
FYS 4110/9110 Modern Quantum Mechanics
Midterm Exam, Fall Semester 2020

Return of solutions:
The problem set is available from Friday morning, 16 October.
You may submit handwritten solutions, but they have to be scanned and included in one single file,
which is submitted in Inspera before Friday, 23 October, at 12:00.

Language:
Solutions may be written in Norwegian or English depending on your preference.
Questions concerning the problems:
Please ask Joakim Bergli (room V405).

The problem set consists of 2 problems written on 5 pages.

Problem 1: Bloch sphere for three-level system

For a two-level system with density matrix ρ we have defined the Bloch vector m by the equation

ρ =
1

2
(1+miσi)

where σi are the Pauli matrices, and we are summing over the repeated index i. We want to generalize
this to arbitrary n-level systems, and in particular study the three-level case. The density matrix is in
general a Hermitian matrix with Tr(ρ) = 1, which means that we can write

ρ =
1

n
(1+ αmiλi)

where α is a numerical constant that will depend on n, and λi are traceless Hermitian matrices.

a) How many matrices λi do we need for an n-level system? This will also be the number of compo-
nents of the Bloch vector. That is, the number of dimensions of the space where the Bloch vector
is.

One can always choose the matrices λi to satisfy the relation

Tr(λiλj) = 2δij

(see e. g. G. Kimura, Physics Letters A 314, 339 (2003) for an explicit form).

b) Find the value of α so that pure states have |m| = 1.

c) What is the dimension of the space of pure states for n-level systems?

d) Explain why the pure states are on the surface of the Bloch sphere, but do not cover it.
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We will now specialize to the case of a 3-level system. In this case the matrices λi are known as the
Gell-Mann matrices (for the form of all these and more on the present problem, see S. Goyal et al. J.
Phys. A: Math. Theor. 49, 165203 (2016)). In question d) you showed that the pure states do not cover
the entire surface of the Bloch sphere. We will now see what happens for mixed states. In addition to
being Hermitian and having trace 1, the density matrix should not have negative eigenvalues. We will
restrict the Bloch vector to lie in the plane spanned by the two Gell-Mann matrices

λ1 =

 0 1 0
1 0 0
0 0 0

 and λ8 =
1√
3

 1 0 0
0 1 0
0 0 −2


so that the density matrix is of the form

ρ =
1

3

[
1+
√
3(m1λ1 +m8λ8)

]
.

e) Find the eigenvalues of density matrices ρ of this form.

f) Plot the cross section of the Bloch sphere spanned by the Gell-Mann matrices λ1 and λ8 and
mark the area where the density matrix has only positive eigenvalues. These are the only density
matrices allowed as physical states.

g) Plot the von Neumann entropy for states in this plane, and determine if the entropy depends only
on the length of the Bloch vector, as for a two-level system, or is also a function of the direction of
the Bloch vector.

Problem 2: Entanglement transformations using local operations and classical commu-
nication

We consider a bipartite system, with subsystems A and B. If we have two pure states, generally
both entangled, we can wonder if the entanglement is in some sense equivalent in the two states. By
“equivalent” we do not mean quantitatively equal (that is, with the same entanglement entropy), but
rather qualitatively equal (but maybe to different degree, so that the entanglement entropy could be
different). One way to approach this is to study if one state can be converted to the other if we only
apply local operations to each subsystem A and B. Local operations means a unitary operator that
acts only on one of the subsystems, or a measurement that measures an observable on one of the
subsystems. Most often, one also allows the observers at A and B to exchange classical information
in addition to local operations. The combination is referred to as Local Operations and Classical
Communication (LOCC).

A pure state for the system can then be Schmidt decomposed as |ψ〉 =
∑

i

√
αi|iA〉⊗ |iB〉, which

we will write for short |ψ〉 =
∑

i

√
αi|ii〉. We use the convention that the Schmidt coefficients αi are

ordered, so that α1 ≥ α2 ≥ · · · . Similarly, we write the second state as |φ〉 =
∑

i

√
βi|i′i′〉. A vector

β = (β1, . . . , βn) is said to majorize another vector α = (α1, . . . , αn) if

k∑
i=1

αi ≤
k∑
i=1

βi (1)

for all k. This is written as α ≺ β.
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If we write the fact that |ψ〉 can be transformed to |φ〉 using LOCC as |ψ〉 → |φ〉, the following
theorem (M. Nielsen, Phys. Rev. Lett., 83, 436 (1999)) gives the necessary and sufficient conditions
for one state to be converted to another using LOCC:

|ψ〉 → |φ〉 if and only if α ≺ β. (2)

a) Show that if both A and B are 2-level systems, then either |ψ〉 → |φ〉 or |φ〉 → |ψ〉, or both. That
is, one of the states can always be converted to the other. This means that the entanglement is in
some sense of the same type in all the states.

b) Show that if both A and B are 2-level systems there exist states that can be converted to any other
state using LOCC, and find one example of such a state.

c) What local operations should you apply to transform

1√
2
(|01〉 − |10〉)→ 1√

2
(|01〉+ |10〉)?

How much classical information do you need to transfer?

In general, the local operations that are needed include measurement on one side, with the result of
the measurement transmitted as classical information to the other side. We know that if we make
a standard projective measurement on one of the particles in an entangled pair, we will end in an
eigenstate of the corresponding operator, and entanglement disappears. So if we want to reduce
entanglement without eliminating it entirely, we need to make a type of measurement that is affecting
the state less (and necessarily giving us less precise information at the same time). One way to achieve
this is to let the particle interact and get entangled with another particle, and then measuring on this
particle. Consider a 2-level system (we call it system 1) in the state

|ψ〉1 = cosφ|0〉+ sinφ|1〉.

We want to make a non-projective measurement of the state by entangling it with a second 2-level
system (system 2), which initially is in the state

|χ〉2 =
1√
2
(|0〉+ |1〉).

The entangling operation is given by the unitary transformation which in the tensor product basis
|i〉1 ⊗ |j〉2 is given by the matrix

Uθ =


cos θ 0 sin θ 0
0 cos θ 0 − sin θ

− sin θ 0 cos θ 0
0 sin θ 0 cos θ

 (3)

That is, we evolve the system to the final state Uθ|ψ〉1 ⊗ |χ〉2 and measure the second 2-level system.

d) What is the final state of the first particle for each measurement outcome on the second?

e) Give an interpretation of your answer to the previous question. Explain in words what happens
physically (Hint: What interaction between the two particles would generate the given unitary
transformation Uθ?).
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f) We have the following quantum circuit.

3 |0〉 H

2 |0〉 ei
π
2
σy Vi

1 |0〉 H Wi

⊕
Uθ

i

Here Uθ is the unitary transformation given in Eq. (3) with the lower line corresponding to the

first qubit. indicates that the qubit is measured in the {|0〉, |1〉}-basis, and the rightmost
part of the circuit means that the operations Vi and Wi are dependent on the outcome i of the
measurement. We choose the operations V0 = W0 = 1. What operations must V1 and W1 be,
so that the final state of the system consisting of qubits 1 and 2 is the same, independent of the
measurement outcome? What will the final state be?

g) What are the probabilities for each of the measurement outcomes?

h) Describe with words what the different gates in the circuit do and how we can claim that it is
realizing the transformation of one state to another using LOCC. Which state is the initial state of
the LOCC transformation?

i) Prove that the entropy of entanglement can never be increased using LOCC. If you find a proof, or
helpful fact, in the literature, cite your sources.

The following are states of two 3-level systems

|ψ〉 =
√

1

2
|11〉+

√
2

5
|22〉+

√
1

10
|33〉

|φ〉 =
√

3

5
|11〉+

√
1

5
|22〉+

√
1

5
|33〉

j) Show that neither |ψ〉 → |φ〉 nor |φ〉 → |ψ〉. This means that the entanglement in the two states is
qualitatively different (in the sense of non-conversion using LOCC).

k) The suggested classification of entanglement based om LOCC is not ideal, as it suffers from at
least one serious drawback. Search in the literature and find criticism of this classification. Cite
you sources.

One consequence of the theorem (2) is the so-called entanglement catalysis. Local transformations
on a composite quantum system can be enhanced in the presence of certain entangled states. These
extra states act much like catalysts in a chemical reaction: they allow otherwise impossible local
transformations to be realized, without being consumed in any way.

The following are states of two 4-level systems

|ψ1〉 =
√
0.4|11〉+

√
0.4|22〉+

√
0.1|33〉+

√
0.1|44〉

|ψ2〉 =
√
0.5|11〉+

√
0.25|22〉+

√
0.25|33〉

4



l) Show that neither |ψ1〉 → |ψ2〉 nor |ψ2〉 → |ψ1〉.

m) We assume now that the two parties, in addition to the above 4-level systems also share a pair of
entangled 2-level systems in the state

|φ〉 =
√
0, 6|55〉+

√
0.4|66〉

Show that
|ψ1〉|φ〉 → |ψ2〉|φ〉

This means that the presence of the state |φ〉 enables the transformation from |ψ1〉 to |ψ2〉 without
being changed in the process.
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