in the two-dimensional subspace, expressed as functions of Δ, θ and ϵ.
c) The basis vectors $|n, m\rangle$ can be regarded as tensor products of position and spin vectors, $|n, m\rangle=|n\rangle \otimes|m\rangle$. The two eigenstates found under b) will be entangled with respect to the position and spin variables. Determine the degree of entanglement as function of θ. What value for θ gives the smallest what gives the largest degree of entanglement?

PROBLEM 2

Electric dipole transition

We consider the transition in hydrogen from the excited 2 p level to the ground state 1 s , where a single photon is emitted. The initial atomic state (A) we assume to have $m=0$ for the z-component of the orbital angular momentum, so that the quantum numbers of this state are $(n, l, m)=(2,1,0)$, with n as the principle quantum number and l as the orbital angular momentum quantum number. Similarly the ground state (B) has quantum numbers $(n, l, m)=(1,0,0)$. When expressed in polar coordinates the wave functions of the two states (with intrinsic spin of the electron not included) are given by

$$
\begin{align*}
\psi_{A}(r, \phi, \theta) & =\frac{1}{\sqrt{32 \pi a_{0}^{3}}} \cos \theta \frac{r}{a_{0}} e^{-\frac{r}{2 a_{0}}} \\
\psi_{B}(r, \phi, \theta) & =\frac{1}{\sqrt{\pi a_{0}^{3}}} e^{-\frac{r}{a_{0}}} \tag{3}
\end{align*}
$$

where a_{0} is the Bohr radius.
We remind you about the form of the interaction matrix element in the dipole approximation,

$$
\begin{equation*}
\left\langle B, 1_{\mathbf{k} a}\right| \hat{H}_{e m i s}|A, 0\rangle=i e \sqrt{\frac{\hbar \omega}{2 V \epsilon_{0}}} \epsilon_{\mathbf{k} a}^{*} \cdot \mathbf{r}_{B A} \tag{4}
\end{equation*}
$$

where e is the electron charge, \mathbf{k} is the wave vector of the photon, a is the polarization quantum number, ω is the photon frequency and $\epsilon_{\mathrm{k} a}$ is a polarization vector. V is a normalization volume for the electromagnetic wave functions, ϵ_{0} is the permittivity of vacuum and $\mathbf{r}_{B A}$ is the matrix element of the electron position operator between the initial and final atomic states.
a) Explain why the x - and y-components of $\mathbf{r}_{B A}$ vanish while the z -component has the form $z_{B A}=\nu a_{0}$, with ν as a numerical factor. Determine the value of ν. (A useful integration formula is $\int_{0}^{\infty} d x x^{n} e^{-x}=n!$.)
b) To first order in perturbation theory the interaction matrix element (4) determines the direction of the emitted photon, in the form of a probability distribution $p(\phi, \theta)$, where (ϕ, θ) are the polar angles of the wave vector \mathbf{k}. Determine $p(\phi, \theta)$ from the above expressions.
c) The life time of the 2 p state is $\tau_{2 p}=1.6 \cdot 10^{-9} s$ while the excited 2 s state (with angular momentum $l=0$) has a much longer life time, $\tau_{2 s}=0.12 s$. Du you have a (qualitative) explanation for the large difference?

PROBLEM 3

Density operators and entanglement

Give a brief and concise discussion of the following points:
a) List the general properties of density operators (or density matrices) and specify the difference between a pure and a mixed state.
b) For a composite system consisting of two parts \mathcal{A} and \mathcal{B} use the density operator formulation to explain the difference between, uncorrelated states, states with classical correlations (separable states) and entangled states.
c) Assume the full system is in a pure state, described by the state vector $|\psi\rangle$. What is meant by the Schmidt decomposition of this state vector relative to the two subsystems \mathcal{A} and \mathcal{B} ? Use the decomposition to find expressions for the reduced density operators of the two subsystems, and show that the von Neumann entropy of the reduced density operators are equal.

