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Solutions to problem set 9

9.1 Quantum gates for teleportation

a) We have to calculate the action of each gate on the state. The initial state is

[th0) = (col0) + c1[1)) @ |0) ©[0) = ¢o|000) 4 ¢1[100).

We write H* for the Hadamard gate on qubit 7, and C%OT for the CNOT gate with 7 as control bit
and j as target bit. After each gate we then get

l1) = Hb|w0> = \2 [Co|000> + ¢0|010) + ¢1]100) + 01|110>]
|the) = C%OTW’” = \}5 [Co‘OOO) + ¢0]011) + ¢1]100) + 61’111>}
) = Clopliin) = \}5 [c0/000) + co]011) + 4[110) + 1101

1
1) = H"lis) = 5 |0/000) + co[ 100) + col011) + co[111)

+¢1]010) — ¢1/110) + ¢1]001) — c1|101>]

1
[5) = CRorlia) = 5 |c0l000) + co[100) + co[010) + co[110)

Fer|011) — eg[111) 4 ¢1]001) — c1|101>}

[6) = He|s) = 2\1@ [(co + €1)1000) + (co = €1)[001) + (co = €1)[100) + (eg + 1)]101)

(o + ¢1)]010) + (co — €1)]011) + (cg — €1)[110) + (co + cl)\m)]

lv7) = CRorlvs) = 2\1/5 [(Co + ¢1)[000) + (co — ¢1)]001) + (co — €1)[101) + (co + ¢1)[100)

+(Co + Cl)‘010> + (Co — Cl)|011> + (CU — Cl)|111> + (Co + Cl)’110>}

1
[g) = H 7)) = 3 [00\000) + ¢1]001) + ¢0[100) + ¢1]101)

+¢0|010) 4 ¢1]011) + ¢o|110) + ¢1]111)
1

\/5(10) +))®

\2(;0) +11)) ® (col0) + e1[1))



FYS 4110 Modern Quantum Mechanics, Fall Semester 2020 2

b) Measuring qubits a and b at the dashed line collapses the wavefunction at that point. But since a
and b only acts as control bits forthe last four gates, their states do not change. Then the state will
be the same as if we measure a and b on the final state |t)g) instead. The only difference is that
now the CNOT gates will not be nonlocal two-qubit gates, but rather local one-qubit gates on qubit
¢ conditioned on the measurement outcomes for a and b. This has to be transmitted from a and b
to ¢ as in the usual teleportation protocol. Then we still get |¢/) = |a) at the end. and only need
local operations after the dashed line.

9.2 Quantum cloning of orthogonal states

a) Assume first that |1)) = |0) and |¢) = |1). Then we can check that a single CNOT gate gives the
desired result (upper line is the original, lower line is the copy)

IS G B
0) 0y 10) 1)

Since |1)) and |¢) are orthogonal, there exist a unitary transformation U such that

The inverse of this transforms [¢) and |¢) to |0) and |1), and we can then use the CNOT as above
and transform the result back, giving the final circuit

6) — U1t )

1
0) | >@ )

b) Here we can use the simple circuit with a single CNOT gate. The input is (qubits are written from
top down)

1
[Y0) = —5(100) +[10))
giving the final state
1
2

1

Y1) = Cnorlibo) = 12(|00> + [11)) # 5

(10) +11)) © —=(10) + |1))

5
5
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9.3 Dressed photon states (Exam 2011)

Information: 1
H = Sheoo: + hwala + iix (&Ta_ . &0+>

%:%@iww ot = ££), [0 =10, |1 =)l

where o acts on the particle, and af,a acts on the photon state.

a)
H = <<—{—,0‘]}”—|—,0> <+?O’I:I|_71>>
<_11‘H’+10> <_71|H|_71>
N 1
(+,0[H|+,0) = (+,0l5 hwoffz|+ 0) = Shwo
(+,0lH|—,1) = (+, O]—Zﬁ)\aa+| 1) = —ihA
(= 1|H|+,0) = (=, 1[ikxalo_|+,0) = ihA
S 1
<_71’H’_71> = < ’ <2hw00'z —i—hwdT&) ‘_71> = _§MO + hw
1 fwe  —2iA ) 1 cos¢p  —ising
= 2h<2i)\ 2w—w0> N 2hA< +ising —cos¢ el
with ) o)
wo — w )
ezihw, cos ¢ = OA , smd):K, A:\/(wo—w)2+4)\2

b) We observe that the Hamiltonian is of the form

1
HzihAa-n—i—e]l

with n = (0, sin ¢, cos ¢). We know that the eigenvalues of o - n are &1, and therefore we get

1

with the corresponding eigenvectors

peton= (08 ) ety = ()

from here, we get using:
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d)

That o
ety = (0 E ) = (T ) = -

COS 2

with the extra — a phase that comes from the choice of the phase on the eigenstates which is always
a free choice.

The density operator for |1)_(¢)) is:

p(d) = |-(8))(-(9)|
= <isin¢|0,—|—>—|—cosill,—>) (—ZSIH¢< +|+cos§<1 —|)
= sin —|0 ><0,+’+C082§|1,—><1,—‘+iSin§COS§(|O,+><1,—|—|1,—><0,—|—|)

The partial traces are the sum of the diagonal terms in each subsystem:
ponl(®) = sin® 210)(0] +cos® S
patom((b) = sin2 §‘+> <+| + COSQ % _><_|

The photon state is given by |—, 1) and the excited atomic state is given by |+,0). So when

sin? ¢ > cos? ¢ ,Or ¢ € (g, 32” ) the state is mostly an excited atom state. When sin? % < cos? %,

or ¢ e (-Z, 5) the state is mostly a photon state.

Both ppp, and paon, have the same eigenvalues (denoted A below), and their von Neumann entropy
is the same, the entanglement is thus given by:

S = —Trpmlogppn =—» Ailogh

= n? ¢ log <sin2 ?) cos? ? log (cos2 ¢>

The minimal value happens when:

n? d) log (sm2 ¢) — cos? ? log (C082 ¢)

By inspection, we see this happens when ¢ = 0 or ¢ = 7. This corresponds to

p(O) = ‘17 _><1a _|7 p(’]T) = ‘07 +><07+|

which are separable states (S = 0). The maximal value on the other hand happens when:

sin? ? log (sm ;b) = cos? ? log <C082 Z)

This occurs when ¢ = § and ¢ = 37” This refers to

P(g) = %I0,+><0,+!+1\ —)(1, —|+ i (10, 4)(1, —| — [1, =)(0, +])

p(ﬁ? - 5@+N-ﬂ+fu—xlﬂ—z<m (L, —] = [1,-)(0, +))
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This is not a product state, and the reduces densities are pp;, = patom = %]1 which is maximally
entangled S = log 2. We relate this to the previous discussion by noting that the maksimal entropy
happens when the system changes from being mostly an excited atomic state to being mostly a
photon state, and vice versa. The minimal values are in the middle of each of the two “modes” of
the system. This is consistent with what we would expect from such a system.

e) We're given:
’¢(¢a 0)) = ‘_7 1>

where the time evolved state is [1)(¢, t)). In order to obtain the time evolution off the system, we
need to express this in the energy eigenbasis. In terms of these states (exercise b), we can write:

[¥(¢,0)) = aly(9)) + Bl- ()

= « icos?|0,—|—> - Sin?\l, =] +p isin?|0,—|—> —i—COS?‘l, —)
2 2 2 2
= <aicos§ + Bisin Q;) 0,+) + <ﬁcos§5 - asin?) |-, 1)
One can solve this by inspection, but let’s do it explicitly:
aicosg +Bz’sin§ =0
ﬂcos? —asin? = 1
2 2
a= —Btang éﬁcos%%—ﬁtan%sin% =1
¢
1 COS 5
B = 3 55— 3 2 ¢:cos?:>a:—sin?
cos§+tan§sing  cos?§ +sin? 2 2

This gives:
9(6.0)) = —sin iz, () +cos L (6))

Then applying the time evolution operator:

¢ ¢

(@) = —singe My (¢)) + cos Se My (9))
= —sin TP (9)) + cos Se My ()

= —sin %e_iE”/h (z cosg\o, +) — sin%]l, —>) + cos ge_iE*t/h (z sin%]O, +) + cos%\l, —)>

= <—z' cos % sin %e_iE+t/h +isin g cos ;be_iEt/h> 0, +) + (Sim2 %e_iE”/h + cos? q;e_iEt/h> 11

= ¢sin g cos% (e*iE‘t/h — e*iE”/h) 0, +) + <sin2 %e*’E“/h + cos? g;)e"E‘t/h> 11, —)
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The probability is then given by

pon(t) = = [ (= 1w(o,1)) |”
2
= | sin? ge_i(E+_E*)t/h + cos? 5 |
= sint % +  cost % + 2sin? g cos? g cos (At)
et S~—— —

:[%(l—cosdﬂ]z :[%(H-cosqb)]2 :i sin® ¢
1

= 3 (14 cos® ¢ +sin® pcos At), A= \/(wo —w)? 4+ 4x2

where we used that (F; — E_)/h = A. We see the probability oscillating with frequency A and

. . 2 2 N R
amplitude 1 sin? ¢ = 1 (R)” =2 (3})" centered around § + 2 cos? ¢ = 1 + 1 (“2c)". This is
due to the mixing of the excited atom state and photon state in the hamiltonian which makes the
system oscillate between being mostly photon-state and mostly excited atom state.



