
FYS 4110/9110 Modern Quantum Mechanics
Midterm Exam, Fall Semester 2020. Solution

Problem 1: Bloch sphere for three-level system

a) Hermitian matrices have real diagonal elements and the lower triangular elements are determined
by the upper triangular ones, and are in general complex. This means that we need n2 real param-
eters to specify a Hermitian n× n matrix. The traceless condition reduces this by one, so that the
number of λi-matrices is n2 − 1.

b) We use the fact that for pure states is Tr ρ2 = 1. We have

Tr ρ2 =
1

n2
Tr(1 + 2αmiλi + α2mimjλiλj) =

1

n2
(n+ 2α2|m|) = 1

If we set |m| = 1, we get that

α =

√
n(n− 1)

2
.

c) For n-level systems, the general pure state is |ψ〉 =
∑n

i=1 ci|i〉, which means that we have n
complex coefficients, or 2n real coefficients. Normalization reduces the number by one, and the
global phase by one, so we have that the space of pure states is 2(n− 1) dimensional.

d) We have shown that with proper choice of α the pure states have |m| = 1, so they are on the
surface of the Bloch sphere. The surface of the Bloch sphere in a space of n2 − 1 dimensions
is n2 − 2 dimensional. But the space of pure states is 2(n − 1) dimensional, and for n > 2 is
n2 − 2 > 2(n − 1), so the pure states do not cover the whole surface. This means that there are
many points on the surface of the Bloch sphere that does not represent any physical quantum state.

e)

ρ =
1

3

[
1 +
√

3(m1λ1 +m8λ8)
]

=


1
3(1 +m8)

1√
3
m1 0

1√
3
m1

1
3(1 +m8) 0

0 0 1
3(1− 2m8)

 .

The eigenvalues are found from∣∣∣∣∣∣∣
1
3(1 +m8)− λ 1√

3
m1 0

1√
3
m1

1
3(1 +m8)− λ 0

0 0 1
3(1− 2m8)− λ

∣∣∣∣∣∣∣ =

[
1

3
(1− 2m8)− λ

]{[
1

3
(1 +m8)− λ

]2
− 1

3
m2

1

}
= 0.

This gives three possible solutions

λ0 =
1

3
(1− 2m8)

λ± =
1

3
(1 +m8)±

1√
3
m1

1



f)

g) The entropy is given by

S = −λ0 log λ0 − λ+ log λ+ − λ− log λ−

We can see from the plot that the entropy depends on the direction as well as the length of the
Bloch vector.
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Problem 2: Entanglement transformations using local operations and classical commu-
nication

a) If both A and B are 2-level systems, the vectors α and β have both only two elements. We also
know that for the state to be normalized we have α1 + α2 = β1 + β2 = 1. This means that there
is only one nontrivial inequality to be considered in the majorization condition [Eq. (1) of the
problem set], namely the one for k = 1. If α1 ≤ β1 we have that α ≺ β and then |ψ〉 → |φ〉. If
β1 ≤ α1 we have that β ≺ α and or |φ〉 → |ψ〉. If α1 = β1 both transformations are possible.

b) The state that is majorized by all other states must have the smallest possible α1. Since the Schmidt
coefficients are assumed to be in decreasing order, this means that α1 = 1

2 . Any state with this
property is majorized by all other states, and consequently can be converted to all other states by
LOCC. As an example, we can use one of our familiar Bell states

|ψ〉 =
1√
2

(|01〉 − |10〉).

c) We apply the unitary transformation σz to system A. It has the action

σz|0〉 = |0〉, σz|1〉 = −|1〉

on the basis states. This gives exactly the specified transformation on the given total state for A
and B. No measurements are required, and no classical information has to be transferred.

d) From the given matrix for Uθ we can read the action of the operator on the basis states

Uθ|00〉 = cos θ|00〉 − sin θ|10〉
Uθ|01〉 = cos θ|01〉+ sin θ|10〉
Uθ|10〉 = sin θ|00〉+ cos θ|10〉
Uθ|11〉 = − sin θ|01〉+ cos θ|11〉

Then we get

Uθ|ψ〉1 ⊗ |χ〉2 =
1√
2

[(cosφ cos θ + sinφ sin θ)|00〉+ (cosφ cos θ − sinφ sin θ)|01〉

+(− cosφ sin θ + sinφ cos θ)|10〉+ (cosφ sin θ + sinφ cos θ)|11〉]

=
1√
2

[cos(φ− θ)|00〉+ cos(φ+ θ)|01〉+ sin(φ− θ)|10〉+ sin(φ+ θ)|11〉]

If we measure the second particle, the state of the first particle would be (if we normalize the states)

Measurement outcome 0: |ψ〉1 = cos(φ− θ)|0〉+ sin(φ− θ)|1〉
Measurement outcome 1: |ψ〉1 = cos(φ+ θ)|0〉+ sin(φ+ θ)|1〉
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e) An interaction Hamiltonian of the form H = −h̄ωσy ⊗σz gives the time evolution e−
i
h̄
Ht = Uωt.

This mans that the Bloch vector of the first particle will rotate around the y-axis with a direction
depedent on the state of the second particle. Since the second particle is in a superposition of the
two states, both rotations take place at the same time. When measuring the state of the second
particle, the wavefunction collapses, and the corresponding rotation is the only one that is realized.

f) We write the qubits in the order from top to bottom (as indicated by the numbers on the left). Note
that we have to be careful when applying the Uθ as it is stated that the lower line should correspond
to the first qubit, which is opposite to what we write here. We know that

ei
π
2
σy = cos

π

2
1 + i sin

π

2
σy = iσy =

(
0 1
−1 0

)
.

That is, it exchanges the |0〉 and |1〉 states with a change of sign in one case. We then get

|000〉 H1⊗H3→ 1

2
(|0〉+ |1〉)|0〉(|0〉+ |1〉)

CNOT→ 1

2
(|00〉+ |11〉)(|0〉+ |1〉)

ei
π
2 σy→ 1

2
(|01〉 − |10〉)(|0〉+ |1〉)

Uθ→ 1

2
[|0〉 (cos θ|10〉+ sin θ|11〉 − sin θ|10〉+ cos θ|11〉)− |1〉 (cos θ|00〉 − sin θ|01〉+ sin θ|00〉+ cos θ|01〉)]

=
1

2
[(cos θ − sin θ)|01〉 − (cos θ + sin θ)|10〉] |0〉+

1

2
[(cos θ + sin θ)|01〉 − (cos θ − sin θ)|10〉] |1〉

We now measure the third qubit and get the state of the first two qubits

Measurement outcome 0:
1√
2

[(cos θ − sin θ)|01〉 − (cos θ + sin θ)|10〉]

Measurement outcome 1:
1√
2

[(cos θ + sin θ)|01〉 − (cos θ − sin θ)|10〉]

where we have normalized the states. We are told that V0 = W0 = 1 which means that if the
measurement gives 0 we do nothing to any of the first two qubits. To get the same state also if
the measurement gives 1, we have to swich the two terms, which we gan achieve by applying
V1 = W1 = σx.

g) To determine the probabilities of the two outcomes, we need the reduced density matrix of qubit
3. We can rewrite the final state as

|ψ〉 =
1

2
|01〉 [(cos θ − sin θ)|0〉+ (cos θ + sin θ)|1〉]−1

2
|10〉 [(cos θ + sin θ)|0〉+ (cos θ − sin θ)|1〉]

Then we find that
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ρ3 = Tr12ρ = Tr12|ψ〉〈ψ|

=
1

4

[
(cos θ − sin θ)2|0〉〈0|+ (cos2 θ − sin2 θ)(|0〉〈1|+ |1〉〈0|) + (cos θ + sin θ)2|1〉〈1|

]
=

1

4

[
(cos θ + sin θ)2|0〉〈0|+ (cos2 θ − sin2 θ)(|0〉〈1|+ |1〉〈0|) + (cos θ − sin θ)2|1〉〈1|

]
=

1

2
(|0〉〈0|+ cos 2θ(|0〉〈1|+ |1〉〈0|) + |1〉〈1|)

The probabilities for the outcames are

P0 = Tr(ρ3|0〉〈0|) =
1

2

P1 = Tr(ρ3|1〉〈1|) =
1

2
.

h) The Hadamard gate on the first qubit prepares a superposition of the basis states. The CNOT
entangles this with the second qubit. The ei

π
2
σy flips the second qubit. Together, these three gates

prepares the initial state 1√
2
(ket01− |10〉) that is to be transformed. CNOT is the only gate that is

nonlocal in qubits 1 and 2, and they would have to be close enough to intract at that point. Later
they are separated, so that qubit 1 is with observer A and qubit 2 with observer B. To execute the
transformation, we will measure qubit 2, but only non-projectively. This we do by entangling it
with qubit 3 (which we consider to be close to qubit 2, with observer B) in the Uθ-gate and then
measuring qubit 3. The outcome of this measurement is used to determine the action Vi on qubit
2 and is sent via classical communication to A to inform about which local unitary Wi should be
applied.

i) A proof can be found in M. Nielsen and G. Vidal, Quantum Information and Computation, 1,
76 (2001). All proofs that I have seen use, like that one, some more general theorem that requires
some non-trivial mathematical tools. I have never seen a simple direct proof, but it probably can be
found in the literature. The following argument is direct and should make it clear that the entropy
can never increase using LOCC.

First, we know that any LOCC process leads to a state with a vector β of squared Schmidt co-
efficients that majorizes the vector α corresponding to the original state. We also know that the
entanglement entropy is given in terms of the vector α = (α1, · · · , αn) by

S(α) = −
∑
i

αi lnαi.

We need therefore to prove that if α ≺ β then S(α) ≥ S(β). If we consider the function −x lnx
it has a derivative that is monotonously decreasing. This means that if we increase one of the αi
while decreasing a smaller α by the same amount (remember that

∑
i αi = 1, keeping the rest

fixed, the entropy decreases. we need a way to change from α to β so that we always increase a
larger αi and decrease a smaller. Start by incresing α1 and decreasing αn until one of the partial
sums

∑k
i=1 αi =

∑k
i=1 βi. If k = 1 or k = n − 1, we know that α1 = β1 or αn = βn, and

we repeat the procedure for the remaining αi. If the partial sums agree at some intermediate k,
we split the vectors at that point, and repeat the procedure for each part independently. We can
continue this until αi = βi for all i.
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The following are states of two 3-level systems

|ψ〉 =

√
1

2
|11〉+

√
2

5
|22〉+

√
1

10
|33〉

|φ〉 =

√
3

5
|11〉+

√
1

5
|22〉+

√
1

5
|33〉

j) Both the states are already in Schmidt decomposed form, so we read directly that

α1 =
1

2
, α2 =

2

5
, α3 =

1

10

β1 =
3

5
, β2 =

1

5
, β3 =

1

5

From this we find the sums
n 1 2 3∑n
i=1 αi 0.5 0.9 1∑n
i=1 βi 0.6 0.8 1

From this we see that we do not have α ≺ β or β ≺ α and therefore neither |ψ〉 → |φ〉 nor
|φ〉 → |ψ〉.

k) One problem with classifying different types of entanglement by whether they are convertible
using LOCC or not is the fact that states that are very close to each other may be classified as
having completely different type of entanglement. One example is given in Martin B. Plenio
and S. Virmani, An introduction to entanglement measures, Quant.Inf.Comput. 7, 1 (2007). The
initial state (|00〉 + |11〉)/sqrt2 can be transformed by LOCC to 0.8|00〉 + 0.6|11〉 but not to
(0.8|00〉 + 0.6|11〉 + ε|22〉)/

√
1 + ε2 even if the two final states are arbitrary close for small ε.

Classification of states according to LOCC transformation does not capture the fact that these
states are close. Different modifications have been proposed, where one studies the number of
states of one type are needed to get one state of another type, or allows the process to succeed only
with a certain probability, see the paper cited above or R. Horodecki et al., Rev. Mod. Phys. 81,
865 (2009).

l) Since the states already are in Schmidt form, we read directly the vectors α (corresponding to |ψ1〉)
and β (corresponding to |ψ2〉).

α1 = 0.4, α2 = 0.4, α3 = 0.1, α4 = 0.1

β1 = 0.5, β2 = 0.25, β3 = 0.25, β4 = 0

From this we find the sums
n 1 2 3 4∑n
i=1 αi 0.4 0.8 0.9 1∑n
i=1 βi 0.5 0.75 1 1

From this we see that we do not have α ≺ β or β ≺ α and therefore neither |ψ1〉 → |ψ2〉 nor
|ψ2〉 → |ψ1〉.
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m) We have in total 4 systems, two at A and two at B. A basis for the states of the two systems at A is

|ij〉A = |i〉A ⊗ |j〉A
where i = 1 . . . 4 and j = 5, 6. The systems at B has a similar basis, and we can then write

|ψ1〉|φ〉 =
√

0.24|15〉A ⊗ |15〉B +
√

0.24|25〉A ⊗ |25〉B +
√

0.06|35〉A ⊗ |35〉B +
√

0.06|45〉A ⊗ |45〉B
+
√

0.16|16〉A ⊗ |16〉B +
√

0.16|26〉A ⊗ |26〉B +
√

0.04|36〉A ⊗ |36〉B +
√

0.04|46〉A ⊗ |46〉B.

This is in Schmidt form, and sorting we get the coefficients

α1 = 0.24, α2 = 0.24, α3 = 0.16, α4 = 0.16,

α5 = 0.06, α6 = 0.06, α7 = 0.04, α8 = 0.04.

Similarly we have

|ψ2〉|φ〉 =
√

0.3|15〉A ⊗ |15〉B +
√

0.15|25〉A ⊗ |25〉B +
√

0.15|35〉A ⊗ |35〉B
+
√

0.2|16〉A ⊗ |16〉B +
√

0.1|26〉A ⊗ |26〉B +
√

0.1|36〉A ⊗ |36〉B

β1 = 0.3, β2 = 0.2, β3 = 0.15, β4 = 0.15,

β5 = 0.1, β6 = 0.1, β7 = 0, β8 = 0.

From this we find the sums

n 1 2 3 4 5 6 7 8∑n
i=1 αi 0.24 0.48 0.64 0.8 0.86 0.92 0.96 1∑n
i=1 βi 0.3 0.5 0.65 0.8 0.9 1 1 1

We see that α ≺ β which means that |ψ1〉|φ〉 → |ψ2〉|φ〉.
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