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Solutions to problem set 6

6.1 Entanglement and measurements

The problem lies in the sentences ”Following this measurement, suppose that the x-component of
the spin of particle 1 is measured. It will be found to have the value ~/2 or−~/2, and the z-component
of particle 1s spin will no longer have a definite value. Also, because the system has zero total angular
momentum, the spin of particle 2 will then have x-component −~/2 or ~/2, and its z-component will
not have a definite value.” It seems that it is assumed that first the spin is measured along z and then
subsequently along x. But the first measurement along z will collapse the wavefunction, destroying all
entanglement between the two particles. Measuring along x after that will give random uncorrelated
results on the two particles, and not the perfect anticorrelation as stated. The appeal to ”zero total
angular momentum” is not relevant, as the interaction with the measuring device can change the
angular momentum, as it does even when considering measuring the spin along different axes for a
single particle. The text would be fine if instead of ”Following this measurement, suppose...” we write
”Supose instead...”. This would mean that we can choose to measure either along z or x (but not both),
and in both cases will we be able to deduce the corresponding spin component of the other particle.
This component must then correspond to an element of reality according to EPR, and this is what they
wanted to explain.

6.2 Hidden variables for a single spin-1
2

a) We know that

〈ψn|σ|ψn〉 = n

Thus,

〈ψn|σa|ψn〉 = 〈ψn|a · σ|ψn〉 = a · 〈ψn|σ|ψn〉 = a · n = cos θ

b) In the figure, the surface represents the possible values of the unit vector λ. In the upper hemi-
sphere the distribution function P (λ) is constant while it is zero on the bottom hemisphere.
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n

a′

θ′

P (λ) = 0

sgna′ · λ = −1

sgna′ · λ = 1

The fraction of the upper hemisphere where sgna′·λ = −1 is θ
′

π while the fraction with sgna′·λ =

1 is 1− θ′

π . This gives

〈Aa〉 =

∫
dλP (λ)A(a,λ) =

θ′

π
(−1) + (1− θ′

π
)(+1) = 1− 2θ′

π
.

c) We must choose a′ so that 1− 2θ′

π = cos θ.

6.3 Hidden variables for anticorrelation of a pair of spin-1
2

a)

〈ψ|σAa σBa |ψ〉 =
1

2

[
〈↑↓ |σAa σBa | ↑↓〉 − 〈↑↓ |σAa σBa | ↓↑〉 − 〈↓↑ |σAa σBa | ↑↓〉+ 〈↓↑ |σAa σBa | ↓↑〉

]
=

1

2
[az(−az)− (ax − iay)(ax + iay)− (ax + iay)(ax − iay) + (−az)az] = −a · a = −1.

b) In the figure we have shown in dark the areas where AaBb = 1 and light the areas where AaBb =
−1

a

b

θ

A(a,λ) = −1
B(b,λ) = −1

A(a,λ) = 1
B(b,λ) = 1

A(a,λ) = −1
B(b,λ) = 1

A(a,λ) = 1
B(b,λ) = −1
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Since λ is uniformly distributed over the sphere, the probabilites for each area are propotional to
the fraction of the sphere they cover. The dark areas cover a fraction θ/π while the light areas
cover (π − θ)/π of the sphere. Then we get

〈AaBb〉 = 1 · θ/π + (−1) · (π − θ)/π = −1 +
2

π
θ.

6.4 Greenberger-Horne-Zeilinger (GHZ) version of Bell’s theorem

a) We have
[ΣA,ΣB] = σAx σ

B
y σ

C
y σ

A
y σ

B
x σ

C
y − σAy σBx σCy σAx σBy σCy

In the last term we use the fact that operators on different particles commute, while for the same
particle, two different Pauli matrices anticommute (σxσy = −σyσx etc.) to get

σAy σ
B
x σ

C
y σ

A
x σ

B
y σ

C
y = σAy σ

A
x σ

B
x σ

B
y σ

C
y σ

C
y = σAx σ

A
y σ

B
y σ

B
x σ

C
y σ

C
y

since we have two anticommuting pairs. This is precisely the first term, and we have shown that
[ΣA,ΣB] = 0. The other commutators are shown to be 0 in a similar way.

b) We have

σx| ↑〉 = | ↓〉, σy| ↑〉 = i| ↓〉
σx| ↓〉 = | ↑〉, σy| ↓〉 = −i| ↑〉

and get

ΣA|ψ〉 =
1√
2
σAx σ

B
y σ

C
y (| ↑↑↑〉 − | ↓↓↓〉) =

1√
2

(−| ↓↓↓〉+ | ↑↑↑〉) = |ψ〉 (1)

and similar or the other two. If all spins are measured, with two measured along the ydirection
and one along the x-direction, the product of all three results will always be the eigenvalue of the
corresponding Σi, which as we have shown is +1. Since the eigenvalues of each spin operator is
+1 if te spin is up and −1 if the spin is down, it means that we will always get an even number of
spins down along their chosen axis.

c)

Σ|ψ〉 =
1√
2
σAx σ

B
x σ

C
x (| ↑↑↑〉 − | ↓↓↓〉) =

1√
2

(| ↓↓↓〉 − | ↑↑↑〉) = −|ψ〉 (2)

d) We have the three equations

AxByCy = 1 AyBxCy = 1 AyByCx = 1 (3)

Take the product of all three:

AxByCyAyBxCyAyByCx = AxA
2
yBxB

2
yCxC

2
y = AxBxCx = 1

which is not consistent with
AxBxCx = −1 (4)
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6.5 Tsirelson’s bound

a)

S2 = A2B2 +A2BB′ +AA′B2 −AA′BB′ +A2B′B +A2B′2 +AA′B′B −AA′B′2

+A′AB2 +A′ABB′ +A′2B2 −A′2BB′ −A′AB′B −A′AB′2 −A′2B′B +A′2B′2

= 4−AA′BB′ +AA′B′B +A′ABB′ −A′AB′B

= 4− [A,A′][B,B′]

b) We have that

‖N‖ = sup
|ψ〉

‖N |ψ〉‖
‖|ψ〉‖

which implies that for any |ψ〉 is

‖N‖ ≥ ‖N |ψ〉‖
‖|ψ〉‖

or

‖|ψ〉‖ ≥ ‖N |ψ〉‖
‖N‖

.

This means that

‖MN |ψ〉‖
‖|ψ〉‖

≤ ‖MN |ψ〉‖
‖N |ψ〉‖

‖N‖

Then

‖MN‖ ≤ ‖N‖ sup
|ψ〉

‖MN |ψ〉‖
‖N |ψ〉‖

= ‖N‖ sup
|φ〉

‖M |φ〉‖
‖|φ〉‖

= ‖M‖ ‖N‖

where |φ〉 = N |ψ〉.
The triangle inequality for elements in a vector space reads

‖(M +N)|ψ〉‖ ≤ ‖M |ψ〉‖+ ‖N |ψ〉‖

Taking the supremum on both sides we have

‖M +N‖ ≤ sup
|ψ〉

‖(M +N)|ψ〉‖
‖|ψ〉‖

≤ sup
|ψ〉

‖M |ψ〉‖
‖|ψ〉‖

+ sup
|ψ〉

‖M |ψ〉‖
‖|ψ〉‖

= ‖M‖+ ‖N‖

c) We have
‖[M,N ]‖ = ‖MN −NM‖ ≤ ‖MN‖+ ‖NM‖ ≤ 2 ‖M‖ ‖N‖ .

Also it is clear that ‖A‖ = ‖B‖ = ‖A′‖ = ‖B′‖ = 1. This means∥∥S2
∥∥ ≤ 4 + 4 ‖A‖

∥∥A′∥∥ ‖B‖ ∥∥B′∥∥ = 8

which gives ‖S‖ ≤ 2
√

2.


