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PROBLEM 1
Spin half particle in a harmonic oscillator potential
A spin half particle is moving in a one-dimensional harmonic oscillator potential (in the x-
direction) under the influence of a constant magnetic field (in the z-direction). The Hamiltonian
is

Ĥ = h̄ω0(â
†â+

1

2
) +

1

2
h̄ω1σz + λh̄(â†σ− + âσ+) (1)

where the first term is the harmonic oscillator part with ω0 as the oscillator frequency, the second
term is the spin energy due to the magnetic field, with ω1 as the spin precession frequency, and
the third term is a coupling term between the spin and the position coordinate of the particle.
The spin flip operators are defined as σ± = 1

2
(σx ± iσy), â and â† are the standard lowering and

raising operators of the harmonic oscillator and σx, σy, σz are the Pauli spin matrices.
When λ = 0, the spin and position of the particle are uncoupled and the energy eigenstates

are |n,m〉 with n = 0, 1, 2, ... as the harmonic oscillator quantum number and m = ±1 as
the spin quantum number, corresponding to spin up/down along the z-axis. When λ 6= 0, the
unperturbed eigenstates will pairwise be coupled by the Hamiltonian, so that |n,+1〉 is coupled
to |n+ 1,−1〉.

a) Consider the two-dimensional subspace spanned by basis vectors|0,+1〉 and |1,−1〉. Show
that in this space the Hamiltonian takes the form of a 2x2 matrix which can be written as

H = h̄∆
(
cos θ sin θ
sin θ − cos θ

)
+ h̄ε1 (2)

with 1 as the 2x2 identity matrix. Determine ∆cos θ, ∆sin θ and ε.
b) Find the energies and eigenstates of H in the two-dimensional subspace, expressed as

functions of ∆, θ and ε.
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c) The basis vectors |n,m〉 can be regarded as tensor products of position and spin vectors,
|n,m〉 = |n〉 ⊗ |m〉. The two eigenstates found under b) will be entangled with respect to the
position and spin variables. Determine the degree of entanglement as function of θ. What value
for θ gives the smallest what gives the largest degree of entanglement?

PROBLEM 2
Electric dipole transition
We consider the transition in hydrogen from the excited 2p level to the ground state 1s, where
a single photon is emitted. The initial atomic state (A) we assume to have m = 0 for the
z-component of the orbital angular momentum, so that the quantum numbers of this state are
(n, l,m) = (2, 1, 0), with n as the principle quantum number and l as the orbital angular momen-
tum quantum number. Similarly the ground state (B) has quantum numbers (n, l,m) = (1, 0, 0).
When expressed in polar coordinates the wave functions of the two states (with intrinsic spin of
the electron not included) are given by

ψA(r, φ, θ) =
1√

32πa30
cos θ

r

a0
e
− r

2a0

ψB(r, φ, θ) =
1√
πa30

e
− r

a0 (3)

where a0 is the Bohr radius.
We remind you about the form of the interaction matrix element in the dipole approximation,

〈B, 1ka|Ĥemis|A, 0〉 = ie

√
h̄ω

2V ε0
ε∗ka · rBA (4)

where e is the electron charge, k is the wave vector of the photon, a is the polarization quantum
number, ω is the photon frequency and εka is a polarization vector. V is a normalization volume
for the electromagnetic wave functions, ε0 is the permittivity of vacuum and rBA is the matrix
element of the electron position operator between the initial and final atomic states.

a) Explain why the x- and y-components of rBA vanish while the z-component has the form
zBA = νa0, with ν as a numerical factor. Determine the value of ν. (A useful integration formula
is

∫∞
0 dx xn e−x = n!.)
b) To first order in perturbation theory the interaction matrix element (4) determines the

direction of the emitted photon, in the form of a probability distribution p(φ, θ), where (φ, θ) are
the polar angles of the wave vector k. Determine p(φ, θ) from the above expressions.

c) The life time of the 2p state is τ2p = 1.6 · 10−9s while the excited 2s state (with angular
momentum l = 0) has a much longer life time, τ2s = 0.12s. Du you have a (qualitative) expla-
nation for the large difference?

PROBLEM 3
Density operators and entanglement
Give a brief and concise discussion of the following points:

a) List the general properties of density operators (or density matrices) and specify the dif-
ference between a pure and a mixed state.
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b) For a composite system consisting of two parts A and B use the density operator formu-
lation to explain the difference between, uncorrelated states, states with classical correlations
(separable states) and entangled states.

c) Assume the full system is in a pure state, described by the state vector |ψ〉. What is meant
by the Schmidt decomposition of this state vector relative to the two subsystems A and B? Use
the decomposition to find expressions for the reduced density operators of the two subsystems,
and show that the von Neumann entropy of the reduced density operators are equal.

3



UNIVERSITETET I OSLO

Det matematisk-naturvitenskapelige fakultet

Eksamen i: FYS 4110 Ikke-relativistisk kvantemekanikk
Eksamensdag: Torsdag 3. desember, 2009
Tid for eksamen: kl. 14.30 (3 timer)
Oppgavesettet er på 3 sider
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BOKMÅL

OPPGAVE 1
To-nivåsystemer

Vi studerer i det følgende et kvantemekanisk system som er sammensatt av to to-nivåsystemer
A og B. Hilbertrommet til det fulle systemet H = HA ⊗HB er dermed firedimensjonalt. De to
delsystemene er dynamisk koblet, og Hamiltonoperatoren for det fulle systemet har formen

Ĥ =
1

2
h̄ω(σz ⊗ 1 + 1⊗ σz)− ih̄λ(σ+ ⊗ σ− − σ− ⊗ σ+) (1)

hvor σz og σ± er Pauli-matriser, med σ± = 1
2
(σx± iσy), h̄ω er (den like store) energi-splittingen

i hvert av de to delsystemene, og λ er en koblingsparameter. I tensorproduktuttrykkene regner vi
at første faktor virker på delsystem A og andre faktor på delsystem B.

a) Vis at den tidsavhengige Schrödinger-ligningen har en løsning på formen

|ψ(t)〉 = cos(λt)|+−〉+ sin(λt)| −+〉 (2)

hvor |+−〉 = |+〉⊗|−〉 og |−+〉 = |−〉⊗|+〉 og hvor σz|±〉 = ±|±〉 for hvert av delsystemene.
Hva blir uttrykket for den tilsvarende tetthetsoperator ρ̂(t) når den skrives på bra-ket form?

b) Den tidsavhengige tetthetsoperatoren kan også uttrykkes ved Pauli-matriser på en tilsvarende
måte som i (1). Finn dette uttrykket, og finn også de reduserte tetthetsoperatorene ρ̂A(t) og ρ̂B(t),
begge uttrykt ved Paulimatriser (og identitets-operatoren).

c) Angi det generelle uttrykket for graden av sammenfiltring i et sammensatt systemet når det
befinner seg i en kvantemekanisk ren tilstand. I den tidsavhengige tilstanden beskrevet ovenfor,
hva blir da uttrykket?
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OPPGAVE 2
Koblete harmoniske oscillatorer
To harmoniske oscillatorer, kalt A og B, behandles som et sammensatt kvantemekanisk system.
Hamiltonoperatoren til systemet har formen

Ĥ = h̄ω(â†â+ b̂†b̂+ 1) + h̄λ(â†b̂+ b̂†â) (3)

med (â, â†) som senke- og heveoperatorer for A og (b̂, b̂†) som tilsvarende operatorer for B. ω
og λ er to reelle konstanter.

a) Vis at Hamiltonoperatoren kan skrives på diagonal form,

Ĥ = h̄ωc ĉ
†ĉ+ h̄ωd d̂

†d̂+ h̄ω1 (4)

hvor c og d er lineære kombinasjoner av a og b,

c = µ a+ ν b , d = −ν a+ µ b (5)

og hvor µ og ν er reelle konstanter som tilfredsstiller µ2+ν2 = 1. (Tilsvarende uttrykk gjelder for
de hermitisk konjugerte operatorene ĉ† og d̂†.) Bestem de nye parametrene ωc, ωd, µ og ν, uttrykt
ved ω og λ. Sjekk at de nye operatorene ĉ og d̂ tilfredsstiller de samme kommutasjonsrelasjonene
som â og b̂ ved at

[
ĉ, ĉ†

]
=

[
d̂, d̂†

]
= 1 og

[
ĉ, d̂†

]
= 0.

b) Anta at tilstanden |ψ(0)〉 til det sammensatte systemet ved t = 0 er en koherent tilstand
for begge de nye variablene, slik at

ĉ |ψ(0)〉 = zc 0|ψ(0)〉 , d̂ |ψ(0)〉 = zd 0|ψ(0)〉 (6)

Tilstanden vil også på et senere tidspunkt være en koherent tilstand for ĉ og d̂, med egenverdier

zc(t) = e−iωctzc 0 , zd(t) = e−iωdtzd 0 (7)

Vis dette for zc(t). (Uttrykket for zd(t) følger på samme måte, og trengs derfor ikke vises.)
c) Vis at tilstanden |ψ(t)〉 også er en koherent tilstand for de opprinnelige harmonisk oscillator-

operatorene â og b̂, og bestem egenverdiene za(t) og zb(t) uttrykt ved initialverdiene za 0 og zb 0.

OPPGAVE 3
Harmonisk oscillator i varmebad
En harmonisk oscillator med vinkelfrekvens ω er i termisk likevekt med et varmebad med tem-
peratur T . Den befinner seg da i en blandet kvantemekanisk tilstand uttrykt ved tetthetsopera-
toren

ρ̂ = Ne−βĤ (8)

med Ĥ som Hamiltonoperatoren til den harmoniske oscillatoren, N som en normeringskonstant
og β = 1/kT hvor k er Boltzmanns konstant.

a) Sjekk at ρ̂ tilfredsstiller kravene til en tetthetsmatrise og bestem normaliseringskonstanten
N .
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b) Vis at forventningsverdien for energien kan skrives som

E = Tr(Ĥρ̂) =
1

N

dN

dβ
(9)

og finn energien som funksjon av β. Vis at for lav temperatur, T → 0 eller β →∞, vil energien
nærme seg grunntilstandsenergien til oscillatoren.

c) Tetthetsoperatoren kan skrives på diagonal form som

ρ̂ =
∞∑

n=0

pn|n〉〈n| (10)

hvor pn = Ne−βh̄ω(n+1/2). Det vil si at vi kan se på tilstanden ρ̂ som en statistisk blanding av
energiegentilstander |n〉, vektet med sannsynlighetene pn. Den samme tilstanden kan imidlertid
også ses på som en statistisk blanding av koherente tilstander, på formen

ρ̂ =
∫ d2z

π
p(|z|) |z〉〈z| (11)

hvor p(|z|) er en sannsynlighetsfunksjon som bare avhenger av absoluttverdien |z| = r.
Vis at uttrykket (11) kan omformuleres til (10), og finn pn uttrykt ved p(r).

Vi minner om følgende uttrykk:

〈n|z〉 =
zn√
n!
e−

1
2
|z|2 (12)
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OPPGAVE 1
Sammenfiltring i et trepartikkel-system

Tre partikler med halvtallig spinn, som vi referer til som A, B and C, befinner seg i en
sammensatt spinntilstand

|ψ〉 =
1√
2

(|uuu〉 − |ddd〉) (1)

hvor |uuu〉 = |u〉A ⊗ |u〉B ⊗ |u〉C , er tensorproduktet av spinn-opp (u) langs z-aksen for alle tre
partiklene, mens |ddd〉 = |d〉A ⊗ |d〉B ⊗ |d〉C er tensorprodukttilstanden svarende til spinn-ned
(d) for alle tre partiklene. Vi antar at posisjonskoordinatene er helt frakoblet spinnkoordinatene
og at spinnet derfor kan studeres separat.

a) Forklar hva vi mener med at de tre partiklene er i en korrelert spinntilstand, og hva vi
mener med at spinnene er sammenfiltret.

Vi studerer i det følgende spinnsystemet som todelt, svarende til en oppsplitting ABC =
A + BC, slik at spinn A definerer det ene undersystemet og de to andre spinnene, B og C,
definerer det andre undersystemet.

b) Bestem de reduserte tetthetsoperatorene ρ̂A og ρ̂BC for de to delsystemene. Forklar hva
vi mener med sammenfiltringsentropien til et todelt, sammensatt system og bestem verdien på
denne for spinntilstanden (1). Hva menes med at spinntilstanden er en maksimalt sammenfiltret
tilstand?

Tilstanden til delsystem BC er beskrevet av tetthetsoperatoren ρ̂BC . Hva sier denne om sam-
menfiltring mellom de to spinnene B and C?

Anta nå at de tre partiklene A, B og C tas hånd om av tre fysikere (også identifisert som A,
B og C) som befinner seg på forskjellige steder, men som er i stand til å beskytte tilstanden til
hver sin partikkel slik at den totale spinntilstanden (1) ikke forandrer seg før en av dem foretar
en spinnmåling.
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c) Ved et gitt tidspunkt måler A spinnkomponenten langs x-aksen for sin partikkel og finner
spinn-opp som måleresultatet. (Spinn-opp-tilstanden langs x-aksen blir betegnet |f〉 og spinn-
ned-tilstanden |b〉.) Hun sender beskjed om dette til B og C, og disse beregner, med utgangspunkt
i denne opplysningen, den nye tetthetsoperatoren ρ̂ for det fulle systemet og bestemmer den nye
reduserte tetthetsoperator ρ̂BC .

Hva er de nye uttrykkene for tetthetsoperatorene ρ̂ og ρ̂BC? Er det noen endring i sammenfil-
tringen mellom spinnene B og C?

OPPGAVE 2
Spinnflipp-stråling

Vi studerer i denne oppgaven overgang mellom to spinntilstander for et elektron i et ytre mag-
netfelt som er rettet langs z-aksen, B = Bez. (Merk: vi benytter her ex, ey og ez som enhetsvek-
torer langs x-, y- og z-aksen, siden k benyttes som bølgevektoren for det utsendte fotonet.)
Hamiltonoperatoren skrives som Ĥ = Ĥ0 + Ĥ1, hvor Ĥ0 svarer til den magnetiske dipolenergien
i det ytre magnetfeltet, mens Ĥ1 beskriver koblingen mellom spinnet og strålingsfeltet. Vi har

Ĥ0 =
1

2
ωBσz , ωB = −eB

m
(2)

med e som elektronladningen og m som elektronmassen. Frekvensen ωB regnes som positiv.
Matriseelementet til spinnvekselvirkningen Ĥ1 ved emisjon av ett foton er i dipoltilnærmelsen

〈B, 1ka|Ĥ1|A, 0〉 = i
eh̄

2m

√
h̄

2ωV ε0
(k× εka) · σBA (3)

hvor |A〉 er den eksiterte spinntilstanden (spinn-opp) og |B〉 er grunntilstanden (spinn-ned).
Videre er εka en polarisasjonsvektor og ω = c k er sirkelfrekvensen til det emitterte fotonet,
V er et normeringsvolum for den elektromagnetiske strålingen og σAB er matriseelementet til
Paulimatrisen σ = σx ex + σy ey + σz ez mellom de to spinntilstandene. Vi minner om formen
på Paulimatrisene,

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σx =

(
1 0
0 −1

)
(4)

a) Til første orden i perturbasjonsteori vil vinkelavhengigheten til det kvadrerte matriseele-
mentet |〈B, 1ka|Ĥ1|A, 0〉|2 bestemme sannsynlighetsfordelingen for retningen til fotonet, p(φ, θ),
hvor (φ, θ) er polarvinklene til bølgevektoren k. Bestem p(φ, θ) fra uttrykket ovenfor. Vi minner
om at ved summasjon over polarisasjonsretningene har vi

∑
a
|εka · b|2 = |b|2 − |b · k

k
|2 for en

vilkårlig vektor b. Normeringen av sannsynlighetsfordelingen er
∫
dφ
∫
dθ sin θ p(φ, θ) = 1.

b) Det kvadrerte matriseelementet bestemmer også, for gitt k, sannsynlighetsfordelingen
over polarisasjonsretningen til fotonet. Anta at en fotondetektor registrerer fotoner utsendt med
retning langs x-aksen (k = kex) og med polarisasjon langs polarisasjonsvektoren ε(α) =
cosα ey + sinα ex. Hva er sannsynlighetsfordelingen p(α) for å detektere det emitterte fo-
tonet, som funksjon av vinkelen α? (Anta også her at fordelingen er normert til 1, dvs. den
beskriver sannsynlighet for forskjellige polarisasjonstilstander, forutsatt at fotonet er emitert
langs x-aksen.)
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c) Til en god tilnærmelse vil besetningssannsynligheten for den eksiterte spinntilstanden re-
duseres eksponensielt med tiden

PA(t) = e−t/τA (5)

hvor levetiden τA til første orden i vekselvirkningen er bestemt av (den tidsuavhengige) over-
gangsraten

wBA =
V

(2πh̄)2

∫
d3k

∑

a

|〈B, 1ka|Ĥ1|A, 0〉|2δ(ω − ωB) (6)

Benytt dette til å finne et uttrykk for levetiden τA.

OPPGAVE 3
En tvungen harmonisk oscillator

En kvantemekanisk, tvungen harmonisk oscillator er beskrevet ved en Hamiltonoperator på
formen

Ĥ = h̄ω0(â
†â+

1

2
) + h̄λ(â†e−iωt + âeiωt) (7)

hvor â og â† oppfyller standard kommutasjonsrelasjoner for heve og senke-operatorer, og hvor
ω0, ω og λ er tre konstanter. Vi innfører dimensjonsløse posisjons og bevegelsemengde-operatorer
som

x̂ =
1

2
(â+ â†) , p̂ = − i

2
(â− â†) (8)

a) Vi minner om den generelle form på Heisenbergs bevegelsesligning,

d

dt
Â =

i

h̄

[
H, Â

]
+
∂

∂t
Â (9)

for en observabel Â. Benytt denne på senkeoperatoren â, utled en bevegelsesligning for x̂ på
formen

d2x̂

dt2
+ ω2

0x̂ = C cosωt (10)

og bestem konstanten C.
b) Ved å anvende følgende tidsavhengige, unitære transformasjon

T̂ (t) = eiωt â
†â (11)

vil den nye Hamiltonoperatoren, ĤT (t), som bestemmer tidsutviklingen til de transformerte til-
standsvektorene |ψT (t)〉 = T̂ (t)|ψ(t)〉, bli tidsuavhengig. Finn utrykket for denne operatoren.

c) En koherent tilstand er definert som en egentilstand for senkeoperatoren â,

â|z〉 = z|z〉 (12)
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Anta at ved tiden t = 0 er oscillatoren i grunntilstanden for den λ-uavhengige del av Hamilton-
operatoren, dvs.

|ψ(0)〉 = |0〉 , â|0〉 = 0 (13)

Vis at den fortsetter å være i en koherent tilstand under tidsutviklingen altså slik at

|ψ(t)〉 = eiα(t)|z(t)〉 (14)

med α(t) er en tidsavhengig fase og z(t) som en kompleks tidsavhengig funksjon.
Bestem funksjonen z(t) og gi en kvalitativ beskrivelse av bevegelsen i det komplekse z-

planet. Vis at realdelen x(t) = (z(t) + z(t)∗)/2 oppfyller samme bevegelsesligning (10) som
posisjonsoperatoren x̂(t).

Vi minner om operatorrelasjonen

eÂB̂e−Â = B̂ +
[
Â, B̂

]
+

1

2!

[
Â,
[
Â, B̂

]]
+ ... (15)

som gjelder for to vilkårlig valgte operatorer Â ogB̂.
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PROBLEM 1
Dressed photon states

A photon is interacting with an atom within a small reflecting cavity. The photon energy is
close to the excitation energy of the atom, which connects the ground state to the first excited
state. Due to interaction between the photon and the atom the stationary states of the composite
system are admixtures of the photon and atomic states. These are sometimes referred to as a
”dressed” photon states. In this problem we examine some of the properties of the dressed states.

The Hamiltonian of the photon-atom system can be written as

Ĥ =
1

2
h̄ω0σz + h̄ωâ†â+ ih̄λ(â†σ− − âσ+) (1)

where h̄ω0 is then the energy difference between the two atomic levels, h̄ω is the photon energy,
and λh̄ is an interaction energy. The Pauli matrices act between the two atomic levels, with
σz|±〉 = ±|±〉, and with σ± = (1/2)(σx± iσy) as matrices that raise or lower the atomic energy.
â and â† are the photon creation and destruction operators.

a) We introduce the notation |+, 0〉 = |+〉 ⊗ |0〉 and |−, 1〉 = |−〉 ⊗ |1〉 for the relevant
product states of the composite system, with 0, 1 referring to the photon number. Show that in
the two-dimensional subspace spanned by these vectors the Hamiltonian takes the form

H =
1

2
h̄∆

(
cosφ −i sinφ

+i sinφ − cosφ

)
+ ε1 (2)

where we assume |−, 1〉 to correspond to the lower matrix position and |+, 0〉 to the upper one.
1 denotes the 2× 2 identity matrix. Express the parameters ∆, cosφ, sinφ, and ε in terms of ω0,
ω and λ.

b) Find the energy eigenvalues E±. Find also the eigenstates |ψ±(φ)〉, expressed in terms of
the product states |+, 0〉 and |−, 1〉, and show that they are related by |ψ−(φ)〉 = |ψ+(φ+ π)〉.
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In the following we focus on the state |ψ−(φ)〉, which we assume to be the one-photon state
in the non-interacting case. This state (with a convenient choice of phase factor) can be written
as |ψ−(φ)〉 = cos φ

2
|−, 1〉+ i sin φ

2
|+, 0〉.

c) Find expressions for the reduced density operators of the photon and of the atom for the
state |ψ−(φ)〉. Discuss in what parameter interval the state is mostly a photon-like state and when
it is mostly an atom-like state.

d) Determine the entanglement entropy as a function of φ, and find for what values the en-
tropy is minimal and maximal. Relate this to the discussion in c).

e) At time t = 0 a single photon is sent into the cavity, where there is previously no photon
and the atom is in its ground state. Determine the time dependent probability p(t) for a photon
later to be present in the cavity. Give a qualitative explanation of its oscillatory behaviour, and
specify what determines the frequency and amplitude of the oscillations.

PROBLEM 2
A radiation problem

We consider a one-dimensional problem where a two-level system (A) interacts with a scalar
radiation field (B). The notation we use is essentially the same as in Problem 1. The Hamiltonian
of the system we consider is

Ĥ =
1

2
h̄ωA σz +

∑

k

h̄ωkâ
†
kâk + κ

∑

k

√
h̄

2Lωk
(âkσ+ + â†kσ−) = Ĥ0 + Ĥint (3)

The first term is the two-level Hamiltonian, with energy splitting h̄ωA, the second one is the
free field contribution, with k = 2πn/L (n - integer) as the wave number of the photon. L is a
(large) normalization length. The third term is the interaction term Ĥint, with κ as an interaction
parameter. The frequency parameter is ωk = ck.

a) A general state of the two-level system is characterized by a vector r, with r ≤ 1, and with
the corresponding density matrix as

ρA =
1

2
(1 + r · σ) =

1

2

(
1 + z x− iy
x+ iy 1− z

)
(4)

Consider first that the interaction term Ĥint is turned off, κ = 0, so that the time evolution
operator of the two-level system is Û(t) = exp(− i

2
ωA t σz). Use this to determine the the density

matrix ρA(t) at time t, assuming that ρA(0) is identical to the density matrix in (4), and show that
the time evolution of r is a precession around the z-axis with angular velocity ωA.

b) Assume next that κ 6= 0 and that initially the two-level system is in the excited ”spin up
state”, while the scalar field is in the vacuum state. Thus, the initial state is |+, 0〉 = |+〉 ⊗ |0〉.
It decays to the ”spin down state” by emission of a field quantum. The final state we then write
as |−, 1k〉 = |−〉 ⊗ |1k〉.

The occupation probability of the excited state |+〉 decays exponentially, P+(t) = exp(−γt),
with a decay rate γ that to first order in the interaction, and in the limit L→∞, is given by

γ =
L

(2πh̄)2

∫
dk |〈−, 1k|Ĥint|+, 0〉|2 δ(ωk − ωA) (5)
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Determine the decay rate γ, expressed in terms of the parameters of the problem.
As discussed in the lectures an approximate way to handle the decay is to introduce an imag-

inary contribution to the energy of the decaying state. Assuming a more general initial state, of
the form

|ψ(0)〉 = (α|+〉+ β|−〉)⊗ |0〉 = α|+, 0〉+ β|−, 0〉 (6)

with α and β as unspecified coefficients, with |α|2 + |β|2 = 1, we make the corresponding ansatz
for the time evolved state

|ψ(t)〉 = (e−
i
2
ωAt−γt/2α|+〉+ e

i
2
ωAtβ|−〉)⊗ |0〉+

∑

k

ck(t)|−, 1k〉 (7)

with ck(t) as decay parameters, which satify ck(0) = 0.
c) Check what normalization of the state vector (7) means for the decay parameters, and

determine the reduced density matrix matrix ρA(t) of the two-level system.
d) Assume the same initial conditions as in b), z(0) = 1, x(0) = y(0) = 0 (α = 1, β = 0).

Determine the density matrix ρA(t) and the corresponding time dependent vector r(t). Is the
time evolution consistent with the expected exponential decay of the excited state of the two-
level system? Give a brief description of the evolution of the entanglement between the two level
system and the radiation field during the decay.

e) Choose another initial condition x(0) = 1, y(0) = z(0) = 0 (α = β = 1/
√

2), and
find also in this case the time evolution of the reduced density matrix and the components of the
vector r(t). Sketch the time evolution of r(t) and compare qualitatively the motion with that in
a) and d). Find r(t)2 expressed as a function of γt, and sketch also this function. What does it
show about the time evolution of the entanglement between the two subsystems A and B?

Assume in this paragraph γ << ωA.
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PROBLEM 1
Two spin-half systems

A quantum system is composed of two interacting spin-half systems. The Hamiltonian has
the form

Ĥ =
1

2
h̄ω1 σz ⊗ 1 +

1

2
h̄ω2 1⊗ σz +

1

2
h̄λ(σ+ ⊗ σ− + σ− ⊗ σ+) (1)

where σz og σ± are Pauli matrices, with σ± = 1
2
(σx ± iσy), h̄ω1 and h̄ω2 giving the splitting

between the two energy levels of each of the spins, and with λ as a coupling parameter. The
two factors of the tensor product refer to each of the two spin systems. We define the frequency
difference as ∆ = ω1 − ω2 and introduce the following parametrization, ∆ = µ cosφ and
λ = µ sinφ. We further use |±〉 as notation for the eigenstates of σz. In the following we use the
tensor products of these states as basis for the Hilbert space of the composite system.

a) Show that only the product states |+−〉 = |+〉⊗|−〉 and |−+〉 = |+〉⊗|−〉 are mixed by
the λ term in the Hamiltonian, and show that the mixing coefficients only depend on the angle φ,
which we will assume to lie in the interval 0 ≤ φ ≤ π/2. Give the expression for the Hamiltonian
as a 2x2 matrix, when restricted to the subspace spanned by |+−〉 and | −+〉.

b) Find the corresponding two energy eigenvalues, and find the eigenstates expressed as func-
tions of φ.

c) We now assume ∆ = 0. At time t = 0 the system is in the state |+−〉. Determine the time
evolution of the state vector and the corresponding reduced density matrices for the two subsys-
tems. Show that the entanglement entropy has a periodic behavior. What are the maximum and
minimum values and what is the period of the oscillations.
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PROBLEM 2
Atom-photon interaction in a cavity

An atom is trapped inside a small reflecting cavity. The energy difference between the ground
state and the first excited state is ∆E = Ee − Eg ≡ h̄ω, with ω matching the frequency of one
of the electromagnetic cavity modes. This gives a strong coupling between the atomic states and
this cavity mode, while the couplings to the other cavity modes are weak and can be neglected.

The composite system, atom plus cavity mode, is described by the following effective Hamil-
tonian

Ĥ =
1

2
h̄ωσz + h̄ωâ†â+

1

2
h̄λ(â†σ− + âσ+)− iγh̄a†a (2)

where the Pauli matrices act between the two atomic levels, with σz being diagonal in the energy
basis, and σ± = (1/2)(σx ± iσy) being matrices that raise or lower the atomic energy. â† and â
are the photon creation and destruction operators. λ is an interaction parameter and γ is a decay
parameter. The decay is due to the process where the photon escapes through the cavity walls.
Both λ and γ are real-valued parameters, and we assume γ << λ and γ << ω.

We characterize the relevant states of the composite system as |g, 0〉, |g, 1〉 and |e, 0〉, where
g refers to the atomic ground state, e to the excited state, and 0 and 1 refers to the absence or
presence of a photon in the cavity mode.

a) Show that in the two-dimensional subspace spanned by the vectors |g, 1〉 and |e, 0〉 the
Hamiltonian takes the form

H =
1

2
h̄(ω − iγ)1 +

1

2
h̄
(−iγ λ

λ iγ

)
(3)

where |g, 1〉 corresponds to the upper row of the matrix and |e, 0〉 to the lower one, and 1 is the
identity matrix.

b) Assume that initially the system is in the state |ψ(0)〉 = |e, 0〉. Show that the time evolution
of the state vector can be written as

|ψ(t)〉 = e−
i
2
ωt− 1

2
γt ((cos(Ωt) + a sin(Ωt))|e, 0〉+ ib sin(Ωt)|g, 1〉) (4)

and determine the constants Ω, a and b.
c) Denote the corresponding density operator as ρ̂(t). The norm of this operator is not con-

served, but if we add a contribution

ρ̂tot(t) = ρ̂(t) + f(t)|g, 0〉〈g, 0| (5)

then the norm is conserved, with value 1, for a particular function f(t). Determine this function,
and comment on in what sense the addition of the last term in (5) is reasonable, when considering
the physical process described by the Hamiltonian (3). Give a short qualitative description of the
process described by (5).
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PROBLEM 3
Distributed information

A secret message is distributed to a party of three, denoted A, B, and C, in the form of an
entangled three-spin state, coded into three spin-half particles. As the receiving party knows in
advance, the quantum state is one out of a selection of three,

|ψn〉 =
1√
3

(|+−−〉+ ηn| −+−〉+ (η∗)n| − −+〉) , η = e2πi/3 (6)

where n = 0, 1, 2. The message is identified by the value of n, which means by which of the
three quantum states that is distributed.

We use the notation | + −−〉 = |+〉 ⊗ |−〉 ⊗ |−〉 etc., where the single spin states |±〉 are
orthogonal states in a basis referred to as basis I. The three spinning particles are distributed to A,
B and C, one particle to each of them, with the the first state in the tensor product corresponding
to the spin sent to A, the second one to B and the third one to C. We assume the three-spin state
is preserved under this distribution.

Each person in the receiving party can make (spin) measurements on the spinning particle
he/she receives. The three can also communicate over a classical channel, which means that they
can correlate their measurements and also compare the results of the measurements. They have,
however no quantum channel available for communication. This means that all the observables
that are available for measurements by the receiving party are of product form.

a) Determine the reduced density operator of A, and explain why, for any measurement he/she
performs on his particle, no information can be extracted about which of the three spin states |ψn〉
is distributed. Also show that if A, B and C all make their spin measurements in basis I, even if
they communicate their measured results, these cannot make any distinction between the three
values of n.

Next, consider the situation where A and B are not able to communicate with C. They de-
cide to perform measurements on the two spins they have received, and to make a probabilistic
evaluation for the different values of n, based on the measured results. In order to do so they
decide both to make their spin measurements in a rotated basis, which we refer to as basis II. The
vectors in this basis are

|0〉 =
1√
2

(|+〉+ |−〉) , |1〉 =
1√
2

(|+〉 − |−〉) (7)

The possible outcomes of the measurements they list with numbers k = 1, 2, 3, 4, with the cor-
respondence

k = 1 : (0 , 0) , k = 2 : (0 , 1) , k = 3 : (1 , 0) , k = 4 : (1 , 1) (8)

We refer to the corresponding states as |φk〉, with |φ1〉 = |00〉 = |0〉 ⊗ |0〉, etc.
Before they do the measurements they evaluate for each three-spin state |ψn〉 the probabilities

for the different measurement results (labeled by k). These probabilities are referred to as p(k|n).
b) Find the reduced density operator ρ̂ABn and determine the probabilities p(k|n) for different

values of k and n. It is sufficient, due to repetitions of results, to consider n = 0, 1 and k = 1, 2.

3



Do you, in particular, see a reason why the probabilities are the same for n = 1 and n = 2, for
all k?

c) Assume now that A and B perform their measurements, with the result labeled by k. The
probability for the state to be |ψn〉, under the condition that the measured result is k, we denote
by p̄(n|k). Under the assumption that all spin states |ψn〉 are equally probable until the result of
the measurement is known, statistics theory gives us the following relation

p̄(n|k) =
p(k|n)

p(k)
(9)

with p(k) as a normalization factor. Determine p(k) and the probability p̄(n|k) for each n in the
case k = 1 : (0 , 0). What is most probably the message that has been distributed?
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OPPGAVE 1
Tidsutvikling i et to-nivåsystem

Hamiltonoperatoren for et isolert to-nivåsystem (betegnet A) har formen Ĥ0 = (1/2)h̄ω σz,
med σz som den diagonale Paulimatrisen. Vi betegner den normerte grunntilstandsvektoren som
|g〉 og den eksiterte tilstanden som |e〉. Systemet er i realiteten koblet til et strålingsfelt (beteg-
net S), og den eksiterte tilstanden vil derfor henfalle til grunntilstanden under utsendelse av
et strålingskvant. Vi lar ρ̂ betegne den reduserte tetthetsoperatoren til delsystem A. Med god
tilnærmelse kan tidsutviklingen av denne beskrives av den såkalte Lindbladligningen, her på
formen

dρ̂

dt
= − i

h̄
[H0, ρ̂]− 1

2
γ
[
α̂†α̂ρ̂+ ρ̂α̂†α̂− 2α̂ρ̂α̂†

]
(1)

med γ som henfallsraten for overgangen |e〉 → |g〉, α̂ = |g〉〈e| og α̂† = |e〉〈g|.
På matriseform, i basis {|e〉, |g〉}, skriver vi tetthetsoperatoren ρ̂ som

ρ̂ =
(
pe b
b∗ pg

)
(2)

med pe som sannsynligheten for å finne systemet i tilstand |e〉 og pg som sannsynligheten for å
finne det i tilstand |g〉.

a) Anta først at to-nivåsystemet ved tiden t = 0 er i tilstanden ρ̂ = |e〉〈e|. Vis ved bruk
av ligning (1) at sannsynligheten pe avtar eksponensielt, med γ som henfallsrate, mens total
sannsynlighet pe + pg er bevart.

b) Anta så en annen initialtilstand hvor to-nivåsystemet ved t = 0 er i den rene tilstanden
|ψ〉 = 1√

2
(|e〉+ |g〉). Bestem den tidsavhengige tetthetsmatrisen ρ̂(t) med denne initialtilstanden.

c) Tetthetsoperatoren for system A kan alternativt uttrykkes ved Paulimatrisene, som ρ̂ =
1
2
(1+ r ·σ). Bestem funksjonen r2(t) i de to tilfellene ovenfor og vis at den i begge tilfeller har

1



minimum for t = (1/γ) ln 2. Hva blir minimalverdien til r i de to tilfellene? Gi en kommentar
om hva dette sier om sammenfiltringen mellom systemene A og S. (Vi forutsetter at det fulle
systemet A+S hele tiden er i en ren tilstand.)

OPPGAVE 2
Tre partikler i en sammenfiltret tilstand

Tre partikler med halvtallig spinn, som vi referer til som A, B and C, befinner seg i en
sammensatt spinntilstand

|ψ〉 =
1√
2

(|uuu〉 + |ddd〉) (3)

hvor |uuu〉 = |u〉A ⊗ |u〉B ⊗ |u〉C , er tensorproduktet av spinn-opp (u) langs z-aksen for alle tre
partiklene, mens |ddd〉 = |d〉A ⊗ |d〉B ⊗ |d〉C er tensorprodukttilstanden svarende til spinn-ned
(d) for alle tre partiklene. Vi antar at posisjonskoordinatene er helt frakoblet spinnkoordinatene
og at spinnet derfor kan studeres separat. Det er ingen vekselvirkning mellom partiklene, og
tilstanden (3) er derfor uendret så lenge det ikke måles på noen av spinnene.

Vi studerer i det følgende spinnsystemet som todelt, svarende til en oppsplitting ABC =
A + BC, slik at spinn A definerer det ene undersystemet og de to andre spinnene, B og C,
definerer det andre undersystemet.

a) Bestem de reduserte tetthetsoperatorene ρ̂A og ρ̂BC for de to delsystemene, og sammen-
filtringsentropien til det sammensatte systemet. Hva menes med at de to delsystemene i denne
tilstanden er maksimalt sammenfiltret? Delsystemet BC kan videre tenkes sammensatt av under-
systemene B og C. Hva sier tetthetsoperatoren ρ̂BC om sammenfiltring mellom disse to.

b) Ved et gitt tidspunkt blir en spinnmåling utført på partikkel A som bestemmer spinnkom-
ponenten langs x-aksen som spinn-opp langs denne aksen. Denne informasjonen medfører at
tetthetsoperatoren til systemet BC blir endret. Hva blir den nye reduserte tetthetsoperator ρ̂′BC?
Har måling på spinnet til partikkel A forandret sammenfiltringen mellom B og C?

Vi minner om følgende: Med |f〉 som spinn-opp langs x-aksen og |b〉 som spinn-ned langs
samme akse har vi relasjonene

|u〉 =
1√
2

(|f〉 − |b〉) , |d〉 =
1√
2

(|f〉+ |b〉) (4)

c) Anta at tre-spinnsystemet igjen befinner seg i tilstanden (3). Denne gangen måles spinnet
til A langs en akse i xz-planet, som er rotert med vinkelen θ i forhold til z-aksen. Anta også at i
dette tilfellet er måleresultatet spinn-opp. Finn hvordan måleresultatet nå påvirker tetthetsoper-
atoren for systemet BC, og bestem sammenfiltringsentropien for sammensetningen B + C, som
funksjon av vinkelen θ.

For de roterte spinntilstandene gjelder

|θ,+〉 = cos(θ/2)|u〉+ sin(θ/2)|d〉 (spinn opp)

|θ,−〉 = − sin(θ/2)|u〉+ cos(θ/2)|d〉 (spinn ned) (5)

der θ = 0 svarer til kvantisert spinn langs z-aksen og θ = π/2 til kvantisert spinn langs x-aksen.
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OPPGAVE 3
Spinnflipp-stråling

Vi studerer i denne oppgaven overgang mellom to spinntilstander for et elektron i et ytre
magnetfelt som er rettet langs z-aksen, B = Bez. (Merk: vi benytter her ex, ey og ez som
enhetsvektorer langs x-, y- og z-aksen.) Hamiltonoperatoren skrives som Ĥ = Ĥ0 + Ĥ1, hvor
Ĥ0 svarer til den magnetiske dipolenergien i det ytre magnetfeltet, mens Ĥ1 beskriver koblingen
mellom spinnet og strålingsfeltet. Vi har

Ĥ0 =
1

2
ωBσz , ωB = −eB

m
(6)

med e som elektronladningen og m som elektronmassen. Frekvensen ωB regnes som positiv.
Matriseelementet til spinnvekselvirkningen Ĥ1, ved emisjon av et foton, er i dipoltilnærmelsen

〈B, 1ka|Ĥ1|A, 0〉 = i
eh̄

2m

√
h̄

2ωV ε0
(k× εka) · σBA (7)

hvor |A〉 er den eksiterte spinntilstanden (spinn-opp) og |B〉 er grunntilstanden (spinn-ned).
Videre er k bølgetallsvektoren, εka en polarisasjonsvektor og ω = c k er vinkelfrekvensen til
det emitterte fotonet. V er et normeringsvolum for den elektromagnetiske strålingen og σAB er
matriseelementet til Paulimatrisen σ = σx ex + σy ey + σz ez mellom de to spinntilstandene.

a) Til første orden i perturbasjonsteori vil vinkelavhengigheten til det kvadrerte matriseele-
mentet (summert over polarisasjonsindeksen)

∑
a |〈B, 1ka|Ĥ1|A, 0〉|2, bestemme sannsynlighets-

fordelingen for retningen til fotonet, p(φ, θ), hvor (φ, θ) er polarvinklene til bølgevektoren k.
Bestem p(φ, θ) fra uttrykket ovenfor. Vi minner om at ved summasjon over polarisasjonsretnin-
gene har vi

∑
a
|εka · b|2 = |b|2 − |b · k

k
|2 for en vilkårlig vektor b. Normeringen av sannsyn-

lighetsfordelingen er
∫
dφ
∫
dθ sin θ p(φ, θ) = 1.

b) Det kvadrerte matriseelementet (uten sum over a) bestemmer også, for gitt k, sannsyn-
lighetsfordelingen over polarisasjonsretningen til fotonet. Anta at en fotondetektor registrerer
fotoner utsendt langs x-aksen (k = kex), med polarisasjonsretning ε(α) = cosα ey + sinα ez.
Hva er sannsynligheten p(α) for å detektere det emitterte fotonet? Anta her at sannsynligets-
fordelingen er normert slik at summen over to ortogonale retninger er, p(α) + p(α + π/2) = 1.
Hva sier resultatet om polarisasjonen til det emitterte fotonet?

————-
Vi minner om standardformen på Paulimatrisene,

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
(8)
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1 Entanglement in a two-spin system
We consider a composite quantum system consisting of two spin-half systems, A and B. The

relevant states are restricted to the two-dimensional subspace spanned by the two (orthogonal)
Bell states

|1〉 =
1√
2

(|+−〉+ | −+〉) , |2〉 =
1√
2

(|+−〉 − | −+〉) (1)

where we use the notation |+−〉 = |+〉 ⊗ |−〉, with |±〉 refering to the two eigenstates of σz.
Consider first (Case I) a linear superposition of the two state vectors, of the form

|ψ(x)〉 = cosx |1〉+ sinx |2〉 , 0 ≤ x ≤ π

2
(2)

The corresponding density operator we denote by ρ̂I(x) = |ψ(x)〉〈ψ(x)|.
a) Determine the reduced density operators ρ̂IA(x) and ρ̂IB(x) of the two spins and the cor-

responding entropies SIA(x) and SIB(x). Characterize the entanglement of the two spins for the
special values x = 0, π/4, and π/2.

Consider next (Case II) the following linear combination of the density operators of the two
Bell states,

ρ̂II(x) = cos2 x |1〉〈1|+ sin2 x |2〉〈2| , 0 ≤ x ≤ π

2
(3)

b) What is the von Neuman entropy of this state? Find the reduced density operators ρ̂IIA(x)
and ρ̂IIB(x), and the corresponding entropies SIIA(x), and SIIB(x). Characterize also here the
states of the full system for x = 0, π/4, and π/2.

For a composite quantum system in pure quantum state, the degree of entanglement is ex-
pressed by the von Neumann entropy of one of its subsystems. When the system is in a mixed
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state we do not have a general, universally accepted, measure for the degree of entanglement.
However, for a classical, statistical system we have the following inequality for the entropy of
the full systems and its subsystem,

∆ ≡ S −max{SA, SB} ≥ 0 (4)

The breaking of this inequality in quantum system therefore indicates that the two subsystems
are entangled.

c) Show that in the two cases I and II the functions ∆I(x) and ∆II(x) are negative for all x,
except for one value of x.

OPPGAVE 2
Radiation damping

A charged particle is oscillating in a one-dimensional harmonic oscillator potential. It emits
electric dipole radiation, with the rate for transition between an initial state i and a final state f
given by the radiation formula

wfi =
4α

3c2
ω3
fi|xfi|2 (5)

where α is the fine structure constant, h̄ωfi is the energy radiated in the transition, and c is the
speed of light. x is the position coordinate of the particle, which is related to the raising and
lowering operators of the harmonic oscillator by

x =

√
h̄

2mω
(â† + â) (6)

with m as the mass of the particle.
a) Show that the non-vanishing transition rates are of the form

wn−1,n = γn (7)

with n = 0, 1, 2, ... as referring to the energy levels of the harmonic oscillator, and γ as a constant
decay parameter. Detemine γ.

The effect of the radiation on the state of the oscillating particle is described by the Lindblad
equation in the following way

dρ̂

dt
= − i

h̄
[H0, ρ̂]− 1

2
γ
[
â†âρ̂+ ρ̂â†â− 2âρ̂â†

]
(8)

with ρ̂ as the density operator of the particle and H0 as the harmonic oscillator Hamiltonian,
without decay.

b) In the following we focus on the diagonal terms of the density matrix, pn = ρnn = 〈n|ρ̂|n〉,
which define the occupation probabilities of the energy eigenstates. Show that they satisfy the
equation

dpn
dt

= −γ(npn − (n+ 1)pn+1) (9)
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Explain why this is consistent with the expression (7) for the transition rate wn−1,n.
c) Show that Eq. (9) implies that the expectation value of the excitation energy

E = 〈H0〉 −
1

2
h̄ω (10)

decays exponentially with time.

OPPGAVE 3
A state in thermal equilibrium

A quantum state in thermal equilibrium is described by the density operator

ρ̂(β) = N(β)e−βĤ = N(β)
∑

n

e−βEn|n〉〈n| (11)

with Ĥ as the Hamiltonian, En as the corresponding energy eigenvalues, and N(β) as a normal-
ization factor. The parameter β is related to the temperature T by β = 1/(kBT ), with kB as
Boltzmann’s constant.

a) Show that the expectation value for the energy can be expressed in terms of N(β) as

E(β) =
d

dβ
lnN(β) (12)

and find a similar expression for the von Neumann entropy S(β) = Tr[ρ̂(β) ln ρ̂(β)]. (Use here
the natural logarithm in the definition of S.)

b) For a two-level system, with Hamiltonian Ĥ = (ε/2)σz, determine the functions N(β),
E(β) and S(β), and make a sketch of the expectation value of the energy E as function of the
temperature T .

c) Find the density operator expressed in the form ρ̂ = (1/2)(1 + r · σ). Determine r as a
function of β and relate this to the results in b).
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PROBLEM 1
Two spin-half systems

A quantum system is composed of two interacting spin-half systems, referred to as system A
and B. The Hamiltonian has the form

Ĥ =
1

2
h̄ω(σz ⊗ 1− 1⊗ σz) + h̄λ(σ+ ⊗ σ− + σ− ⊗ σ+) (1)

where σz og σ± are Pauli matrices, with σ± = 1
2
(σx ± iσy), h̄ω giving the splitting between the

two energy levels of each of the two spins, and with λ as a coupling parameter. The two factors
of the tensor product refer to each of the two spin systems, with A corresponding to the first
and B as the second factor. It is convenient to introduce new parameters by ω = a cos θ and
λ = a sin θ, with −π/2 < θ ≤ π/2. We further use |±〉 as notation for the eigenstates of σz.
In the following we use the tensor products of these states as basis for the Hilbert space of the
composite system.

a) Show that only the product states |+−〉 = |+〉 ⊗ |−〉 and | −+〉 = |+〉 ⊗ |−〉 are mixed
by the λ term in the Hamiltonian, and give the expression for the Hamiltonian as a 2x2 matrix,
in the subspace spanned by |+−〉 and | −+〉.

b) Find the energy eigenvalues, and the energy eigenstates, expressed in terms of a and θ.
c) Determine, for the energy eigenstates, the density operator of the full system and the

reduced density operators of the two subsystems, and detemine the entanglement entropy of
the eigenstates as functions of θ. What are the minimum and maximum values of the entropy
functions? Make a comparison with the maximal possible value of the entanglement entropy of
the two-spin system.

——————–
density operator = tetthetsoperator
entanglement = sammenfiltring
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PROBLEM 2
A driven harmonic oscillator

A quantum mechanical, driven harmonic oscillator is described by the following Hamiltonian

Ĥ = h̄ω0(â
†â+

1

2
) + h̄λ(â†e−iωt + âeiωt) (2)

where â og â† satisfy the standard commutation relations for lowering and raising operators, and
where ω0, ω og λ are three constants.

a) As a reminder, Heisenberg’s equation of motion has the form

d

dt
Â =

i

h̄

[
H, Â

]
+
∂

∂t
Â (3)

for any given observable Â. Apply this to the operator âH , which is the operator â transformed
to the Heisenberg picture, and show that it satisfies an equation of the form

d2âH
dt2

+ ω2
0 âH = Ce−iωt 1 (4)

with C as a constant. Determine C.
b) Equation (4) can be solved as a linear differential equation, to give

âH(t) = â e−iω0t +D(e−iωt − e−iω0t)1 (5)

Show that (5) is a solution of (4) and determine the constant D.
c) A coherent state is defined as an eigenstate of the lowering operator â,

â|z〉 = z|z〉 (6)

Assume that the oscillator, at time t = 0, is in the ground state for the λ-independent part of the
Hamiltonian, that is

|ψ(0)〉 = |0〉 , â|0〉 = 0 (7)

Show that, during the time evolution (in the Schrödinger picture), it will continue as a coherent
state, so that

â|ψ(t)〉 = z(t)|ψ(t)〉 (8)

with z(t) as a complex-valued function of time.
Find the function z(t), and compare the time evolution of the real part x(t) = (z(t)+z(t)∗)/2

with the motion of the corresponding classical driven harmonic oscillator.

——————–
driven harmonic oscillator = tvungen harmonisk oscillator
coherent state = koherent tilstand
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PROBLEM 3
Atom and photon in an optical microcavity

An atom is contained in an optical microcavity, with the energy difference between two of
the atomic levels matching exactly the frequency of one of the electromagnetic cavity modes. A
simplified description of the photon-atom system has the form of a two-level system coupled to
a single electromagnetic mode. The Hamiltonian then takes the form

Ĥ =
1

2
h̄ωσz + h̄ωâ†â+

1

2
h̄λ(â†σ− + âσ+) (9)

where â† and â are photon creation and annihilation operators, and σz and σ± are Pauli matrices
with σ± = 1

2
(σx ± iσy). These operators act between the two atomic levels with the upper and

lower energy levels corresponding to the eigenvalues +1 and −1 respectively of σz. We refer in
the following to |±, n〉 = |±〉 ⊗ |n〉 as product states of the composite system, with |±〉 as the
upper/lower atomic levels and |n〉 as the photon number states of the cavity mode.

a) Assume a single photon is introduced in the cavity at time t = 0 while the atom is in its
ground state. Show that the atom-photon state will subsequently oscillate in the following way

|ψ(t)〉 = eiεt(cos Ωt |−, 1〉 − i sin(Ωt)|+, 0〉) (10)

and find Ω and ε expressed in terms of ω and λ.
To take into account leakage of photons from the cavity, we turn to a description of the time

evolution in terms of the density operator. It is assumed to satisfy the Lindblad equation,

dρ̂

dt
= − i

h̄
[H, ρ̂]− 1

2
γ
[
â†âρ̂+ ρ̂â†â− 2âρ̂â†

]
(11)

where γ is the escape rate for photons from the cavity.
b) The probability for finding the atom in the ground state with no photon in the cavity is

pg = 〈−, 0|ρ̂|−, 0〉. Assume that there is initially a non-vanishing probability for a photon being
present in the cavity. Show that that this will result in an increase in pg with time, which is
consistent with the expectation that the photon will escape from the cavity.

c) Assuming there is no contribution to ρ̂ from higher excited states than |−, 1〉 and |+, 0〉,
show that a closed set of coupled differential equations for the three variables p1 = 〈−, 1|ρ̂|−, 1〉,
p0 = 〈+, 0|ρ̂|+, 0〉 and b = Im〈−, 1|ρ̂|+, 0〉 can be derived from the Lindblad equation.

Without solving the equations, give a qualitative description of what the expected time evo-
lution will be with the same initial condition as in a).

——————–
cavity mode = kavitetsmode, hulromsmode
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PROBLEM 1
Spin-half particle in a harmonic oscillator potential
A spin-half particle is moving in a one-dimensional harmonic oscillator potential (in the x-
direction) under the influence of a constant magnetic field (in the z-direction). The Hamiltonian
is

Ĥ = h̄ω0(â†â+
1

2
) +

1

2
h̄ω1σz + λh̄(â†σ− + âσ+) (1)

where the first term is the harmonic oscillator part, with ω0 as the oscillator angular frequency,
and the second term is the spin energy due to the magnetic field, with ω1 as the angular spin
precession frequency. The third term is a coupling term between the spin and the position co-
ordinates of the particle, with λ as a coupling parameter. The spin flip operators are defined
as σ± = 1

2
(σx ± iσy), â, â† are the standard lowering and raising operators of the harmonic

oscillator, and σx, σy, σz are the Pauli spin matrices.
When λ = 0, the spin and position of the particle are uncoupled and the energy eigenstates

are |n,m〉, with n = 0, 1, 2, ... as the harmonic oscillator quantum number and m = ±1 as
the spin quantum number, corresponding to spin up/down along the z-axis. When λ 6= 0, the
unperturbed eigenstates will pairwise be coupled by the Hamiltonian, so that |n,+1〉 is coupled
to |n + 1,−1〉. (The state |0,−〉 is an exception; it is not affected by the coupling term and
remains the non-degenerate ground state also for λ 6= 0.)

a) Consider the two-dimensional subspace spanned by the basis vectors |0,+1〉 and |1,−1〉.
Show that in this space, and in the given basis, the Hamiltonian takes the form of a 2x2 matrix

H =
1

2
h̄∆

(
cos θ sin θ
sin θ − cos θ

)
+ h̄ε1 (2)

with 1 as the 2x2 identity matrix. Determine ∆, cos θ, sin θ and ε.
b) Find the energies and eigenstates of H in the two-dimensional subspace, expressed as

functions of ∆, θ and ε.
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c) The basis vectors |n,m〉 can be regarded as tensor products of position and spin vectors,
|n,m〉 = |n〉 ⊗ |m〉. The two eigenstates found under b) will be entangled with respect to the
position and spin variables. Determine the entanglement entropy as function of θ. What value
for θ gives the least and what gives the greatest entanglement?

PROBLEM 2
Coupled harmonic oscillators
Two harmonic oscillators, referred to asA and B, form a composite quantum mechanical system.
The Hamiltonian of the system has the form

Ĥ = h̄ω(â†â+ b̂†b̂+ 1) + h̄λ(â†b̂+ b̂†â) (3)

with (â, â†) as lowering and raising operators for A and (b̂, b̂†) as corresponding operators for B,
while ω and λ are real valued constants.

a) Show that the Hamiltonoperator can be expressed in diagonal form as

Ĥ = h̄ωc ĉ
†ĉ+ h̄ωd d̂

†d̂+ h̄ω1 (4)

where c and d are linear combinations of a and b,

ĉ = µ â+ ν b̂ , d̂ = −ν â+ µ b̂ (5)

with µ and ν as real constants satisfying µ2 + ν2 = 1, and determine the new parameters µ,
ν, ωc, and ωd, expressed in terms of ω og λ. (The same type of expressions are found for the
harmitian conjugate operators ĉ† og d̂†.) Check that the new operators ĉ and d̂ satisfy the same
set of harmonic oscillator commutation relations as â and b̂. It is sufficient to show

[
ĉ, ĉ†

]
=
[
d̂, d̂†

]
= 1 ,

[
ĉ, d̂†

]
= 0 (6)

b) Assume that the state |ψ(0)〉 of the composite system, at time t = 0, is a coherent state
when expressed in terms of the new variables,

ĉ |ψ(0)〉 = zc 0|ψ(0)〉 , d̂ |ψ(0)〉 = zd 0|ψ(0)〉 (7)

Also at a later time the state |ψ(t)〉 will be a coherent state for both ĉ og d̂, with eigenvalues

zc(t) = e−iωctzc 0 , zd(t) = e−iωdtzd 0 (8)

Show this for zc(t). (The expression for zd(t) follows in the same way, and is therefore not
needed to be shown.)

c) Show that the state |ψ(t)〉 is a coherent state also for the original harmonic oscillator
operators â og b̂, and find the eigenvalues za(t) and zb(t) expressed in terms of za 0and zb 0.

PROBLEM 3
Two-level system in a heat bath

We consider a two-level system, with |g〉 as the ground state and |e〉 as the excited state of
the Hamiltonian Ĥ0. The energy difference between the corresponding two energy levels is ∆E.
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The system interacts weakly with a heat bath with temperature T . Energy can flow both ways,
with γ as the rate for emission of energy to the heat bath in the transition |e〉 → |g〉 and γ′ as the
rate for absorption of energy in the transition |g〉 → |e〉. The situation is illustrated in the figure.

The temperature T of the heat bath and the energy gap ∆E determine the ratio between γ′

and γ,

γ′ = γ e−∆E/kT (9)

where k is the Boltzman constant. Both transitions, corresponding to γ and γ′, contribute to the
time evolution of the density operator of the two-level system. This is expressed by the Lindblad
equation in the following way,

d

dt
ρ̂ = − i

h̄

[
Ĥ0, ρ̂

]
− 1

2
γ(|e〉〈e|ρ̂+ ρ̂|e〉〈e| − 2|g〉〈e|ρ̂|e〉〈g|)

− 1

2
γ′(|g〉〈g|ρ̂+ ρ̂|g〉〈g| − 2|e〉〈g|ρ̂|g〉〈e|) (10)

The 2× 2 matrix form of ρ̂, in the basis {|g〉, |e〉}, we write as

ρ =
(
pe b
b∗ pg

)
(11)

with pe interpreted as the probability of occupation of the excited level and pg as the probability
of occupation of the ground state.

a) Find from equation (10) expressions for the time derivatives of pe, pg and b, and check that
they are consistent with preservation of total probability, pe + pg.

b) The conditions for ρ̂ to be a density operator give restrictions on the matrix elements in
(11). What are these?

c) Assume first that the two-level system and the heat bath are in thermal equilibrium, and
the density matrix (11) therefore is time independent. Determine the values of variables pe, pg
and b in this case.

d) Consider next the situation with initial values pg = 1, pe = 0. Determine the time evolution
of the occupation probabilities towards thermal equilibrium. What happens in the limits T → 0
and T →∞?
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PROBLEM 1
Two interacting Two Level Systems

We have two interacting Two Level Systems, which we call systems A and B, with their
corresponding sets of Pauli matrices σAi and σBi . The Hamiltonian is the following:

H =
1

2
h̄gσAz ⊗ σBz

where g is the interaction strength. Here we use a representation where for each system

|0〉 =

(
1
0

)
and |1〉 =

(
0
1

)
.

a) Find the time evolution operator U(t) = e−
i
h̄
Ht in the form of a 4× 4 matrix.

b) Assume that at time t = 0 the two systems are in a product state

|ψ(0)〉 = |ψA(0)〉 ⊗ |ψB(0)〉

with
|ψA(0)〉 = a|0〉+ b|1〉 and |ψB(0)〉 = c|0〉+ d|1〉.

with |a|2 + |b|2 = 1 and |c|2 + |d|2 = 1. Find the reduced density matrices for systems
A and B as functions of time.

c) We define the Bloch vectors of A and B as m and n, respectively, so that

1



ρA =
1

2

(
1 + m · σA

)
and ρB =

1

2

(
1 + n · σB

)

Consider now the special case a = b = 1√
2
. Find the Bloch vector m for system A and

show that as a function of time it is describing an ellipse in the xy-plane.

d) For given initial values c and d for system B and still a = b = 1√
2
, find the maximal

value of the entanglement entropy, and show that it depends only in the component nz
of the Bloch vector n for system B.

PROBLEM 2
Squeezed states of the harmonic oscillator

We have in the lectures studied coherent states of the harmonic oscillator as examples of
minimal uncertainty states. Here we will consider a related class of minimal uncertainty
states called squeezed states. We define the squeeze operator

S(ζ) = e−
1
2

(ζâ2−ζ∗â†2)

where ζ is a complex number and â and â† are the usual annihilation and creation operators
of the harmonic oscillator. The squeezed vacuum state is defined as

|sqζ〉 = S(ζ)|0〉
a) Show that the action of the squeeze operator on â and â† is given by

S†(ζ)âS(ζ) = cosh râ+ e−iφ sinh râ†

S†(ζ)â†S(ζ) = cosh râ† + eiφ sinh râ

where ζ = reiφ.

b) In the state |sqζ〉, find the variance of the position and momentum operators

x̂ =

√
h̄

2mω

(
â† + â

)
and p̂ = i

√
h̄mω

2

(
â† − â

)
.

That is, calculate

∆x2 = 〈sqζ |x̂2|sqζ〉 − 〈sqζ |x̂|sqζ〉2
∆p2 = 〈sqζ |p̂2|sqζ〉 − 〈sqζ |p̂|sqζ〉2
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c) The Heisenberg uncertainty relation tells us that ∆x∆p ≥ h̄
2

with equality only for
minimal uncertainty states. Calculate the product ∆x∆p for the states |sqζ〉 and show
that for certain φ they are minimal uncertainty states.

d) For those φ which gives minimal uncertainty, compare ∆x and ∆p with the correspond-
ing values in vacuum and describe what happens to the uncertainties.

e) For a general value of φ the state |sqζ〉 is not of minimal uncertainty with respect to
the operators x̂ and p̂. However, for any φ we can find transformed operators x̂φ and
p̂φ satisfying the usual commutator relation [x̂φ, p̂φ] = ih̄ and where ∆xφ∆pφ = h̄

2
. Here

∆xφ and ∆pφ are defined by the same equations as ∆x and ∆p with x̂ and p̂ replaced
by x̂φ and p̂φ. Determine x̂φ and p̂φ expressed in terms of φ, x̂ and p̂.

We remind you of the general relation

eBAe−B = A+ [B,A] +
1

2
[B, [B,A]] + · · ·

3
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PROBLEM 1
Pure and mixed states

a) Explain what is the difference between pure and mixed quantum states. How are they
represented mathematically?

b) An ensemble of spin-1
2

particles are produced by some (to you) unknown procedure.
You are informed that the particles will be either (ensemble A) in the state
| →〉 = 1√

2
(| ↑〉+ | ↓〉) or (ensemble B) in a random statistical mixture with 50% of the

particles in the state | ↑〉 and 50% of the particles in the state | ↓〉. You are allowed
to measure the spin of each particle along an axis of your choice (you do not have to
choose the same axis for each particle). Describe an experiment which would reveal
whether the particles are prepared in ensemble A or ensemble B. Explain what will be
the probabilities of different measurement oucomes for both ensembles when using your
measurement procedure.

c) Consider now a third enemble (ensemble C), where the particles are prepared in a
random statistical mixture with 50% of the particles in the state | →〉 and 50% of the
particles in the state | ←〉 = 1√

2
(| ↑〉− | ↓〉). Prove that we can not distiguish ensembles

B and C by any measurements on the particles.

Instead of direct preparation as described above, we can prepare the ensembles B or C
remotely by entanglement in the following way. Person 1 (the preparer) prepares an en-
semble of pairs of entangled particles in the state 1√

2
(| ↑↓〉 − | ↓↑〉). He keeps one particle

from each pair to himself and sends the other particle from each pair to person 2 (you).
By doing appropriate measurements on his particles, person 1 can now decide at a later

1



point if he would like your particles to belong to ensemble B or C.

d) Which measurement should person 1 perform to generate ensemble B and which to
generate ensemble C? Justify your answer.

e) Even if the ensembles B and C are indistiguishable by local measurements by person
2, as you showed in question c), they can be distiguished by the correlations between
the measurement outcomes of persons 1 and 2. Explain which measurements person 2
should do, and how the difference between ensembles B and C are visible in the corre-
lations. Assume that the pairs are labeled, so that we can compare the measurement
oucomes for the two particles belonging to the same pair. What changes if person 1
decides to wait with his measurements until after person 2 makes the measurements, so
that the two ensembles are not prepared until after they are measured.

PROBLEM 2
Coupled harmonic oscillators

Two identical harmonic oscillators, A and B, are coupled with a Hamiltonian

H = h̄ω(â†â+ b̂†b̂) + h̄λ(â†b̂+ b̂†â). (1)

Here â† and â are creation and annihilation operators for oscillator A and b̂† and b̂ corre-
sponding operators for oscillator B.

a) Show that the Hamiltonian can be expressed in diagonal form as

H = h̄ωcĉ
†ĉ+ h̄ωdd̂

†d̂ (2)

where ĉ and d̂ are linear combinations of â and b̂

ĉ = µâ+ νb̂, d̂ = −νâ+ µb̂ (3)

where µ and ν are positive real constants satisfying µ2 + ν2 = 1. Determine the
constants µ, ν, ωc and ωd in terms of ω and λ. Check that the operators ĉ and d̂ satisfy
the usual harmonic oscillator commutation relations, and that the oscillators C and D
are independent of each other (all operators for different oscillators commute).

b) We define the number operators for the original oscillators as NA = â†â and NB = b̂†b̂.
Assume that the initial state of the system is the first excited state of oscillator A. That
is, the state â†|0〉 where |0〉 is the ground state. Find the expectation values 〈NA〉 and
〈NB〉 as functions of time. Describe the result.

c) Calculate the entanglement entropy between oscillators A and B as a function of time.
What is the maximal value of the entanglement entropy. At what times is the entropy
zero and what is the state of the system at these times?
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PROBLEM 3
Driven two-level system with damping

The Hamiltonian of an isolated two-level system is H0 = 1
2
h̄ω0σz. Let |g〉 be the ground

state and |e〉 the excited state. The system is coupled to a radiation field, so that the
excited state spontaneously will decay to the ground state, emitting a quantum of radi-
ation (which could be photons, phonons or some other field excitation depending on the
physical realization). This means that the density matrix ρ of the system will (to a good
approximation) satisfy a Lindblad equation of the form

dρ

dt
= − i

h̄
[H0, ρ]− 1

2
γ
[
α†αρ+ ρα†α− 2αρα†

]
(4)

where γ is the decay rate for the transition |e〉 → |g〉 and α = |g〉〈e|.
a) We parametrize the density matrix in the following way

ρ =

(
pe b
b∗ pg

)
. (5)

Derive the equations for ṗe, ṗg and ḃ and check that they are consistent with the
conservation of total probability, pe + pg = 1.

b) Find the solution of the Lindblad equation if the initial state is |ψ(0)〉 = 1√
2
(|e〉+ |g〉).

Calculate the Bloch vector as a function of time and describe its motion in the Bloch
sphere (Reminder: The density matrix can be expressed as ρ = 1

2
(1 + r · σ) where r is

the Bloch vector).

We excite the two-level system by an external wave, which we assume is described by
adding a time dependent driving term to the Hamiltonian, so that it takes the form

H =
1

2
h̄ω0σz +

1

2
h̄ω1(cosωtσx + sinωtσy). (6)

c) We want to study the system in a reference frame rotating around the z-axis with the
frequency ω of the external wave. That is, we define the state in the rotating frame as
|ψ′〉 = T (t)|ψ〉 where T (t) is a time dependent unitary transformation. Determine the
form of T (t) and derive the form of the Lindblad equation in the rotating frame.

d) Find the stationary solution of the Lindblad equation in the rotating frame. Describe
the result in the limiting cases of small and large ω1. What quantity should ω1 be
compared to for the limits to apply?
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PROBLEM 1
Three-spin entanglement

We have three spin-1
2

particles, A, B and C, in the state

|ψ〉 =
1√
3

(| ↑↓↓〉+ | ↓↑↓〉+ | ↓↓↑〉) .

where | ↑〉 and | ↓〉 are the eigenstates of the spin in the z-direction. We consider the
splitting of this system in two subsystems, one consisting of particle A and the other of
particles B and C.

a) Find reduced density matrices for the two subsystems. Find the entanglement entropy.

b) We now make a measurement of the spin of particle A in the z-direction. What is
the final state of the system after the measurement (give the answer for all possible
measurement outcomes)? What is the entanglement entropy of the particles B and C
after the measurement?

c) We now measure the spin of particle A in the x-direction instead. What is the entan-
glement entropy of the particles B and C after this measurement?
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PROBLEM 2
Bloch-Siegert shift

We consider first an electron in a constant external magnetic field in the z-direction subject
to a rotating field in the xy-plane. The Hamiltonian has the form

H =
h̄

2
ω0σz +

h̄

2
A(cosωt σx + sinωt σy)

Here ω0 is the natural precession frequency of the electron spin in the external field, A is
the amplitude of the driving field, and ω its frequency.

a) Show that by changing to a reference frame rotating with the frequency ω of the driv-
ing field, the total field is constant in the rotating frame. From the Hamiltonian in
the rotating frame, conclude that resonance (in the sense of largest amplitude Rabi
oscillations of the spin state if the initial state is the ground state) will take place when
ω = ω0 irrespective of the driving amplitude A.

Now we replace the rotating field by one oscillating in the x-direction, which in many cases
is more realistic. The Hamiltonian now reads

H =
h̄

2
ω0σz +

h̄

2
A cos(ωt)σx. (1)

b) Show that using the same transformation as above, the Hamiltonian in the rotating
frame will get an additional term which describes a field rotating at the frequency 2ω
and give an explanation for why this happens. Explain why we in some cases to a
good approximation can neglect this additional rotating component, and use the same
Hamiltonian as we had for the rotating field also when the field is oscillating, which is
usually called the rotating wave approximation.

We will now study how we can get more accurate results than what is obtained in the
rotating wave approximation. To achieve this, we will start from the Hamiltonian (1), but
instead of going to a rotating frame, we will make the transformation

|ψ′〉 = eiS(t)|ψ〉, S(t) =
A

2ω
ξ sin(ωt)σx

where ξ is a parameter whose value we will choose later.

c) Show that the transformed Hamiltonian is

H ′ =
h̄

2
ω0

{
cos

[
A

ω
ξ sin(ωt)

]
σz + sin

[
A

ω
ξ sin(ωt)

]
σy

}
+
h̄

2
A(1− ξ) cos(ωt)σx.
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Using the identities

cos

[
A

ω
ξ sin(ωt)

]
= J0

(
A

ω
ξ

)
+ 2

∞∑

k=1

J2k

(
A

ω
ξ

)
cos(2kωt)

sin

[
A

ω
ξ sin(ωt)

]
= 2

∞∑

k=0

J2k+1

(
A

ω
ξ

)
sin[(2k + 1)ωt]

where Jk(x) is the Bessel function of the first kind of order k, one can find that H ′ =
H ′0 +H ′1 +H ′2 with

H ′0 =
h̄

2
ω0J0

(
A

ω
ξ

)
σz

H ′1 = h̄ω0 sin(ωt)J1

(
A

ω
ξ

)
σy +

h̄

2
A(1− ξ) cos(ωt)σx

H ′2 = h̄ω0

∞∑

k=0

{
J2k

(
A

ω
ξ

)
cos(2kωt)σz + J2k+1

(
A

ω
ξ

)
sin[(2k + 1)ωt]σy

}
.

You do not have to derive this. All the terms in H ′2 have higher frequencies than the typical
dynamical frequencies of the state, and we will ignore H ′2 and approximate H ′ ≈ H ′0 +H ′1.
We will also choose ξ so that it satisfies the equation

J1

(
A

ω
ξ

)
ω0 =

1

2
A(1− ξ).

d) Explain what is special about this choice of ξ and why this simplifies the problem. Show
that the resonance condition for large amplitude Rabi oscillations now is

ω = ω0J0

(
A

ω
ξ

)
. (2)

e) According to Eq. (2), the resonance frequency now depends on the amplitude, in
contrast to the case of a rotating field studied in question a). Use the series expansions
for the Bessel functions

J0(x) = 1− x2

4
+
x4

64
+ · · ·

J1(x) =
x

2
− x3

16
+

x5

384
+ · · ·
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to show that in the limit of a weak driving field, A → 0, we recover the resonance at
ω = ω0 as we had using the rotating wave approximation, and find the lowest order in
A correction to the resonance frequency for small A.

PROBLEM 3
Spinflip radiation

We will study the transition between the two spin states of an electron in an external
magnetic field directed along the z-axis, B = bez. The Hamiltonian can be expressed as
H = H0 + H1, where H0 descibes the energy of a magnetic dipole in the external field,
while H1 describes the interaction with the radiation field. Then we have

H0 =
h̄

2
ωBσz, ωB = −eB

m

where m is the electron mass and e the electron charge (which is negavive so that ωB > 0).
The matrix element of the interaction pat H1 for the case of emission if a single photon is
in the dipole approximation given by

〈B, 1ka|H1|A, 0〉 = i
eh̄

2m

√
h̄

2ωV ε0
(k× εka) · σBA

where |A〉 is the excited spin state (spin up) and |B〉 is the ground state (spin down). εka
is the polarization vector and ω = ck is the angular frequency of the emitted photon. V
is the normalization volume for the electromagnetic radiation and σBA = 〈B|σ|A〉 is the
matrix element of the vector σ of the Pauli matrices.

a) To first order in perturbation theory, the angular dependency of the squared matrix
element |〈B, 1ka|H1|A, 0〉|2 will determine the probability distribution for the direction
of the emitted photon, p(θ, φ), where (θ, φ) are the polar coordinates for the wavevector
k. Determine p(θ, φ) using the above expression for the matrix element. It may be
useful to know that when summing over the polarization states we have

∑
a |εka ·b|2 =

|b|2−|b· k
k
|2 for an arbitrary vector b. The probability distribution should be normalized

as
∫
dφ
∫
dθ sin θp(θ, φ) = 1.

b) The squared matrix element also determines, for a given k, the probability distribution
for the polarization direction of the photon. Assume that a photon detector is set to
detect photons emitted in the x-direction and with polarization vector ε(α) = cosαey+
sinαez (here ey and ez are unit vectors in the x- and y- directions). Find the probability
distribution p(α) to detect the emitted photon as a function of the angle α.

c) To a good approximation, the probability to find the spin in the excited state decays
exponentielly with time
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PA(t) = e−t/τ

where the lifetime τ is, to first order in the interaction, determined by the time inde-
pendent transition rate

wBA =
V

(2πh̄)2

∫
d3k

∑

a

|〈B, 1ka|H1|A, 0〉|2δ(ω − ωB)

Use this to find an expression for the lifetime τ .

We remind you of the general relation

eBAe−B = A+ [B,A] +
1

2
[B, [B,A]] + · · ·

The Pauli matrices have the form

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)

They satisfy the relations

[σi, σj] = 2iεijkσk

and
e−iφσi = cosφ 1− i sinφσi.
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PROBLEM 1
Quantum circuit for controlled Rk

a) In the quantum Fourier transformation, we needed to perform a controlled Rk operation.
The one-qubit operator

Rk =

(
1 0

0 e2πi/2
k

)

is then performed on the target qubit if the control qubit is in the state |1〉. When
the control qubit is in the state |0〉 no operation is performed on the target qubit. We
know that all two-qubit operators can be decomposed in single qubit operators and
controlled NOT (CNOT) operations. Show that the following quantum circuit is one
such decompostion for the controlled Rk operation

Rk

=

⊕ ⊕Rk+1 R†k+1

Rk+1

b) We consider now general controlled U operations, with U a one-qubit operator. This
means that the operation U is performed on the target qubit if the control qubit is in
the state |1〉. When the control qubit is in the state |0〉 no operation is performed on
the target qubit. In both cases, the control qubit is not changed. If this was a classical
system, this would be all the possibilities, but in a quantum system, one can have a
control qubit that is in a superposition 1√

2
(|0〉+ |1〉) of the two basis states. In general,
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the two qubits will be entangled by this operation, so no definite quantum state can
be ascribed to any of them. However, a special situation arises if the initial state of
the target qubit is an eigenstate of U . Draw a quantum circuit desribing this situation.
Show that in this case, the two qubits are not entangled by the operation. Show also
that in this case, it is the target qubit that is not changed, while the state of the control
qubit is changed. Find the final state of the control qubit in terms of the eigenvalues
of U .

c) This result is surprising if we only are used to the classical world, and deserves an
explanation. Explain in words why the target is not changed while the state of the
control does change.

PROBLEM 2
Destruction of entanglement by noise

We have two two-level systems, A and B. Each system has a basis for its Hilbertspace with
vector representation

|0〉 =

(
0
1

)
|1〉 =

(
1
0

)

We introduce a vector representation of the tensor product as described in Problem 5.3
from the exercises. Assume that the density matrix for the joint system is of the form

ρ =




a 0 0 0
0 b z 0
0 z∗ c 0
0 0 0 d


 (1)

a) Determine for which values of the parameters a, b, c, d and z this represents a pure
state for the joint system.

b) Find the reduced density matrices for systems A and B. In those cases where ρ represents
a pure state, determine if the state is entangled or not.

We now specify the Hamiltonian for the two two-level systems as

H =
1

2
h̄ωσAz +

1

2
h̄ωσBz .

where σAz = σz ⊗ 1 and σBz = 1⊗ σz. The system is in contact with an environment which
means that the density matrix is evolving according to the Lindblad equation

ρ̇ = − i
h̄

[H, ρ]− γ

2

[
σA+σ

A
−ρ+ ρσA+σ

A
− − 2σA−ρσ

A
+

]
− γ

2

[
σB+σ

B
−ρ+ ρσB+σ

B
− − 2σB−ρσ

B
+

]
.
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c) What is the temperature of the environment described by this Lindblad equation?
Justify your answer.

One can show that if the density matrix at time t = 0 is of the form (1) it will have
this form at all later times, with time dependent matrix elements a(t), b(t), c(t), d(t) and
z(t). If we call the initial values of these variables a0, b0, c0, d0 and z0, the solution of the
Lindblad equation is

a(t) = a0e
−2γt

b(t) = b0e
−γt + a0e

−γt(1− e−γt)
c(t) = c0e

−γt + a0e
−γt(1− e−γt)

d(t) = 1− (b0 + c0)e
−γt − a0e−γt(2− e−γt)

z(t) = z0e
−γt

(2)

You do not have to show this, but can use it in the following.

d) Assume the initial conditions

a0 = 1, b0 = c0 = d0 = z0 = 0.

Find the von Neumann entropy of the state as a function of time. Plot/sketch the
entropy as a function of time, and comment on the form of the function.

We have seen that when the full system is in a pure state, we can measure entanglement
by the entanglement entropy. If the full system is a mixed state this is not a good measure
of entanglement.

e) Give an example of a separable state of two systems where the entropy of entanglement
is large.

To study the evolution of the entanglement in our system, we need to quantify the en-
tanglement for the situation where the full system is not in a pure state. One common
measure of entanglement is the concurrence. To calculate it we defince the matrix

M = ρσAy ⊗ σBy ρ∗σAy ⊗ σBy
where ρ∗ is the elementvise complex conjugate of ρ. The concurrence is defined as

C = max(0, λ1 − λ2 − λ3 − λ4)
where λi are the square roots of the eigenvalues of M sorted in descending order (λ1 is the
largest, λ4 is the smallest).

f) Show that the concurrence as a function of time for the density matrix (1) with the
elements given by the solution (2) with the initial conditions d0 = 1

3
− a0, b0 = c0 =

z0 = 1
3

is
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C = max

(
0,

2

3
e−γt − 2e−γt

√
a0

√
1− 2

3
e−γt − a0e−γt(2− e−γt)

)
.

g) Assume now that a0 = 1
3
. Show that the concurrence goes to 0 in a finite time, and

find this time.
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PROBLEM 1
SWAP gate

a) A useful quantum gate is the SWAP gate which interchanges the state of two qubits.
That is, if the input state is |ψ〉 ⊗ |φ〉 the output will be SWAP |ψ〉 ⊗ |φ〉 = |φ〉 ⊗ |ψ〉.
Show that the following quantum circuit on two qubits gives a decomposition of the
SWAP gate using three CNOT gates.

⊕ ⊕

⊕

b) Write the matrix for the SWAP gate. Describe which basis you use.

c) Generalize the above circuit to implement the SWAP gate on two n-qubit registers using
only CNOT gates. How many CNOT gates do you need?

PROBLEM 2
Sending information with entangled photons?

The violation of Bell’s inequality by certain quantum states is often interpreted as an
expression of quantum non-locality. Entangled states are non-local in the sense that one
can not assign a pure quantum state to individual particles, but only to the system as a
whole. However, this non-locality is of a special form that prevents any information to be
transmitted using quantum entanglement. Consider a bipartite system with two parties
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A and B. The full system is in a pure quantum state |ψ〉. Party B could try to transmit
information to A in two ways, either making a unitary transformation on subsystem B or a
measurement on subsystem B. We will show that neither of these changes the expectation
values of observables on subsystem A. We remind you of the Schmidt decomposition of
a pure quantum state. For any |ψ〉 there exist orthonormal bases |nAi 〉 and |nBi 〉 for the
Hilbert spaces of A and B such that

|ψ〉 =
∑

i

di|nAi 〉 ⊗ |nBi 〉.

a) Define the reduced density matrix of subsystem A and show that the expectation value
of all possible observables on subsytem A can be found from the reduced density matrix.

b) Show that the reduced density matrix of A does not change when applying a unitary
transformation to B.

c) Show that the reduced density matrix of A does not change when making a measurement
on B, as long as we do not know the result of the measurement.

d) What happens with the density matrix for A if we get to know the outcome of the
measurement on B?

PROBLEM 3
Charge transfer by adiabatic passage

We have three quantum dots in a row and one electron. Each dot has one state for an
electron, so that the electron has three possible states, |1〉, |2〉 and |3〉 (and it can of course
also be in superpositions of these). The three basis states are orthogonal and normalized.
The motion of the electron can be controlled by gates which change the tunneling amplitude
between the dots. The system is described by the Hamiltonian

H = −h̄




0 Ω1 0
Ω1 0 Ω2

0 Ω2 0


 .

Here Ω1 is the tunneling amplitude between dots 1 and 2 while Ω2 is the tunneling ampli-
tude between dots 2 and 3. Both amplitudes are controllable and can be time dependent.
The initial state of the electron is |1〉, which means that the electron is localized on the
first dot.

a) Consider first the situation where Ω1 > 0 is constant and Ω2 = 0. Find the time
dependent state |ψ(t)〉 if the initial state is |ψ(0)〉 = |1〉. Explain in words what this
means physically.
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b) We now let the matrix elements Ωi(t) be time dependent, which means that the Hamil-
tonian also is time dependent. We define the instantaneous eigenstates and eigenvalues
of the Hamiltonian as

H(t)|n(t)〉 = En(t)|n(t)〉
with n = 1, 2, 3. Find the states |n(t)〉 and energies En(t) expressed in terms of the
matrix elements Ωi(t).

c) To study the dynamics of the system we will use a transformed representation of the
state. Define the time dependent unitary tranformation T (t) by

T (t)|n(0)〉 = |n(t)〉.
We define the transformed representation of the state as

|ψ′(t)〉 = T (t)†|ψ(t)〉.
Show that the time dependence of the state |ψ′(t)〉 is given by the Schrödinger equation
with a transformed Hamiltonian H ′(t) and derive the expression for H ′(t) in terms of
H(t) and T (t).

d) We now choose the time dependence

Ω1(t) = Ωme
− (t−(tm+σ)/2)2

2σ2

Ω2(t) = Ωme
− (t−(tm−σ)/2)2

2σ2

We want to start the dynamical evolution at t = 0 and stop at t = tm. At both these
times, we want to have Ωi ≈ 0 so that no tunnelling takes place. This means that we
must choose σ � tm, which implies that

Ω1(0)

Ω2(0)
= e−tm/2σ � 1.

Show that the transformed Hamiltonian H ′(t) is

H ′(t) = −h̄Ω(t)




0 0 0
0 0 1
0 1 0


+ ih̄

dθ

dt




0 0 −1
0 0 0
1 0 0


 (1)

where

tan θ(t) =
Ω1(t)

Ω2(t)
and Ω(t) =

√
Ω1(t)2 + Ω2(t)2.
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e) dθ
dt

can be made arbitrarily small by changing the Hamiltonian slowly. In the following
we will assume that the change is so small that we can neglect the final term in (1).
We start from |1〉 at t = 0 and evolve slowly in time, find the final state at t = tm.

f) What is the probability of finding the electron in the state |2〉 during the process?
Comment on the result.
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PROBLEM 1
Approximate quantum cloning

The no-cloning theorem tells us that it is impossible to copy an unknown quantum state.
In this problem we will study a protocol which takes the quantum state of a two-level
system and produces two two-level systems with the state of both approximating as well
as possible the original state.

We consider three two-level systems. The first (system A) is the original to be copied, the
second (system B) is the system that will receive a copy of the state, and the third (system
C) is an auxiliary system (often called an ancilla). We label the states in the usual way,
|000〉 = |0〉A|0〉B|0〉C = |0〉A⊗ |0〉B ⊗ |0〉C and similar for the other basis states. We define
a unitary operation through the equations

U |000〉 =

√
2

3
|000〉+

√
1

6
(|011〉+ |101〉) (1)

U |100〉 =

√
2

3
|111〉+

√
1

6
(|010〉+ |100〉) (2)

Let the initial state of system A be |ψ〉A = α|0〉A + β|1〉A, and apply the above operation
to the system if the inital state of B and C is |00〉BC .

a) Calculate the reduced density matrices ρA and ρB of systems A and B.

b) Determine the Bloch vector of both the final states ρA and ρB and find how they are
related to the Bloch vector of the initial state |ψ〉.
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c) We define the fidelity of the copying operation as the overlap of the copied state with
the original

F = 〈ψ|ρB|ψ〉.
Calculate the fidelity for this operation.

d) The relations (1) and (2) do not define the operation U completely, and it is necessary
to show that it can be completed as a unitary operation on all the basis vactors. We
can do this by demonstrating that it is produced by a quantum circuit.

Show that the following quantum circuit will implement the unitary operation U on the
required input states.

⊕

⊕

⊕ ⊕|ψ〉A

|ψ0〉BC

The systems B and C must initially be prepared in the state

|ψ0〉BC =

√
2

3
|00〉BC +

√
1

6
(|01〉BC + |11〉BC) .

There is a simple circuit to do this step also, starting from the state |00〉BC , but for the
exam we just assume that it has been prepared.

PROBLEM 2
Lindblad equation for pure dephasing

We are interested in studying a two level system subject to pure phase noise. That is, the
interaction with the environment does not induce any transitions between the eigenstates
of the system. This can be described by a Lindblad equation

dρ

dt
= − i

h̄
[H, ρ]− γ

2
(L†Lρ+ ρL†L− 2LρL†)

with one Lindblad operator L = σz. The Hamiltonian is

H =
1

2
h̄ω0σz.

a) Solve the Lindblad equation and find the components of the Bloch vector as functions
of time for a general initial state. Describe the motion of the Bloch vector.
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b) Find an expression for the entropy as a function of time. Sketch the form of the entropy
as a function of time and relate the form of the curve to the trajectory of the Bloch
vector.

PROBLEM 3
Absolutely maximally entangled states

We start by studying a quantum system that consists of two subsystems, which we cal
system A and system B.

a) A product state has a density matrix of the form ρ = ρA ⊗ ρB. Show that the entropy
of this state is the sum of the individual entropies, S = SA + SB.

b) We now assume that the Hilbert spaces of the two subsystems have dimensions nA and
nB. If we have the total system in some pure state |ψ〉, what is the maximal entan-
glement entropy that can exist between the two subsystems? You should demonstrate
your result, not just state the answer.

Consider the following state of four three-level systems

|ψ〉 =
1

3

∑

i,j=0,1,2

|i〉|j〉|i+ j〉|i+ 2j〉

where all addtions of the indices i and j are to be taken mod(3). We now select any two
of the three-level systems as system A and the remaining two as system B.

c) Calculate the reduced density matrix for all possible divisions of the system i two halves
(all possible combinations of two three-level systems in subsystem A) and show that
the entanglement entropy is maximal in all cases.

d) From the result of the previous question, what can we say about the entanglement
entropy between any of the three-level systems and the remaining three? What can
we say about the entanglement between the two three-level systems that constitute
subsystem A?
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