FYS 4110/9110 Modern Quantum Mechanics

Exam, Fall Semester 2020. Solution

Problem 1: Quantum circuit for controlled R_{k}

a) We define $\phi=2 \pi / 2^{k}$ and get

$$
\begin{aligned}
\left|\psi_{1}\right\rangle \otimes\left|\psi_{2}\right\rangle & =\left(a_{0}|0\rangle+a_{1}|1\rangle\right) \otimes\left(b_{0}|0\rangle+b_{1}|1\rangle\right) \\
& \xrightarrow{R_{k+1}}\left(a_{0}|0\rangle+a_{1} e^{i \phi / 2}|1\rangle\right) \otimes\left(b_{0}|0\rangle+b_{1} e^{i \phi / 2}|1\rangle\right) \\
& \stackrel{C N O T}{\longrightarrow} a_{0}|0\rangle \otimes\left(b_{0}|0\rangle+b_{1} e^{i \phi / 2}|1\rangle\right)+a_{1} e^{i \phi / 2}|1\rangle \otimes\left(b_{0}|1\rangle+b_{1} e^{i \phi / 2}|0\rangle\right) \\
& \stackrel{R_{k+1}^{\dagger}}{\rightarrow} a_{0}|0\rangle \otimes\left(b_{0}|0\rangle+b_{1}|1\rangle\right)+a_{1} e^{i \phi / 2}|1\rangle \otimes\left(b_{0} e^{-i \phi / 2}|1\rangle+b_{1} e^{i \phi / 2}|0\rangle\right) \\
& \xrightarrow{C N O T} a_{0}|0\rangle \otimes\left(b_{0}|0\rangle+b_{1}|1\rangle\right)+a_{1}|1\rangle \otimes\left(b_{0}|0\rangle+b_{1} e^{i \phi}|1\rangle\right) \\
& =a_{0}|0\rangle \otimes\left|\psi_{2}\right\rangle+a_{1}|1\rangle \otimes R_{k}\left|\psi_{2}\right\rangle
\end{aligned}
$$

This is the controlled R_{k} operation.
b) Let $U|\psi\rangle=e^{i \phi}|\psi\rangle$. The situation is described by this circuit

The evolution of the state is

$$
\begin{gathered}
\frac{1}{\sqrt{2}}\left(|0\rangle+|1\rangle \otimes|\psi\rangle \xrightarrow{\text { control }-U} \frac{1}{\sqrt{2}}(|0\rangle \otimes|\psi\rangle+|1\rangle \otimes U|\psi\rangle)\right. \\
\quad=\frac{1}{\sqrt{2}}\left(|0\rangle+e^{i \phi}|1\rangle\right) \otimes \psi .
\end{gathered}
$$

c) Since multiplying by a phase factor does not change a quantum state, U does not really change the state of the target if the initial state is an eigenstate. However, the relative phase between two states does make a physical difference. Therefore, when the control is in a superposition, there is a phase difference between the two states after the control-U operation. Since the state of the target is the same in both cases, it factors out, leaving a product state with the relative phase between the two states of the control qubit.

Problem 2: Destruction of entanglement by noise

a) ρ is a pure state if one eigenvalue is 1 and the rest 0 .

$$
\left|\begin{array}{cccc}
a-\lambda & 0 & 0 & 0 \\
0 & b-\lambda & z & 0 \\
0 & z^{*} & c-\lambda & 0 \\
0 & 0 & 0 & d-\lambda
\end{array}\right|=(a-\lambda)(d-\lambda)\left[(b-\lambda)(c-\lambda)-|z|^{2}\right]=0
$$

which gives the eigenvalues

$$
\begin{equation*}
\lambda_{a}=a, \quad \lambda_{d}=d, \quad \lambda_{ \pm}=\frac{1}{2}(b+c) \pm \sqrt{\frac{1}{4}(b-c)^{2}+|z|^{2}} . \tag{1}
\end{equation*}
$$

Thus we have that ρ is pure if
1: $a=1, b=c=d=z=0$.
2: $b=1, a=b=c=z=0$.
3: $a=d=0$. Since $\operatorname{Tr} \rho=1$ we must then have $b+c=1$. This means that

$$
\lambda_{ \pm}=\frac{1}{2} \pm \sqrt{\frac{1}{4}(b-c)^{2}+|z|^{2}}
$$

For ρ to be pure we must have $\lambda_{+}=1$ and $\lambda_{-}=0$, and therefore

$$
\frac{1}{4}(b-c)^{2}+|z|^{2}=\frac{1}{4}
$$

which gives

$$
|z|^{2}=\frac{1}{4}\left[1-(b-c)^{2}\right]=\frac{1}{4}\left[1-(2 b-1)^{2}\right]
$$

where we used that $c=1-b$. Since $|z|^{2}>0, b$ is restricted to the interval $0 \leq b \leq 1$.
b) We write ρ on the form

$$
\rho=a|11\rangle\langle 11|+b|10\rangle\langle 10|+c|01\rangle\langle 01|+d|00\rangle\langle 00|+z|10\rangle\langle 01|+z^{*}|01\rangle\langle 10|
$$

from which we read out

$$
\begin{aligned}
& \rho^{A}=\operatorname{Tr}_{B} \rho=(a+b)|1\rangle\langle 1|+(c+d)|0\rangle\langle 0|=\left(\begin{array}{cc}
a+b & 0 \\
0 & c+d
\end{array}\right), \\
& \rho^{B}=\operatorname{Tr}_{A} \rho=(a+c)|1\rangle\langle 1|+(b+d)|0\rangle\langle 0|=\left(\begin{array}{cc}
a+c & 0 \\
0 & b+d
\end{array}\right) .
\end{aligned}
$$

We check the three cases of pure ρ from question a)

1: $a=1, b=c=d=z=0$:

$$
\rho^{A}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), \quad \rho^{B}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) .
$$

This is not entangled since ρ^{A} and ρ^{B} are pure.
2: $d=1, a=b=c=z=0$: By symmetry with case 1 , this is not entangled.
3: $a=d=0,0 \leq b \leq 1, c=1-b,|z|^{2}=\frac{1}{4}\left[1-(2 b-1)^{2}\right]$:

$$
\rho^{A}=\left(\begin{array}{cc}
b & 0 \\
0 & 1-b
\end{array}\right), \quad \rho^{B}=\left(\begin{array}{cc}
1-b & 0 \\
0 & b
\end{array}\right) .
$$

This is entangled for all $b \neq 0,1$.
c) The two Lindbladoperators are σ_{-}^{A} and σ_{-}^{B}. Both correspond to transitions $\left|1_{A / B}\right\rangle \rightarrow\left|0_{A / B}\right\rangle$ that reduce the energy (we assume $\omega>0$), emitting energy to the environment. This means that the environment is at $T=0$.
d) With the given initial conditions, the matrix elements are

$$
a(t)=e^{-2 \gamma t}, \quad b(t)=c(t)=e^{-\gamma t}\left(1-e^{-\gamma t}\right), \quad d(t)=\left(1-e^{-\gamma t}\right)^{2}, \quad z(t)=0 .
$$

The von Neumann entropy is given as

$$
S=-\operatorname{Tr} \rho \ln \rho=-\sum_{i} \lambda_{i} \ln \lambda_{i}
$$

where λ_{i} are the eigenvalues of ρ. Using (1) we get

$$
\lambda_{a}=e^{-2 \gamma t}, \quad \lambda_{d}=\left(1-e^{-\gamma t}\right)^{2}, \quad \lambda_{ \pm}=e^{-\gamma t}\left(1-e^{-\gamma t}\right)
$$

The entropy is then
$S=-e^{-2 \gamma t} \ln e^{-2 \gamma t}-\left(1-e^{-\gamma t}\right)^{2} \ln \left(1-e^{-\gamma t}\right)^{2}-2 e^{-\gamma t}\left(1-e^{-\gamma t}\right) \ln \left[e^{-\gamma t}\left(1-e^{-\gamma t}\right)\right]=2 \gamma t-2\left(1-e^{-\gamma t}\right) \ln \left(e^{\gamma t}-1\right)$.
We plot $S(t)$

We see that the entropy is zero at $t=0$, corresponding to the initial state being pure. As time increases, the system goes to a mixed state and the entropy increases. Since $T=0$, the system will approach the ground state, and the entropy decreases again, approaching zero at $t \rightarrow \infty$.
e)

$$
\rho=\frac{1}{2}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \otimes \frac{1}{2}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

$S=\ln 2$ which is maximal for two-level systems.
f) We need to find

$$
\sigma_{y}^{A} \otimes \sigma_{y}^{B}=\left(\begin{array}{cccc}
0 & 0 & 0 & -1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
-1 & 0 & 0 & 0
\end{array}\right)
$$

and calculate

$$
M=\rho \sigma_{y}^{A} \otimes \sigma_{y}^{B} \rho^{*} \sigma_{y}^{A} \otimes \sigma_{y}^{B}=\left(\begin{array}{cccc}
a d & 0 & 0 & 0 \\
0 & b c+|z|^{2} & 2 b z & 0 \\
0 & 2 c z^{*} & b c+|z|^{2} & 0 \\
0 & 0 & 0 & a d
\end{array}\right)
$$

Two of the eigenvalues of M are

$$
\mu_{a}=\mu_{d}=a d .
$$

The other two we find from

$$
\left|\begin{array}{cc}
b c+|z|^{2}-\mu & 2 b z \\
2 c z^{*} & b c+|z|^{2}-\mu
\end{array}\right|=\left(b c+|z|^{2}-\mu\right)^{2}-4 b c|z|^{2}=0
$$

which gives

$$
\mu_{ \pm}=(\sqrt{b c} \pm|z|)^{2}
$$

With the initial conditions $d_{0}=\frac{1}{3}-a_{0}, b_{0}=c_{0}=z_{0}=\frac{1}{3}$ we get

$$
\begin{aligned}
& \sqrt{\mu_{a}}=\sqrt{\mu_{d}}=\sqrt{a d}=e^{-\gamma t} \sqrt{a_{0}} \sqrt{1-\frac{2}{3} e^{-\gamma t}-a_{0} e^{-\gamma t}\left(2-e^{-\gamma t}\right)} \\
& \sqrt{\mu_{+}}=\frac{2}{3} e^{-\gamma t}+a_{0} e^{-\gamma t}\left(1-e^{-\gamma t}\right), \quad \sqrt{\mu_{-}}=a_{0} e^{-\gamma t}\left(1-e^{-\gamma t}\right)
\end{aligned}
$$

The largest eigenvalue is μ_{+}, so $\lambda_{1}=\sqrt{\mu_{+}}$. This gives

$$
\lambda_{1}-\lambda_{2}-\lambda_{3}-\lambda_{4}=\frac{2}{3} e^{-\gamma t}-2 e^{-\gamma t} \sqrt{a_{0}} \sqrt{1-\frac{2}{3} e^{-\gamma t}-a_{0} e^{-\gamma t}\left(2-e^{-\gamma t}\right)} .
$$

g) $C=0$ when

$$
\frac{2}{3} e^{-\gamma t}-2 e^{-\gamma t} \sqrt{a_{0}} \sqrt{1-\frac{2}{3} e^{-\gamma t}-a_{0} e^{-\gamma t}\left(2-e^{-\gamma t}\right)}=0
$$

which we solve to get

$$
e^{-\gamma t}=\frac{1}{3 a_{0}}+1 \pm \frac{1}{a_{0}} \sqrt{a_{0}^{2}-\frac{4}{3} a_{0}+\frac{2}{9}} .
$$

For $a_{0}=\frac{1}{3}$ we get $e^{-\gamma t}=2 \pm \sqrt{2}$. Since $e^{-\gamma t}<1$ for positive t and γ, we must choose $e^{-\gamma t}=2-\sqrt{2}$, which means

$$
t=\frac{1}{\gamma} \ln \frac{2+\sqrt{2}}{2}
$$

At this time, the concurrence drops to exactly 0 . It means that even if the state approaches the ground state asymptotically, the entanglement (as measured by the concurrence) vanishes completely in a finite time.

