F4110, Exam 2008
Solutions
Problem 1
a)

$$
\begin{aligned}
& \hat{H}\left|0_{1}+1\right\rangle=\frac{1}{2} \hbar\left(\omega_{0}+\omega_{1}\right)\left|0_{1}+1\right\rangle+\lambda \hbar|1,-1\rangle \\
& \hat{H}\left|1_{1}-1\right\rangle=\frac{1}{2} \hbar\left(3 \omega_{0}-\omega_{1}\right)|1,-1\rangle+\lambda \hbar|0,+1\rangle
\end{aligned}
$$

matrix form:

$$
H=\hbar\left(\begin{array}{ll}
a & b \\
b & c
\end{array}\right) \quad \text { with } \quad \begin{aligned}
a & =\frac{1}{2}\left(\omega_{0}+\omega_{1}\right) \\
b & =\lambda \\
c & =\frac{1}{2}\left(3 \omega_{0}-\omega_{1}\right)
\end{aligned}
$$

written as:

$$
\begin{aligned}
& H=\hbar \Delta\binom{\cos \theta \sin \theta}{\sin \theta-\cos \theta}+\hbar \varepsilon \mathbb{I} \\
\Rightarrow \quad & a=\Delta \cos \theta+\varepsilon, b=\Delta \sin \theta, \quad c=-\Delta \cos \theta+\varepsilon \\
\Rightarrow \quad & \varepsilon=\frac{1}{2}(a+b)=\omega_{0}, \Delta \cos \theta=\frac{1}{2}(a-b)=\frac{1}{2}\left(\omega_{1}-\omega_{0}\right), \Delta \sin \theta=\lambda
\end{aligned}
$$

b) Write $H=\hbar \Delta M+\hbar \varepsilon \mathbb{1}$

Eigenvalue problem for M : $\binom{\cos \theta \sin \theta}{\sin \theta-\cos \theta}\binom{\alpha}{\beta}=\delta\binom{\alpha}{\beta}$

$$
\Rightarrow\left|\begin{array}{c}
\cos \theta-\delta \sin \theta \\
\sin \theta-\cos \theta-\delta
\end{array}\right|=0 \Rightarrow \delta^{2}-\cos ^{2} \theta-\sin ^{2} \theta=0 \Rightarrow \delta= \pm 1
$$

Energy eigenvalues $\quad E_{ \pm}=\hbar(\varepsilon \pm \Delta)$
Eigenvectors $(\cos \theta \mp 1) \alpha+\sin \theta \beta=0 \Rightarrow \frac{\beta}{\alpha}=\mp \frac{1 \pm \cos \theta}{\sin \theta}$

$$
\begin{aligned}
&\binom{\alpha}{\beta}_{ \pm}=N_{ \pm}\binom{\mp \sin \theta}{1 \pm \cos \theta} \text { with } N_{ \pm}^{-2} \\
&=\sin ^{2} \theta+(1 \pm \cos \theta)^{2} \\
&=2(1 \pm \cos \theta) \\
& \Rightarrow \quad\binom{\alpha}{\beta}_{ \pm}=\frac{1}{\sqrt{2}}\binom{\mp \frac{\sin \theta}{\sqrt{1 \pm \cos \theta}}}{\sqrt{1 \pm \cos \theta}}=\frac{1}{\sqrt{2}}\binom{\mp \sqrt{1 \mp \cos \theta}}{\sqrt{1 \pm \cos \theta}}
\end{aligned}
$$

or $\left.\left|\psi_{ \pm}\right\rangle=\frac{1}{\sqrt{2}}|\mp \sqrt{1 \mp \cos \theta}| 0,+1\right\rangle+\sqrt{1 \pm \cos \theta}|1,-1\rangle$
c) Density operator

$$
\begin{aligned}
P_{ \pm} & =\frac{1}{2}(\mid \mp \cos \theta)|0\rangle\langle 0| \otimes|+1\rangle\langle+1|+\frac{1}{2}(\mid \pm \cos \theta)|1\rangle\langle 1| \otimes|-1\rangle\langle-1| \\
& \mp \frac{1}{2} \sin \theta(|0\rangle\langle 1| \otimes|+1\rangle\langle-1|+|1\rangle\langle 0| \otimes|-1\rangle\langle+1|)
\end{aligned}
$$

Reduced density operators
position $p_{ \pm}^{p}=T r_{s} \rho_{ \pm}=\frac{1}{2}(1+\cos \theta)|0\rangle\langle 0|+\frac{1}{2}(1 \pm \cos \theta)|1\rangle\langle 1|$
spin $\rho_{ \pm}^{s}=\operatorname{Tr}_{p} \rho_{ \pm}=\frac{1}{2}(1 \mp \cos \theta)|+1\rangle\langle+1|+\frac{1}{2}(1 \pm \cos \theta)|-1\rangle\langle-1|$
Entropies

$$
\begin{aligned}
S_{ \pm}^{p} & =S_{ \pm}^{s}=-\left[\frac{1}{2}(1-\cos \theta) \log \left(\frac{1}{2}(1-\cos \theta)\right)+\frac{1}{2}(1+\cos \theta) \log \left(\frac{1}{2}(1+\cos \theta)\right)\right] \\
& =-\left[\cos ^{2} \frac{\theta}{2} \log \cos ^{2} \frac{\theta}{2}+\sin ^{2} \frac{\theta}{2} \log \sin ^{2} \frac{\theta}{2}\right]=S
\end{aligned}
$$

gives the measure of entanglement between spin and position $\cos \theta=0\left(\theta=\frac{\pi}{2}\right) \Rightarrow \cos ^{2} \frac{\theta}{2}=\sin ^{2} \frac{\theta}{2}=\frac{1}{2} \Rightarrow S=\log 2$ max. entanglement $\cos \theta= \pm 1(\theta=0, \pi) \Rightarrow \cos ^{2} \frac{\theta}{2}=1, \sin ^{2} \frac{\theta}{2}=0$ or $\cos ^{2} \frac{\theta}{2}=0, \sin ^{2} \frac{\theta}{2}=1$ $\Rightarrow \underline{S=0}$ minimal entanglement

Problem 2
a) $x_{B A}=y_{B A}=0$ due to rotational invariance about the z-axis (vanish under φ-integration, since ψ_{A} and ψ_{B} are φ independent) z-component : $z=r \cos \theta \Rightarrow$

$$
\begin{aligned}
z_{B A} & =\frac{1}{\sqrt{32}} \frac{1}{\pi a_{0}^{3}} \int_{0}^{2 \pi} d \varphi \int_{0}^{\pi} d \theta \sin \theta \int_{0}^{\infty} d r r^{2} r \cos \theta \cos \theta \frac{r}{a_{0}} e^{-\frac{3}{2} \frac{r}{a_{0}}} \\
& =\frac{1}{4 \sqrt{2}} \frac{1}{\pi} 2 \pi \int_{0}^{\pi} d \theta \sin \theta \cos ^{2} \theta a_{0} \int_{0}^{\infty} \frac{d r}{a_{0}}\left(\frac{r}{a_{0}}\right)^{4} e^{-\frac{3}{2} \frac{r}{a_{0}}} \\
& =\frac{1}{2 \sqrt{2}}\left(\frac{2}{3}\right)^{5} \int_{0}^{\infty} d 0 \int_{-1}^{1} d u u^{2} \int_{0}^{\infty} d \xi \xi^{4} e^{-\xi} a_{0} \quad\left(u=\cos \theta, \xi=\frac{3}{2} \frac{r}{a_{0}}\right) \\
& =\nu a_{0} \quad \nu \text { numerical factor }
\end{aligned}
$$

$$
\nu=\frac{1}{2 \sqrt{2}}\left(\frac{2}{3}\right)^{5} \cdot \frac{2}{3} \cdot 4!=\frac{1}{\sqrt{2}} \frac{256}{243}=0.745
$$

b) Probability per unit solid angle, for arbitrary polarization

$$
\begin{aligned}
p(\theta, \varphi) & \left.=N \sum_{a}\left|\left\langle B,\left.\right|_{\vec{k} a}\right| \hat{H}_{e \text { is }}\right| A, 0\right\rangle\left.\right|^{2} \\
& =N^{\prime} \sum_{a}\left|\vec{\varepsilon}_{i_{a}}^{*} \cdot \vec{e}_{z}\right|^{2} \quad\left(\vec{r}_{B A}=z_{B 4} \vec{e}_{z}\right)
\end{aligned}
$$

N, N^{\prime} normalization factors

$$
\sum_{a}\left|\vec{\varepsilon}_{R_{a}}^{*} \cdot \vec{e}_{z}\right|^{2}=\vec{e}_{z}^{2}-\frac{\left(\vec{k}_{k} \cdot \vec{e}_{2}\right)^{2}}{k^{2}}=1-\cos ^{2} \theta=\sin ^{2} \theta
$$

Normalization of probability

$$
\begin{aligned}
\iint p(\theta, \varphi) \sin \theta d \theta d \varphi & =1 \\
\Rightarrow W M X^{--}\left(N^{\prime}\right)^{-1} & =\int_{0}^{2 \pi} d \varphi \int_{0}^{\pi} d \theta\left(1-\cos ^{2} \theta\right) \sin \theta \\
= & 2 \pi \int_{-1}^{1} d u\left(1-\mu^{2}\right) \quad(\mu=\cos \theta) \\
=\frac{8 \pi}{3} & \Rightarrow p(\theta, \varphi)=\frac{3}{8 \pi} \sin ^{2} \theta
\end{aligned}
$$

c)
$2 s \rightarrow 1 s$ is electric dipole "forbidden". Electric dipole matrix element vanishes due to selection rule for parity. Other interaction matrix elements are much smaller. Implies slower transition and longer life time.

Problem 3
a) Density opvators, general properties

1) $\hat{\rho}=\hat{\rho}^{+}$heruiticity
2) $\hat{\rho} \geqslant 0$ positivity

3 $\operatorname{Tr} \hat{\rho}=1$ normalization
Spectral decomposition (eigenvector expansion):

$$
\hat{\rho}=\sum_{k} p_{k}\left|\psi_{k}\right\rangle\left\langle\psi_{k}\right| \quad p_{k} \geqslant 0 \quad \sum_{k} p_{k}=1
$$

Pure state: $\hat{\rho}=|\psi\rangle\langle\psi|$, only one term nixed state: several terns with $0<p_{k}<1$
b) Composite system, Hilbert space
$X=\mathcal{H}_{A} \otimes \mathcal{H}_{B} \quad$ tensor product
Density operator $\hat{\rho}$, acts on \mathcal{X}

1) Uncorrelated states, $\hat{\rho}$ factorizes

$$
\hat{\rho}=\hat{\rho}_{A} \otimes \hat{\rho}_{B} \Rightarrow\langle\hat{A} \hat{B}\rangle=\langle\hat{A}\rangle\langle\hat{B}\rangle
$$

for operator \hat{A} acting on X_{A} and \hat{B} acting on X_{B}
2) Classical correlations (separable states)
$\hat{\rho}$ expressed as a probability distribution over uncorrelated states $\hat{\rho}=\sum_{k e} \hat{p}_{k}^{A} \otimes \hat{p}_{e}^{B} p_{k e} ; p_{u c}>0 \quad \sum_{k c} p_{k e}=1$
3) Entangled states:
$\hat{\rho}$ cannot be expressed in the form 2) Correlations in the wave functions, not simply in a probability distribution over product states.
c) Schmidt decomposition of a pure state in a composite system

$$
|\psi\rangle=\sum_{k} C_{k}|k\rangle_{A} \otimes|k\rangle_{B} \text { with }\left\langle k \mid k^{\prime}\right\rangle_{A}=\left\langle k \mid k^{\prime}\right\rangle_{B}=\delta_{k h^{\prime}}
$$

any $|\psi\rangle$ can be brought into this form
Density operators $\hat{\rho}=\sum_{k k^{\prime}} c_{k} c_{k}^{*}|k\rangle\left\langle\left. k^{\prime}\right|_{A} \otimes \mid k\right\rangle\left\langle\left. k^{\prime}\right|_{B}\right.$

$$
\begin{aligned}
& \hat{\rho}_{A}=\operatorname{Tr}_{B} \hat{\rho}=\sum_{k}\left|c_{k}\right|^{2}|k\rangle\left\langle\left. k\right|_{A}\right. \\
& \hat{\rho}_{B}=\operatorname{Tr}_{A} \hat{\rho}=\sum_{k}\left|c_{k}\right|^{2}|k\rangle\left\langle\left. k\right|_{B}\right.
\end{aligned}
$$

Entropies $\quad S_{A}=S_{B}=-\sum_{k}\left|c_{n}\right|^{2} \log \left|c_{n}\right|^{2}$

FYS 4110 , Eksamen 2009
Losninger
Oppgave 1
a)

$$
\begin{aligned}
\hat{H}|\psi(t)\rangle & =-i \hbar \lambda(\sin \lambda t|+\rightarrow-\cos \lambda t|-+\rangle) \\
& =-i \hbar \frac{d}{d t}|\psi(t)\rangle
\end{aligned}
$$

Tetthetsoperator

$$
\begin{aligned}
\hat{\rho}(t)=|\psi(t)\rangle\langle\psi(t)|= & \cos ^{2} \lambda t|+-\rangle\left\langle+-1+\sin ^{2} \lambda t \mid-+\right\rangle\langle-+1 \\
& +\cos \lambda t \sin \lambda t(1+-\rangle\langle-+1+1-+\rangle\langle+-1)
\end{aligned}
$$

b) Benytter:

Reduserte tetthetsoperatores, benytter $\operatorname{Tr} \sigma_{2}=\operatorname{Tr} \sigma_{ \pm}=0$

$$
\begin{aligned}
& \hat{\rho}_{A}(t)=\operatorname{Tr}_{B} \hat{\rho}(t)=\frac{1}{2}\left(\mathbb{\pi}+\cos 2 \lambda t \sigma_{2}\right) \\
& \hat{\rho}_{B}(t)=\operatorname{Tr}_{A} \hat{\rho}(t)=\frac{1}{2}\left(\mathbb{1}-\cos 2 \lambda t \sigma_{2}\right)
\end{aligned}
$$

c) Graden as sammenfiltring = von Neumann entropieu til delsystemene:

$$
\begin{aligned}
S & =-\operatorname{Tr}_{A}\left(\hat{p}_{A} \log \rho_{A}\right)=-\operatorname{Tr}_{B}\left(\hat{p}_{B} \log \hat{\rho}_{B}\right) \\
\hat{p}_{A} & =\frac{1}{2}(1+\cos 2 \lambda t) 1+><+1+\frac{1}{2}(1-\cos 2 \lambda t) 1-><-1 \\
& \left.=\cos ^{2} \lambda t 1+\right\rangle\left\langle+1+\sin ^{2} \lambda t 1-><-1\right. \\
\Rightarrow \log \hat{\rho}_{A} & =\log \left[\cos ^{2} \lambda t\right] 1+><+1+\log \left[\sin ^{2} \lambda t\right] 1-><-1 \\
S & =-\left(\cos ^{2} \lambda t \log \left[\cos ^{2} \lambda t\right]+\sin ^{2} \lambda t \log \left[\sin ^{2} \lambda t\right]\right)
\end{aligned}
$$

Oppgave 2
a)

$$
\begin{aligned}
& c^{+} c=\mu^{2} a^{+} a+\nu^{2} b^{+} b+\mu \nu\left(a^{+} b+b^{+} a\right) \\
& d^{+} d=\nu^{2} a^{+} a+\mu^{2} b^{+} b-\mu \nu\left(a^{+} b+b^{+} a\right) \\
& \Rightarrow \omega_{c} c^{+} c+\omega_{d} d^{+} d=\left(\mu^{2} \omega_{c}+\nu^{2} \omega_{d}\right) a^{+} a+\left(\nu^{2} \omega_{c}+\mu^{2} \omega_{d}\right) b^{+} b \\
&+\mu \nu\left(\omega_{c}-\omega_{d}\right)\left(a^{+} b+b^{+} a\right)
\end{aligned}
$$

Setter: $\omega=\mu^{2} \omega_{c}+\nu^{2} \omega_{d}=\nu^{2} \omega_{c}+\mu^{2} \omega_{d} I$
og $\mu \nu\left(\omega_{c}-\omega_{d}\right)=\lambda$ II

$$
\begin{aligned}
& I \Rightarrow \omega=\frac{1}{2}\left(\mu^{2}+\nu^{2}\right)\left(\omega_{c}+\omega_{d}\right)=\frac{1}{2}\left(\omega_{c}+\omega_{d}\right) \\
& \quad \Rightarrow \mu^{2}=\nu^{2}=\frac{1}{2} \\
& \mu=\nu=\frac{1}{\sqrt{2}} \Rightarrow \frac{1}{2}\left(\omega_{c}-\omega_{d}\right)=\lambda(2)
\end{aligned}
$$

$$
\overline{(1) \varepsilon(2)} \Rightarrow \omega_{c}=\omega+\lambda, \omega_{d}=\omega-\lambda
$$

Kommutasjonsrelasjoner

$$
\begin{aligned}
& {\left[c, c^{+}\right]=\mu^{2}\left[a, a^{+}\right]+\nu^{2}\left[b, b^{+}\right]=\left(\mu^{2}+\nu^{2}\right) \mathbb{1}=\mathbb{1}} \\
& {\left[d, d^{+}\right]=\nu^{2}\left[a, a^{+}\right]+\mu^{2}\left[b, b^{+}\right]=\left(\mu^{2}+\nu^{2}\right) \mathbb{1}=1} \\
& {\left[c, d^{+}\right]=-\mu \nu\left(\left[a, a^{+}\right]-\left[b, b^{+}\right]\right)=0 \Rightarrow\left[c^{+}, d\right]=0}
\end{aligned}
$$

andre kommuetatores $=0$
\Rightarrow To wawh. sett med harm. osc. operatorer
b) Tidsutvikling as koherent tilstand

$$
\begin{aligned}
& |\psi(t)\rangle=\hat{u}(t)|\psi(0)\rangle ; \hat{u}(t)=\exp \left[-i\left(\omega_{c} c^{+} c+\omega_{d} d^{t} d+\omega 7\right)\right] \\
& \hat{c}|\psi(t)\rangle=\hat{u}(t) \hat{u}(t)^{-1} \hat{c} \hat{u}(t)|\psi(0)\rangle \\
& \hat{u}(t)^{-1} \hat{c} \hat{u}(t)=e^{i \omega_{c} t c^{+} c} \hat{c} e^{-i \omega t c^{+} c} \\
& \quad=c+i \omega_{c} t\left[c^{+} c, c\right]+\frac{1}{2}\left(i \omega_{c} t\right)^{2}\left[c^{+} c,\left[c^{+} c, c\right]\right]+\cdots \\
& =\left(1-i \omega_{c} t+\frac{1}{2}\left(-i \omega_{c} t\right)^{2}+\cdots\right) c=e^{-i \omega_{c} t} c \\
& \Rightarrow \hat{c}|\psi(t)\rangle=e^{-i \omega_{c} t} \hat{u}(t) \hat{c}|\psi(0)\rangle=e^{-i \omega_{c} t} z_{c o} \mid \psi(t)
\end{aligned}
$$

c)

$$
\begin{aligned}
& \hat{c}=\frac{1}{\sqrt{2}}(\hat{a}+\hat{b}), \hat{d}=-\frac{1}{\sqrt{2}}(\hat{a}-\hat{b}) \\
& \Rightarrow \hat{a}=\frac{1}{\sqrt{2}}(\hat{c}-\hat{d}), \hat{b}=\frac{1}{\sqrt{2}}(\hat{c}+\hat{d})
\end{aligned}
$$

Operatorene har felles egentilstander med egenverdier

$$
\left.\begin{array}{rl}
z_{a}(t) & =\frac{1}{\sqrt{2}}\left(z_{c}(t)-z_{d}(t)\right)=\frac{1}{\sqrt{2}}\left(e^{-i \omega_{c} t} z_{c o}-e^{-i \omega_{d} t} z_{d 0}\right) \\
& =\frac{1}{2} e^{-i \omega t}\left(e^{-i \lambda t}\left(+z_{a 0}+z_{b 0}\right)+e^{i \lambda t}\left(z_{a 0}-z_{b 0}\right)\right) \\
& =\frac{e^{-i \omega t}\left(\cos \lambda t z_{a 0}-i \sin \lambda t z_{b 0}\right.}{z_{b}(t)}
\end{array}\right)=-\frac{1}{2} e^{-i \omega t}\left(e^{-i \lambda t}\left(z_{a 0}+z_{b 0}\right)-e^{i \lambda t}\left(z_{a 0}-z_{b 0}\right)\right) ~\left(i \sin \lambda t z_{a 0}+\cos \lambda t z_{b 0}\right) .
$$

Oppgave 3
a) Krau til tetthetsmatrise

1) Hermitisitet: $\hat{p}^{+}=e^{-\beta \hat{H}^{+}}=e^{-\beta \hat{H}}=\hat{\rho} \quad$ (β reall)
2) Positirtet: Egenverdier $\hat{p}|n\rangle=e^{-\beta E_{n}}|n\rangle$

$$
e^{-\beta E_{n}}>0 \text { for alle } n
$$

3) Normering $\operatorname{Tr} \hat{\rho}=1 \Leftrightarrow N^{-1}=\operatorname{Tr} e^{-\beta \hat{H}}$ bestemwer N

Normeringshoustant

$$
\begin{aligned}
& N^{-1}=\sum_{n} e^{-\beta E_{n}}=e^{-\frac{1}{2} \beta \hbar \omega} \sum_{n=0}^{\infty}\left(e^{-\beta \hbar \omega}\right)^{n}=\frac{e^{-\frac{1}{2} \beta \hbar \omega}}{1-e^{-\beta \hbar \omega}}=\frac{1 \not 2}{2 \sinh \left(\frac{1}{2} \beta \hbar \omega\right)} \\
& N=2 \frac{\hbar}{2} \sinh \left(\frac{1}{2} \beta \hbar \omega\right)
\end{aligned}
$$

b) Forventningsverdi for energien

$$
\begin{aligned}
E & =\operatorname{Tr}\left(N e^{-\beta \hat{H}} \hat{H}\right)=-N \frac{d}{d \beta} \operatorname{Tr}\left(e^{-\beta \hat{H}}\right) \\
& =-N \frac{d}{d \beta}\left(N^{-1}\right)=\frac{1}{N} \frac{d N}{d \beta} \\
\frac{d N}{d \beta} & =\frac{1}{4} \hbar \omega \cosh \left(\frac{1}{2} \beta \hbar \omega\right) \Rightarrow E=\frac{1}{2} \hbar \omega \operatorname{coth}\left(\frac{1}{2} \beta \hbar \omega\right)
\end{aligned}
$$

$\beta \rightarrow \infty: \operatorname{coth}\left(\frac{1}{2} \beta \hbar \omega\right) \rightarrow 1 \Rightarrow E \rightarrow \frac{1}{2} \hbar \omega$ grunntilst. energien

$$
\begin{aligned}
& \text { c) } \hat{p}=\int \frac{d^{2} z}{\pi} p(\mid z i)|z\rangle\langle z|=\sum_{n, n^{\prime}} \underbrace{\int \frac{d^{2} z}{\pi} p(|z|)\langle n \mid z\rangle\left\langle z \mid n^{\prime}\right\rangle}_{\equiv I_{n n^{\prime}}}|n\rangle\left\langle n^{\prime}\right| \\
& I_{n n^{\prime}}=\int \frac{d^{2} z}{\pi} p(|z|) \frac{z^{n} z^{* n^{\prime}}}{\sqrt{n!n^{\prime}!}} e^{-\mid z i^{2}} \quad \equiv I_{n n^{\prime}} \\
& =\frac{1}{\pi} \int_{0}^{2 \pi} d \varphi \int_{0}^{\infty} d r r p(r) \frac{r^{n+n^{\prime}} e^{i \varphi\left(n-n^{\prime}\right)}}{\sqrt{n!n^{\prime}!}} e^{-r^{2}} ; \quad \int_{0}^{2 \pi} e^{i \varphi\left(n-n^{\prime}\right)} d \varphi=2 \pi \delta_{n n^{\prime}} \\
& =2 \int_{0}^{r} d r r^{2 n+1} e^{-r^{2}} p(r) \frac{1}{n!} \delta_{n n} \text { ! } \\
& \Rightarrow \hat{\rho}=\sum_{n}^{0} p_{n}|n\rangle\langle n| \text { med } p_{n}=\frac{2}{n!} \int_{0}^{\infty} d r r^{2 n+1} e^{-r^{2}} p(r)
\end{aligned}
$$

FYS4110/9110, Eksamen 2010
L申sninges
Oppgave 1
a) En tilstandsvektor eller tetthetsoperator som ikke er pà tensor. produltform inneholder trorela joner nullom delsystemene. Her er det en ren tilstand som ikhe er pä produldform, $|\psi\rangle \neq\left|\psi_{n}\right\rangle \otimes\left|\psi_{s}\right\rangle \otimes\left|\psi_{c}\right\rangle$.
Korrelagjonene ligges i itstands vehtoren, ilhe i totthets operatoren, dus $\hat{\rho}=|\psi\rangle\langle\psi| \nmid \sum_{k} \rho_{k} \hat{\rho}_{k}^{A} \otimes \hat{\rho}_{k}^{B} \oplus \hat{\rho}_{n}^{c} ;$ tilstandem er illue separabel, men sammenfiltret.
b) Tetthetsopesator

$$
\left.\left.\hat{\rho}=\frac{1}{2}(\mid \text { uun }\rangle\langle u n u|+|d d d\rangle\langle d d d|-\mid \text { unu }\right\rangle\langle d d d|-|d d d\rangle\langle u n u|\right)
$$

Reduserte tetthetsoperatorer

$$
\begin{aligned}
& \hat{\rho}_{A}=T_{B C} \hat{\rho}=\frac{1}{2}(|\mu\rangle\langle u|+|d\rangle\langle d|)_{A}=\frac{1}{2} \mathbb{1}_{A} \\
& \hat{\rho}_{B C}=T_{A} \hat{\rho}=\frac{1}{2}(|u u\rangle\langle u u|+|d d\rangle\langle d d|)_{B C}
\end{aligned}
$$

Sammenfiltringsentropien til todilt rysteme er lik vou Nenmannentropien til lwert as dilsystemene (som er like)
Her $S=S_{A}=\delta_{B C}=-\sum_{k} p_{k} \log p_{n}=-2\left(\frac{1}{2} \log \frac{1}{2}\right)=\log 2$
\hat{P}_{A} er maksimatt blandet, dos S_{A} har makisinal verdi
\Rightarrow S maksinal, de to delosystemene er matsimalt sammenfiltret.

- Dulsyotem $B C: \hat{\rho}_{B C}=\frac{1}{2}\left(\hat{\rho}_{u}^{0} \otimes \hat{\rho}_{u}^{c}+\hat{\rho}_{d}^{b} \otimes \hat{\rho}_{d}^{c}\right)$; $\hat{P}_{\text {Oc }}$ separabel $\Rightarrow B \operatorname{og} C$ ilhe sammentiltert.

$$
\begin{aligned}
& \hat{P}_{u}=|u\rangle\langle u| \\
& \hat{\rho}_{d}=|d\rangle\langle d|
\end{aligned}
$$

c) UHrykler $|\psi\rangle$ wed $|f\rangle$ og $|b\rangle$ for delsystem A

$$
\begin{gathered}
|u\rangle=\frac{1}{\sqrt{2}}(|f\rangle+|b\rangle) ;|d\rangle=\frac{1}{\sqrt{2}}(|f\rangle-|b\rangle) \Rightarrow \\
|\psi\rangle=\frac{1}{2}(|f\rangle \theta(|u u\rangle+|d d\rangle)+|b\rangle(|u u\rangle-|d d\rangle))
\end{gathered}
$$

Maling med f som resultat \Rightarrow my tilstand proporsjonal med $|f\rangle_{A} \Rightarrow\left|\psi^{\prime}\right\rangle=\frac{1}{\sqrt{2}}(|f\rangle$ o $(|u u\rangle+|d d\rangle))$ etter mialing

$$
\equiv\left|\psi_{A}^{\prime}\right\rangle \otimes\left|\psi_{B C}^{\prime}\right\rangle
$$

Tettluts operator

$$
\hat{\rho}^{\prime}=\left|\psi^{\prime}\right\rangle\left\langle\psi^{\prime}\right|=\left|\psi_{A}^{\prime}\right\rangle\left\langle\psi_{A}^{\prime}\right| \otimes\left|\psi_{B C}^{\prime}\right\rangle\left\langle\psi_{B C}^{\prime}\right|=\hat{\rho}_{A}^{\prime} \otimes \hat{P}_{B C}^{\prime}
$$

Delsystemene 4 og $B C$ ihhe lenger korrelerte

$$
\begin{aligned}
& \hat{P}_{B C}^{\prime}=\frac{1}{2}(|u u\rangle\langle u u|+|d d\rangle\langle d d|+|u u\rangle\langle d d|+|d d\rangle\langle u u|) \\
& \Rightarrow \hat{P}_{B}^{\prime}=T_{r_{c}} \hat{P}_{B C}^{\prime}=\frac{1}{2} \mathbb{1}_{B} ; \quad \hat{P}_{c}^{\prime}=\frac{1}{2} \mathbb{\pi}_{C}
\end{aligned}
$$

Spinnene $3 \operatorname{og} C$ er na maksimalt sammenfiltret!
Oppgave 2
a) Vinkelawhengigheten til matriseclementet sitter i faktoren $\left(\vec{k} \times \vec{\varepsilon}_{R a}\right) \cdot \vec{\sigma}_{B A}=\vec{\varepsilon}_{\vec{R} a} \cdot\left(\vec{\sigma}_{B A} \times \vec{k}\right)$. Sannsynlighetsfordelingen $p(\theta, \varphi)$ er uawhengig ai polansasjonen, so vi summerer over a,

$$
\begin{aligned}
p(\theta, \phi) & =N \sum_{a}\left|\vec{\varepsilon}_{B A} \cdot\left(\vec{\sigma}_{B A} \times \vec{k}\right)\right|^{2} \\
& =N\left|\ell \vec{\sigma}_{B A} \times \vec{k}\right|^{2} \quad \frac{\vec{k}}{k} \cdot\left(\vec{\sigma}_{B A} \times \vec{k}\right)=0
\end{aligned}
$$

N : normenngsfaktor bestemt an $\int d \varphi \int d \theta \sin \theta p(\theta, \varphi)=1$

$$
\left.\begin{array}{rl}
\vec{\sigma}_{B A} & =\left(\begin{array}{ll}
0 & 1
\end{array}\right)\left(\begin{array}{l}
\vec{e}_{z} \vec{e}_{x}-i \vec{e}_{y} \\
\vec{e}_{x}+i \vec{e}_{y}
\end{array}-\vec{e}_{z}\right.
\end{array}\right)\binom{1}{0}=\vec{e}_{x}+i \vec{e}_{y} .
$$

$$
\begin{aligned}
& p(\theta, \varphi)=N k^{2}\left(1+\cos ^{2} \theta\right) \\
& \Rightarrow \int_{0}^{2 \pi} d \varphi \int_{0}^{\pi} d \theta \sin \theta p(\theta, \varphi)=2 \pi N k^{2} \int_{-1}^{1} d u\left(1+u^{2}\right) \quad u=-\cos \theta \\
& =2 \pi N k^{2}\left[u+\frac{1}{3} u^{3}\right]_{-1}^{1}=\frac{16}{3} \pi N k^{2}
\end{aligned}
$$

normering: $N=\frac{3}{16 \pi} \frac{1}{k^{2}}$

$$
\Rightarrow \quad p(\theta, p)=\frac{3}{16 \pi}\left(1+\cos ^{2} \theta\right)
$$

b)

$$
\begin{aligned}
& \vec{k}=k \vec{e}_{x} \Rightarrow \\
&\left|\vec{\varepsilon}(\alpha) \cdot\left(\vec{\sigma}_{B A} \times \vec{k}\right)\right|^{2}=k^{2}\left|\left(\cos \alpha \vec{e}_{y}+\sin \alpha \vec{e}_{z}\right) \cdot\left(-i \vec{e}_{z}\right)\right|^{2} \\
&=k^{2} \sin ^{2} \alpha
\end{aligned}
$$

Sannsynlighetsfordeling

$$
\begin{aligned}
p(\alpha) & =N^{\prime} \sin ^{2} \alpha \\
\int_{0}^{\pi} p(\alpha) d \alpha & =N^{\prime} \int_{0}^{\pi} \sin ^{2} \alpha d \alpha=N^{\prime} \frac{\pi}{2}
\end{aligned}
$$

(definerer $0 \leq \alpha<\pi$, siden α og $\alpha+\pi$ def. samue polarisasjoustilstand)
Normering $\Rightarrow N^{\prime}=\frac{2}{\pi} \Rightarrow p(\alpha)=\frac{2}{\pi} \sin ^{2} \alpha$
c) $P_{A}(t)=e^{-t / \tau_{A}}=1-\frac{t}{\tau_{A}}+\cdots$
for sina $f\left(t \ll \tau_{A}\right): P_{A} \simeq 1-\left(\frac{1}{\tau_{A}}\right) t$
Overgangs samuslighet or fid for $A \rightarrow B: \omega_{B A}=\frac{1}{\tau_{A}}$

$$
\begin{aligned}
& W_{B A}=\frac{V}{(2 \pi \hbar)^{2}} \int_{0}^{2 \pi} d \varphi \int_{0}^{\pi} d \theta \sin \theta \int_{0}^{\infty} d k k^{2} \frac{e^{2} \hbar^{3}}{8 V m^{2} \omega \varepsilon_{0}} \sum_{a}\left|\left(\vec{k}^{\infty} \times \vec{\varepsilon}_{k_{4}}\right) \cdot \vec{\sigma}_{B A}\right|^{2} \delta\left(\omega-\omega_{B}\right) \\
& =\frac{e^{2} \hbar \omega_{B}}{32 \pi^{2} m^{2} \varepsilon_{0} c^{2}} \frac{\omega_{0}^{2}}{c^{3}} \frac{16 \pi}{3} \int d \varphi \int d \theta \sin \theta p(\theta, \varphi) \\
& =\frac{1}{8 \pi^{2}} \frac{e^{2} \hbar \omega_{B}^{3}}{\mathrm{~m}^{2} \varepsilon_{0} c^{5}} \\
& \Rightarrow \quad \tau_{A}=\frac{\mathrm{hs}^{4}}{\mathrm{~m}^{2} \varepsilon, c^{5}} \mathrm{e}^{2 \hbar \omega_{B}^{3}}
\end{aligned}
$$

Oppgave 3
a)

$$
\begin{aligned}
& \frac{d \hat{a}}{d t}=\frac{i}{\hbar}[\hat{H}, \hat{a}]=-i \omega_{0} \hat{a}-i \lambda e^{-i \omega t} \mathbb{1}=\dot{\hat{a}} \\
& \begin{aligned}
\frac{d^{2} \hat{a}}{d t^{2}} & =\frac{i}{\hbar}[\hat{H}, \dot{\hat{a}}]+\frac{\partial}{\partial t} \dot{\hat{a}}=-i \omega_{0}\left(-i \omega_{0} \hat{a}-i \lambda e^{-i \omega t} \boldsymbol{1}\right)-i \lambda(-i \omega) e^{-i \omega t} \mathbb{1} \\
& =-\omega_{0}^{2} \hat{a}-\lambda\left(\omega_{0}+\omega\right) e^{-i \omega t} \mathbb{1}
\end{aligned} \\
& \hat{\hat{x}}=\frac{1}{2}\left(\hat{a}+\hat{a}^{+}\right) \Rightarrow \\
& \frac{d^{2} \hat{x}}{d t^{2}}+\omega_{0}^{2} \hat{x}=-\lambda\left(\omega_{0}+\omega\right) \cos \omega t \quad C=-\lambda\left(\omega_{0}+\omega\right)
\end{aligned}
$$

b)

$$
\begin{aligned}
i \hbar \frac{d}{d t}\left|\psi_{T}(t)\right\rangle & =\hat{T}(t) \hat{H}(t)|\psi(t)\rangle+i \hbar \frac{d \hat{T}}{d t}|\psi(t)\rangle \\
& =\hat{H}_{T}(t)\left|\psi_{T}(t)\right\rangle
\end{aligned}
$$

hoor $\hat{H}_{T}(t)=\hat{T}(t) \hat{H}(t) \hat{T}^{i}(t)+i \hbar \frac{d \hat{T}}{d t} \hat{T}^{\dagger}(t)$
$\hat{T} \hat{a} \hat{T}^{+}=e^{i \omega t \hat{a}^{+} \hat{a}} \hat{a} e^{-i \omega t \hat{a}^{+} \hat{a}}=\hat{a} e^{-i \omega t} \quad \hat{T} \hat{a}^{+} \hat{T}^{+}=\hat{a}^{+} e^{i \omega t}$
$\Rightarrow \hat{T} \hat{H} \hat{T}=\hbar \omega_{0}\left(\hat{a}^{+} \hat{a}+\frac{1}{2}\right)+\hbar \lambda\left(\hat{a}^{+}+\hat{a}\right)$
$i \hbar \frac{d i}{d t} \hat{T}^{+}=-\hbar \omega \hat{a}^{+} \hat{a}$

$$
\Rightarrow \hat{H}_{T}=\hbar\left(\omega_{0}-\omega\right) \hat{a}^{+} \hat{a}+\hbar \lambda\left(\hat{a}+\hat{a}^{+}\right)+\frac{1}{2} \hbar \omega_{0} 1
$$

$$
\begin{aligned}
& \text { c) }\left|\psi_{T}(t)\right\rangle=\hat{u}_{T}(t)\left|\psi_{T}(0)\right\rangle, \hat{u}_{T}(t)=e^{-\frac{i}{\hbar} \hat{H}_{T} t} \\
& \Rightarrow|\psi(t)\rangle=\hat{u}(t)|\psi(0)\rangle, \hat{u}(t)=\hat{T}^{+}(t) \hat{u}_{T}(t)=e^{-i \omega t \hat{a}^{+} \hat{a}} e^{-\frac{i}{\hbar}} \hat{H}_{T} t
\end{aligned}
$$

Antar $|\psi(0)\rangle=|0\rangle, \quad \hat{a}|0\rangle=0$
Sjecker om $|\psi(t)\rangle$ er en koherent tilstand ved \dot{a} anvende \hat{a},

$$
\begin{aligned}
& \hat{a}|\psi(t)\rangle=\hat{u}(t) \hat{u}^{+}(t) \hat{a} \hat{u}(t) \mid \psi(0 D \\
& \hat{u}^{+}(t) \hat{a} \hat{u}(t)=e^{\frac{i}{\hbar} \hat{H}_{T}+} e^{+i \omega t \hat{a}^{+} \hat{a}} \hat{a} e^{-i \omega t \hat{a}^{+} \hat{a}} e^{-\frac{i}{\hbar} \hat{H}_{T}+} \\
& =e^{\frac{i}{\hbar} \hat{H}+} e^{-i \omega t} \hat{a} e^{-\frac{i}{\hbar} \hat{H} t}
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\hat{H}_{T}, \hat{a}\right]=\hbar\left(\omega-\omega_{0}\right) \hat{a}-\hbar \lambda \mathbb{I}} \\
& {\left[\hat{H}_{T}\left[\hat{H}_{T}, \hat{a}\right]\right]=\hbar\left(\omega-\omega_{0}\right)\left(\hbar\left(\omega-\omega_{0}\right) \hat{a}-\hbar \lambda 1\right)} \\
& \cdots \\
& \Rightarrow e^{\frac{i}{\hbar}} \hat{H}_{T} t \hat{a} e^{-\frac{i}{\hbar} \hat{H}_{T} t}=\hat{a}+\frac{i}{\hbar}\left[\hat{H}_{T}, \hat{a}\right]+\frac{1}{2!}\left(\frac{i}{\hbar}\right)^{2}\left[\hat{H}_{T},\left[\hat{H}_{r}, \hat{a}\right]\right]+\cdots \\
& \quad=\left(1+i\left(\omega-\omega_{0}\right) t+\frac{1}{2!}\left[i\left(\omega-\omega_{0}\right) t\right]^{2}+\cdots\right) \hat{a} \\
& \quad-i \lambda\left(\mu_{a r \tan \lambda t}+\frac{1}{\left.2!\left(i\left(\omega-\omega_{0}\right)\right) t^{2}+\cdots\right) 1}\right. \\
& =e^{i\left(\omega-\omega_{0}\right) t} \hat{a}-\frac{\lambda}{\omega-\omega_{0}}\left(e^{i\left(\omega-\omega_{0}\right) t}-1\right) \mathbf{1} \\
& \Rightarrow \hat{a} \hat{U}(t)=\hat{u}(t)\left(e^{-i \omega_{0} t} \hat{a}-\frac{\lambda}{\omega-\omega_{0}}\left(e^{-i \omega_{0} t}-e^{-i \omega t}\right) \mathbb{1}\right) \\
& \Rightarrow \hat{a}|\psi(t)\rangle=-\frac{\lambda}{\omega-\omega_{0}}\left(e^{-i \omega_{0} t}-e^{-i \omega t}\right) / \psi(t)
\end{aligned}
$$

egentilstand for \hat{a}, med egenverdi

$$
z(t)=-\frac{\lambda}{\omega-\omega_{0}}\left(e^{-i \omega_{0} t}-e^{-i \omega t}\right)
$$

Bevegelsesliguing

$$
\begin{aligned}
\ddot{z} & =-\frac{\lambda}{\omega-\omega_{0}}\left(-\omega_{0}^{2} e^{-i \omega_{0} t}+\omega^{2} e^{-i \omega t}\right) \\
& =-\omega_{0}^{2} z-\frac{\lambda}{\omega-\omega_{0}}\left(\omega^{2}-\omega_{0}^{2}\right) e^{-i \omega t} \\
\ddot{z} & +\omega_{0}^{2} z=-\lambda\left(\omega+\omega_{0}\right) e^{-i \omega t}
\end{aligned}
$$

Realdel $\ddot{x}+\omega_{0}^{2} z=-\lambda\left(\omega+\omega_{0}\right) \cdot \cos \omega t$ som for \hat{x}
Beregelse i z-planet: Spiralerende bave ned $|z|=0$ har $e^{-i \omega_{0} t} \operatorname{og} e^{-i \omega t}$ er i motfase og $|z|=\frac{2 \lambda}{\left|\omega-\omega_{0}\right|}$ (malusinal) nor -u- er i fase.

FYS4110/9110, Exam 2011
Solutions
Problem 1
a) Matrix elements of the Hamiltonian

$$
\begin{aligned}
& \hat{H}|-, 1\rangle=\left(-\frac{1}{2} \hbar \omega_{0}+\hbar \omega\right)|-, 1\rangle-i \hbar \lambda|+, 0\rangle \\
& \hat{H}|+, 0\rangle=\frac{1}{2} \hbar \omega_{0}|+, 0\rangle+i \hbar \lambda|-, 1\rangle \\
\Rightarrow & \langle-, 1| \hat{H}|-, 1\rangle=\frac{1}{2} \hbar\left(2 \omega-\omega_{0}\right) \\
& \langle+, 0| \hat{H}|+, 0\rangle=\frac{1}{2} \hbar \omega_{0} \\
& \langle-, 1| \hat{H}|+, 0\rangle=i \hbar \lambda \\
& \langle+, 0| \hat{H}|-, 1\rangle=-i \hbar \lambda
\end{aligned}
$$

in matrix form

$$
\begin{aligned}
H & =\frac{1}{2} \hbar\left(\begin{array}{cc}
\omega_{0} & -2 i \lambda \\
2 i \lambda & 2 \omega-\omega_{0}
\end{array}\right)=\frac{1}{2} \hbar\left(\begin{array}{cc}
\omega_{0}-\omega & -2 i \lambda \\
2 i \lambda & \omega-\omega_{0}
\end{array}\right)+\frac{1}{2} \hbar \omega \mathbb{I} \\
& =\frac{1}{2} \hbar \Delta\binom{\cos \varphi-i \sin \varphi}{i \sin \varphi-\cos \varphi}+\varepsilon \mathbb{I}
\end{aligned}
$$

with $\Delta \cos \varphi=\omega_{0}-\omega, \Delta \sin \varphi=2 \lambda, \quad \varepsilon=\frac{1}{2} \hbar \omega$

$$
\Rightarrow \Delta=\sqrt{\left(\omega-\omega_{0}\right)^{2}+4 \lambda^{2}}, \cos \varphi=\frac{\omega_{0}-\omega}{\Delta}, \sin \varphi=\frac{2 \lambda}{\Delta}
$$

b) Eigenvectors determined by

$$
\begin{aligned}
& \left(\begin{array}{cc}
\cos \varphi & -i \sin \varphi \\
i \sin \varphi & -\cos \varphi
\end{array}\right)\binom{\alpha}{\beta}=\mu\binom{\alpha}{\beta} \\
& \left|\begin{array}{l}
\cos \varphi-\mu-i \sin \varphi \\
i \sin \varphi-\cos \varphi-\mu
\end{array}\right|=0 \Rightarrow \mu= \pm 1 \\
& \text { Energies } E_{ \pm}=\frac{1}{2} \hbar \omega \pm \frac{1}{2} \hbar \Delta=\frac{1}{2} \hbar\left(\omega \pm \sqrt{\left(\omega-\omega_{0}\right)^{2}+4 \lambda^{2}}\right.
\end{aligned}
$$

Eigenvectors

$$
\begin{aligned}
& \cos \varphi \alpha_{ \pm}-i \sin \varphi \beta_{ \pm}= \pm \alpha_{ \pm} \\
& (\cos \varphi \neq 1) \alpha_{ \pm}-i \sin \varphi \beta_{ \pm}=0 \\
\Rightarrow & \alpha_{ \pm}=N i \sin \varphi, \beta_{ \pm}=N(\cos \varphi \mp 1)
\end{aligned}
$$

normalization $N^{2}\left(\sin ^{2} \varphi+(\cos \varphi \mp 1)^{2}\right)=1$

$$
\begin{gathered}
\Rightarrow \quad N=\frac{1}{\sqrt{2(1+\cos \varphi)}} \\
\psi_{ \pm}(\varphi)=\frac{1}{\sqrt{2(1+\cos \varphi)}}\binom{i \sin \varphi}{\cos \varphi \mp 1} \\
\sin \varphi=2 \sin \frac{\varphi}{2} \cos \frac{\varphi}{2} ; \cos \varphi=2 \cos ^{2} \frac{\varphi}{2}-1=1-2 \sin ^{2} \frac{\varphi}{2} \\
\Rightarrow\left|\psi_{+}(\varphi)\right\rangle=-\sin \frac{\varphi}{2}|-, 1\rangle+i \cos \frac{\varphi}{2}|+, 0\rangle \\
\frac{\left|\psi_{-}(\varphi)\right\rangle=\cos \frac{\varphi}{2}|-, 1\rangle+i \sin \frac{\varphi}{2}|+, 0\rangle}{\cos \left(\frac{\varphi+\pi}{2}\right)=-\sin \frac{\varphi}{2}, \sin \left(\frac{\varphi+\pi}{2}\right)=\cos \frac{\varphi}{2}} \\
\Rightarrow \frac{\left.\left|\psi_{-}(\varphi+\pi)\right\rangle=1 \psi_{+}(\varphi)\right\rangle}{}
\end{gathered}
$$

c) Density operator of the $\left|\psi_{-}(\varphi)\right\rangle$ state

$$
\begin{aligned}
\rho(\varphi) & =\left|\psi_{-}(\varphi)\right\rangle\left\langle\psi_{-}(\varphi)\right| \\
& \left.=\cos ^{2} \frac{\varphi}{2}|-, 1\rangle\langle-1|+\sin ^{2} \frac{\varphi}{2}|+, 0\rangle\langle+, 0|+i \cos \frac{\varphi}{2} \sin \frac{\varphi}{2}(1+, 0\rangle\langle-, 1 \mid-1-, 1\rangle\langle+, 0|\right) \\
\rho_{p h}(\varphi) & =\langle-| \rho(\varphi)|-\rangle+\langle+| \rho(\varphi)|+\rangle=\frac{\sin ^{2} \frac{\varphi}{2}|0\rangle\langle 0|+\cos ^{2} \frac{\varphi}{2}|1\rangle\langle 1|}{\cos ^{2} \frac{\varphi}{2}|-\rangle\left\langle\left.-1+\sin ^{2} \frac{\varphi}{2} \right\rvert\,+\right\rangle\langle+1}
\end{aligned}
$$

$\cos ^{2} \frac{\varphi}{2}>\sin ^{2} \frac{\phi}{2}\left(-\frac{\pi}{2}<\varphi<\frac{\pi}{2}\right)$: the state is mainly a one-photon state $\cos ^{2} \frac{\varphi}{2}<\sin ^{2} \frac{\varphi}{2}\left(\frac{\pi}{2}<\varphi<3 \frac{\pi}{2}\right)$: the state is mainly an excited atomic state
d) Entanglement entropy

$$
\begin{aligned}
S & =-\operatorname{Tr}_{p h}\left(\rho_{p h} \log p_{p h}\right)=-T_{r_{\text {atom }}}\left(\rho_{\text {atom }} \log p_{\text {atom }}\right) \\
& =-\left(\cos ^{2} \frac{\varphi}{2} \log \left(\cos ^{2} \frac{\varphi}{2}\right)+\sin ^{2} \frac{\varphi}{2} \log \left(\sin ^{2} \frac{\varphi}{2}\right)^{\prime}\right.
\end{aligned}
$$

Min value when $\left|\psi_{-}(\varphi)\right\rangle$ is a product state:

$$
\cos \frac{\phi}{2}=0 \text { or } \sin \frac{\phi}{2}=0 \Rightarrow \varphi=0, \pi
$$

gives $\quad S=0$
Max. value, when ph (paton) is maximally mixed:

$$
\begin{aligned}
& \cos ^{2} \frac{\varphi}{2}=\sin ^{2} \frac{\varphi}{2}=\frac{1}{2} \Rightarrow \varphi=\frac{\pi}{2}, 3 \frac{\pi}{2} \\
& \Rightarrow \rho_{p h}=\frac{1}{2} \mathbb{1} \Rightarrow S=\log 2
\end{aligned}
$$

e) Time evolution: expand in energy eigenstates

$$
\begin{aligned}
|\psi(0)\rangle & =|-, 1\rangle=\cos \frac{\varphi}{2}\left|\psi_{-}(\varphi)\right\rangle-\sin \frac{\varphi}{2}\left|\psi_{+}(\varphi)\right\rangle \\
\Rightarrow|\psi(t)\rangle & =\cos \frac{\varphi}{2} e^{-\frac{i}{\hbar} E_{-} t}\left|\psi_{-}(\varphi)\right\rangle-\sin \frac{\varphi}{2} e^{-\frac{i}{\hbar} E_{+} t}\left|\psi_{+}(\varphi)\right\rangle \\
= & \left(\cos ^{2} \frac{\varphi}{2} e^{-\frac{i}{\hbar} E_{-} t}+\sin ^{2} \frac{\varphi}{2} e^{-\frac{i}{\hbar} E_{+} t}\right)|-, 1\rangle \\
& +i \sin \frac{\varphi}{2} \cos \frac{\varphi}{2}\left(e^{-\frac{i}{\hbar} E_{-} t}-e^{-\frac{i}{\hbar} E_{+} t}\right)|+, 0\rangle
\end{aligned}
$$

Probability for a photon present

$$
\begin{aligned}
p(t)=|\langle-, 1 \mid \psi(t)\rangle|^{2}= & \cos ^{4} \frac{\varphi}{2}+\sin ^{4} \frac{\varphi}{2} \\
& +\cos ^{2} \frac{\varphi}{2} \sin ^{2} \frac{\varphi}{2}\left(e^{-\frac{i}{\hbar}\left(E_{-}-E_{+}\right) t}+e^{+\frac{i}{\hbar}\left(E_{-}-E_{+}\right) t}\right) \\
= & \frac{1}{4}(1+\cos \varphi)^{2}+\frac{1}{4}(1-\cos \varphi)^{2}+\frac{1}{2} \sin ^{2} \varphi \cos \left(\frac{E_{-}-E_{+}}{\hbar} t\right) \\
= & \frac{1}{2}\left(1+\cos ^{2} \varphi+\sin ^{2} \varphi \cos \Delta t\right) \quad \Delta=\sqrt{\left(\omega-\omega_{0}\right)^{2}+4 \lambda^{2}}
\end{aligned}
$$

Osallations due to time dependent mixing of the one-photon state with the excited atom state. Frequency Δ, amplitude $\frac{1}{2} \sin ^{2} \varphi=\frac{2 \lambda^{2}}{\left(\omega-\omega_{0}\right)^{2}+4 \lambda^{2}}$

Problem 2
a) Time evolution of the two-level systems, $r=0$:

$$
\begin{aligned}
& U(t)=e^{-\frac{i}{2} \omega_{A} t \sigma_{z}}=\left(\begin{array}{cc}
e^{-\frac{i}{2} \omega_{A} t} & 0 \\
0 & e^{\frac{i}{2} \omega_{A} t}
\end{array}\right) \\
& \quad \begin{aligned}
& p_{A}(t)=U(t) p_{A}(0) U^{t}(t) \\
&=\left(\begin{array}{cc}
e^{-\frac{i}{2} \omega_{A} t} & 0 \\
0 & e^{\frac{i}{2} \omega_{A} t}
\end{array}\right) \frac{1}{2}\left(\begin{array}{cc}
1+z & x-i y \\
x+i y & 1-z
\end{array}\right)\left(\begin{array}{cc}
e^{\frac{i}{2} \omega_{A} t} & 0 \\
0 & e^{-\frac{i}{2} \omega_{A} t}
\end{array}\right) \\
&=\frac{1}{2}\left(\begin{array}{cc}
1+z & e^{-i e_{A} t}(x-i y) \\
e^{i \omega_{A} t}(x+i y) & 1-z
\end{array}\right) \Rightarrow x(t)+i y(t)=e^{i \omega_{A} t}(x+i y)^{\prime} \\
& \Rightarrow x(t)=x \cos \omega_{A} t-y \sin \omega_{A} t \\
& y(t)=x \sin \omega_{A} t+y \cos \omega_{A} t \\
& z(t)=z
\end{aligned}
\end{aligned}
$$

Precession of \vec{r} around the z-axis, with and freq. ω_{A}
b) Interaction matrix element

$$
\left\langle-, 1_{k}\right| \hat{H}_{\text {int }}|+, 0\rangle=\kappa \sqrt{\frac{\hbar}{2 L \omega_{k}}}
$$

decay rate:

$$
\begin{aligned}
\gamma & =\frac{L}{(2 \pi \hbar)^{2}} \int d k \frac{\kappa \hbar^{2}}{2 L \omega_{k}} \delta\left(\omega_{k}-\omega_{A}\right) \quad k=\frac{\omega_{k}}{c} \\
& =\frac{L}{4 \pi^{2} \hbar^{2}} \frac{k^{2} \hbar}{2 L c \omega_{A}}=\frac{k^{2}}{8 \pi^{2} \hbar c \omega_{A}}
\end{aligned}
$$

c)

$$
\begin{aligned}
& \left.|\psi(t)\rangle=|\phi(t)\rangle \otimes|0\rangle+\sum_{k} c_{k}(t)|-,| k\right\rangle \\
& \text { with }|\phi(t)\rangle=e^{-\frac{i}{2} \omega_{k} t-\gamma t / 2} \alpha|+\rangle+e^{\frac{i}{2} \omega_{A} t} \beta|-\rangle
\end{aligned}
$$

Normalization

$$
\begin{aligned}
& \langle\psi(t) \mid \psi(t)\rangle=\langle\phi(t) \mid \phi(t)\rangle+\sum_{k}\left|c_{k}(t)\right|^{2} \\
& =e^{-\gamma t}|\alpha|^{2}+|\beta|^{2}+\sum_{k}\left|c_{k}(t)\right|^{2} \stackrel{!}{=} 1 \\
& \Rightarrow \sum_{k}\left|c_{k}(t)\right|^{2}=|\alpha|^{2}\left(1-e^{-\gamma t}\right)
\end{aligned}
$$

Reduced density operator of the two-luel system

$$
\begin{aligned}
& P_{A}(t)=\operatorname{Tr}_{B}(|\psi(t)\rangle\langle\psi(t)|)=|\phi(t)\rangle\langle\phi(t)|+\sum_{k}\left|c_{k}(t)\right|^{2}|-\rangle\langle-1 \\
& =e^{-\gamma t}|\alpha|^{2}|+\rangle\left\langle+1+\left(1-e^{\left.-\gamma^{t}|\alpha|^{2}\right)|-\rangle\langle-1}\right.\right. \\
& +e^{-\gamma t / 2}\left(\alpha \beta^{*} e^{-i \omega_{A} t} 1+\right\rangle\left\langle-1+\alpha^{*} \beta e^{i \omega_{A} t} \mid-\right\rangle\langle+1)
\end{aligned}
$$

d) $\alpha=1, \beta=0$:

$$
\begin{aligned}
p_{A}(t) & \left.=e^{-\gamma t} 1+\right\rangle\left\langle+1+\left(1-e^{-\gamma t}\right) 1-\right\rangle\langle-1 \\
& =\left(\begin{array}{cc}
e^{-\gamma t} & 0 \\
0 & 1-e^{-\gamma t}
\end{array}\right) \\
\Rightarrow z(t) & =2 e^{-\gamma t}-1, x(t)=y(t)=0
\end{aligned}
$$

The excited state decays exponentially into the ground state, as expected
$t=0$ and $t \rightarrow \infty(z= \pm 1)$ pure product state, $S_{A}=0$ Intermediate time: $e^{-\gamma^{t}}=\frac{1}{2} \Rightarrow p_{A}=\frac{1}{2} \mathbb{1}$, maximally entangled.

$$
\text { e) } \begin{aligned}
\alpha=\beta & =\frac{1}{\sqrt{2}}: \\
P_{A}(t) & =\frac{1}{2} e^{-\gamma t} 1+>\left\langle\left.+1+\left(1-\frac{1}{2} e^{-\gamma t}\right) \right\rvert\,-\right\rangle\langle-1 \\
& +\frac{1}{2} e^{-\gamma t / 2}\left(e^{-i \omega_{A} t}|+\rangle\left\langle-1+e^{i \omega_{A} t} \mid-\right\rangle\langle+1)\right. \\
& =\frac{1}{2}\left(\begin{array}{cc}
e^{-\gamma t} & e^{-\gamma t / 2} e^{-i \omega_{A} t} \\
e^{-\gamma / 2} e^{i \omega_{A} t} \quad z-e^{-\gamma t}
\end{array}\right) \Rightarrow x(t)+i y(t)=e^{-\gamma t / 2} e^{i \omega_{A} t} \\
x(t) & =e^{-\gamma t / 2} \cos \omega_{A} t, y(t)=e^{-\gamma t / 2} \sin \omega_{A} t ; z(t)=e^{-\gamma t}-1
\end{aligned}
$$

Combination of motions in $a)$ and d):
$\gamma \ll \omega_{A} \Rightarrow$ rapid precession of \vec{r} around the z-axis, combined with slow decay towards the ground state
Sketch of the motion

$$
x^{2}+y^{2}=z+1
$$

\Rightarrow parabolic surface

$$
\begin{aligned}
r^{2} & =e^{-\gamma t}+\left(e^{-\gamma t}+1\right)^{2} \\
& =1-e^{-\gamma^{t}}+e^{-2 \gamma t}
\end{aligned}
$$

$t=0: r^{2}=1, t \rightarrow \infty: r^{2} \rightarrow 1$ int. entropy $S_{A}=0$
Intermediate times $0<r^{2}<1$ min value for $e^{-\gamma t}=\frac{1}{2}$

$$
\Rightarrow r^{2}=\frac{3}{4}
$$

gives max value for S_{A}

max entanglement

Iys4110 Etssamensoppgaver 2012
Lфsninger
Problem 1
a) Hamiltonian applied to the product states

$$
\begin{aligned}
& \hat{H}|++\rangle=\frac{1}{2} \hbar\left(\omega_{1}+\omega_{2}\right)|++\rangle \\
& \hat{H}|->\rangle=-\frac{1}{2} \hbar\left(\omega_{1}+\omega_{2}\right)|--\rangle \\
& \hat{H}|+-\rangle=\frac{1}{2} \hbar \Delta|+-\rangle+\frac{1}{2} \hbar \lambda|-+\rangle \\
& \hat{H}|-+\rangle=-\frac{1}{2} \hbar \Delta|-+\rangle+\frac{1}{2} \hbar \lambda|+-\rangle
\end{aligned}
$$

In the subspace spanned by $\mid+>$ and $|-+\rangle$,

$$
H=\frac{1}{2} \hbar\left(\begin{array}{cc}
\Delta & \lambda \\
\lambda & -\Delta
\end{array}\right)=\frac{1}{2} \hbar \mu\left(\begin{array}{cc}
\cos \varphi & \sin \varphi \\
\sin \varphi & -\cos \varphi
\end{array}\right)
$$

The matrix is determined by φ, with μ as a scale factor. This implies that the eigenstates are determined by φ.
b) Eigenvalues in subspace

$$
\left|\begin{array}{cc}
\cos \varphi-\varepsilon & \sin \varphi \\
\sin \varphi & -\cos \varphi-\varepsilon
\end{array}\right|=0 \Rightarrow \varepsilon_{ \pm}= \pm 1
$$

energies $E_{ \pm}= \pm \frac{1}{2} \hbar \mu= \pm \frac{1}{2} \hbar \sqrt{\Delta^{2}+\lambda^{2}}$
Eigenstates

$$
\begin{aligned}
&(\cos \varphi \mp 1) \alpha_{ \pm}+\sin \varphi \beta_{ \pm}=0 \\
&(\cos \varphi \pm 1) \beta_{ \pm}-\sin \varphi \alpha_{ \pm}=0 \\
& \Rightarrow(\cos \varphi \mp 1) \beta_{\mp}-\sin \varphi \alpha_{\mp}=0
\end{aligned}
$$

$$
\frac{\beta_{+}}{\alpha_{+}}=-\frac{\alpha_{-}}{\beta_{-}}=-\frac{\cos \varphi-1}{\sin \varphi}=\frac{2 \sin ^{2} \varphi / 2}{2 \cos \varphi / 2 \sin \varphi / 2}=\tan \varphi / 2
$$

Normalized solutions

$$
\begin{array}{ll}
\alpha_{+}=\cos \frac{\varphi}{2} \quad \beta_{+}=\sin \frac{\varphi}{2} & \left.\left|\psi_{+}\right\rangle=\cos \frac{\varphi}{2}\left|+>+\sin \frac{\varphi}{2}\right|-+\right\rangle \\
\alpha_{-}=\sin \frac{\varphi}{2} \quad \beta_{-}=-\cos \frac{\varphi}{2} & \left.\left|\psi_{-}\right\rangle=\sin \frac{\varphi}{2}\left|+->-\cos \frac{\varphi}{2}\right|-+\right\rangle
\end{array}
$$

c)

$$
\begin{aligned}
& \Delta=0 \Rightarrow \cos \varphi=0 \Rightarrow \varphi=\pi / 2 \Rightarrow \cos \frac{\varphi}{2}=\sin \frac{\varphi}{2}=\frac{1}{\sqrt{2}} \\
& \left.\left|\psi_{ \pm}\right\rangle=\frac{1}{\sqrt{2}}(1+-\rangle \pm|-+\rangle\right) \\
& | \pm \mp\rangle=\frac{1}{\sqrt{2}}\left(\left|\psi_{+}\right\rangle \pm\left|\psi_{-}\right\rangle\right)=|\psi(0)\rangle
\end{aligned}
$$

Time evolution

$$
\begin{aligned}
|\psi(t)\rangle & =\frac{1}{\sqrt{2}}\left(e^{-\frac{i}{2} \mu t}\left|\psi_{+}\right\rangle+e^{\frac{i}{2} \mu t}\left|\psi_{-}\right\rangle\right) \quad \mu=\lambda \\
& \left.\left.=\frac{1}{2}\left(e^{-\frac{i}{2} \mu t}(1+-\rangle+|-+\rangle\right)+e^{\frac{i}{2} \mu t}(1+-\rangle-|-+\rangle\right)\right) \\
& \left.=\cos \left(\frac{\mu t}{2}\right)\left|+->-i \sin \left(\frac{\mu t}{2}\right)\right|-+\right\rangle \equiv c(t)|+-\rangle+i s(t)|-+\rangle
\end{aligned}
$$

Density operator

$$
\begin{aligned}
\rho(t)= & c(t)^{2}|+-\rangle\left\langle+-1+s(t)^{2} \mid-t\right\rangle\langle-+1 \\
& +c(t) s(t)(1+-\rangle\langle-+1+\mid-+\rangle\langle+-1)
\end{aligned}
$$

Reduced density operators

$$
\begin{aligned}
& \left.\rho_{1}(t)=c(t)^{2} 1+\right\rangle\left\langle+1+s(t)^{2} 1->\langle-1\right. \\
& \rho_{2}(t)=c(t)^{2} 1->\left\langle-1+s(t)^{2} \mid+\right\rangle\langle+1
\end{aligned}
$$

Entanglement entropy

$$
S_{1}=S_{2}=-c^{2} \log c^{2}-s^{2} \log s^{2}
$$

max value: $c^{2}=s^{2}=\frac{1}{2} \Rightarrow S_{x}=\frac{1}{2} \log 2+\frac{1}{2} \log 2=\log 2$
min value: $c^{2}=1 \vee s^{2}=1 \quad S=0$ for $c=0 \vee S=0, t=0, \frac{\pi}{\mu}, \frac{\pi}{2 \mu}$, . period $T=\frac{\pi}{\mu}$

Problem 2
a) Hamiltonian applied to the product states

$$
\begin{aligned}
& \hat{H}|g, 1\rangle=\hbar\left(\frac{1}{2} \omega-i g\right)|g, 1\rangle+\frac{1}{2} \hbar \lambda|e, 0\rangle \\
& \hat{H}|e, 0\rangle=\frac{1}{2} \hbar \omega|e, 0\rangle+\frac{1}{2} \hbar \lambda|g, 1\rangle \\
& \hat{H}|g, 0\rangle=-\frac{1}{2} \hbar \omega|g, 0\rangle
\end{aligned}
$$

In the space spanned boy $|g, 1\rangle$ and $|e, 0\rangle$

$$
H=\frac{1}{2} \hbar(\omega-i \gamma) \mathbb{I}+\frac{1}{2} \hbar\left(\begin{array}{cc}
-i \gamma & \lambda \\
\lambda & i \gamma
\end{array}\right) \equiv H_{0}+H_{1}
$$

b)

$$
\begin{aligned}
& \text { Define }|\psi(t)\rangle=e^{-\frac{i}{2} \omega t-\frac{1}{2} \gamma t}|\phi(t)\rangle \\
&|\phi(t)\rangle=(\cos (\Omega t)+a \sin (\Omega t))|e, 0\rangle+i b \sin (\Omega t)|g, 1\rangle \\
& \Rightarrow|\psi(0)\rangle=|\phi(0)\rangle=|e, 0\rangle
\end{aligned}
$$

satisfies the initial condition need to show that $|\psi(t)\rangle$ satisfies the Schrodinger eq.
Note it $\frac{d}{d t}|\psi(t)\rangle=\hat{H}|\psi(t)\rangle \quad$ I

$$
\Leftrightarrow \quad i \hbar \frac{d}{d t}|\phi(t)\rangle=\hat{H}_{1}|\phi(t)\rangle \text { II }
$$

Need to show that II is satisfied

$$
\begin{aligned}
& i \hbar \frac{d}{d t}|\phi(t)\rangle=i \hbar \Omega[i b \cos (\Omega t)|g, 1\rangle+(-\sin \Omega t+a \cos (\Omega t)| | e, 0\rangle] \\
& \hat{H}_{1}|\phi(t)\rangle= \frac{1}{2} \hbar-\{\gamma b \sin (\Omega t)+\lambda(\cos (\Omega t)+a \sin (\Omega t))\}\left|g_{1}, 1\right\rangle \\
& \frac{1}{2} \hbar(i \lambda b \sin \Omega t+i \gamma(\cos (\Omega t)+a \sin (\Omega t))|e, 0\rangle \\
&=\frac{1}{2} \hbar {[\{\lambda \cos (\Omega t)+(a \lambda+\gamma b) \sin (\Omega t)\}|g, 1\rangle} \\
&+i\{\gamma \cos \Omega t+(\lambda b+\gamma a) \sin (\Omega t)\}|e, 0\rangle]
\end{aligned}
$$

Conditions for equality

$$
\begin{aligned}
&-\Omega b=\frac{1}{2} \lambda \quad \text { I } \\
& a \lambda+\gamma b=0 \text { II } \\
& \Omega a=\frac{1}{2} \gamma \quad \text { III } \\
&-\Omega=\frac{1}{2}(\lambda b+\gamma a) \text { IV }
\end{aligned}
$$

$$
I \Rightarrow b=-\frac{\lambda}{2 \Omega} \quad \text { II } a=\frac{\gamma}{2 \Omega}
$$

$\Rightarrow a \lambda+\gamma b=\frac{\gamma^{\lambda}-\gamma^{\lambda}}{2 \Omega}=0$ consistent with II

$$
\begin{aligned}
\underline{\underline{V}} \Rightarrow \Omega & =\frac{1}{4 \Omega}\left(\lambda^{2}-\gamma^{2}\right) \\
\Omega^{2} & =\frac{1}{4}\left(\lambda^{2}-\gamma^{2}\right) \Rightarrow \Omega=\frac{1}{2} \sqrt{\gamma^{2}-\lambda^{2}}
\end{aligned}
$$

c)

$$
\begin{aligned}
& \Rightarrow \quad \operatorname{Tr} p(t)+f(t)=1 \quad f(t)=1-\operatorname{Tr} p(t) \\
& \operatorname{Trp}(t)=\langle\psi(t) \mid \psi(t)\rangle=e^{-\gamma t}\langle\phi(t) \mid \phi(t)\rangle \\
& \langle\phi(t) \mid \phi(t)\rangle=\cos ^{2}(\Omega t)+a^{2} \sin ^{2}(\Omega t)+2 a \cos \Omega t \sin \Omega t \\
& +b^{2} \sin ^{2} \Omega t \\
& =1+\left(a^{2}+b^{2}-1\right) \sin ^{2} \Omega t+2 a \cos \Omega t \sin \Omega t \\
& =1+\frac{1}{2}\left(a^{2}+b^{2}-1\right)-\frac{1}{2}\left(a^{2}+b^{2}-1\right) \cos (2 \Omega t)+a \sin (2 \Omega t) \\
& a^{2}+b^{2}-1=\frac{\lambda^{2}+\gamma^{2}}{\lambda^{2}-\gamma^{2}}-1=\frac{2 \gamma^{2}}{\lambda^{2}-\gamma^{2}} \\
& 1+\frac{1}{2}\left(a^{2}+b^{2}-1\right)=1+\frac{\gamma^{2}}{\lambda^{2}-\gamma^{2}}=\frac{\lambda^{2}}{\lambda^{2}-\gamma^{2}} \\
& =\operatorname{Tr} \rho=e^{-\gamma^{t}\left(\frac{\lambda^{2}}{\lambda^{2}-\gamma^{2}}-\frac{\gamma^{2}}{\lambda^{2}-\gamma^{2}} \cos \left(\sqrt{\lambda^{2}-\gamma^{2}} t\right)+\frac{\gamma}{\sqrt{\lambda^{2}-\gamma^{2}}} \sin \left(\sqrt{\lambda^{2}-\gamma^{2}} t\right)\right)} \\
& f(t)=1-\operatorname{Tr} p(t)
\end{aligned}
$$

The decay of Tr is due to the leakage of the cavity photon out of the system. For the cavity states this corresponds to the transition $|g, 1\rangle \rightarrow|g, 0\rangle$. The second term in Eq. (5) gives the build up of probability in $|g, 0\rangle$ due to phis process.
With $\gamma=0$, there are oscillations between $|g, 1\rangle$ and $|e, 0\rangle$ due to the coupling between the atom and the cavity photon. The time evolution of the state (4) shows, for $\gamma \neq 0$, decay of the probabilities due to the leakage $\left.\left|g_{1}\right|\right\rangle \rightarrow|g, 0\rangle$, superimposed on these oscillations

Problem 3
a) The full density operator

$$
\begin{aligned}
p_{n}=\frac{1}{3} & \{1+\cdots\rangle\langle+--|+|-+-\rangle\langle-+-1+\mid--+\rangle\langle--+1 \\
& +\eta^{n}(1-+-\rangle\langle+--1+\mid+--\rangle\langle--+1)+\left(\eta^{*}\right)^{n}(1+--\rangle\langle-+-1+\mid-\cdots+\rangle\langle+--1) \\
& +\eta^{2 n}|-+-\rangle\left\langle--+1+\left(\eta^{*}\right)^{2 n} \mid--+\right\rangle\langle-+-1
\end{aligned}
$$

Reduced density operator

$$
\rho_{n}^{A}=T_{B c} \rho_{n}=\frac{1}{3}(1+><+1+21-><-1) \text { independent of } n \text {, }
$$

information about n can therefore not be detected by A Measurement by A, B, C in baxis I, gives result determined ley probabilities of the form $\langle a b c| p_{n}|a b c\rangle$ with $\mid a b c$ > as a product of states $1 \pm>$. Only the diagonal terms in p_{n} give contributions, and these are independent of n. Again there are no measurable differences between different n.
b) Reduced density operator

$$
\begin{aligned}
& \rho_{n}^{A B}=\operatorname{Tr}_{c} \rho_{n}=\frac{1}{3}\{1+-\rangle\langle+-1+\mid-+\rangle\langle-+1+1--\rangle\langle--1 \\
&\left.+\eta^{n} 1-+\right\rangle\left\langle+-1+\left(\eta^{*}\right)^{n} \mid+-\right\rangle\langle-+1\}
\end{aligned}
$$

probabilities $p(k \mid n)=\left\langle\phi_{k}\right| p_{n}^{A B}\left|\phi_{k}\right\rangle$
Need overlap between vectors of basis I and II:

$$
\langle 0 \mid+\rangle=\langle 0 \mid-\rangle=\langle 1 \mid+\rangle=\frac{1}{\sqrt{3}}\langle 1 \mid-\rangle=-\frac{1}{\sqrt{2}}
$$

note: only sign change for $\langle 1 \mid-\rangle$

$$
\begin{aligned}
& p(1 \mid 0)=\langle 00| p_{0}^{A B}|00\rangle=\frac{1}{3} \frac{5}{4}=\frac{5}{12} \\
& p(2 \mid 0)=\langle 01| p_{0}^{A B}|01\rangle=\frac{1}{3}\left(\frac{3}{4}-\frac{2}{4}\right)=\frac{1}{12} \\
& p(1 \mid 1)=\langle 00| p_{1}^{A B}|00\rangle=\frac{1}{3}\left(\frac{3}{4}+\frac{\eta+\eta^{*}}{4}\right)=\frac{1}{6} \\
& p(2 \mid 1)=\langle 01| p_{1}^{A B}|01\rangle=\frac{1}{3}\left(\frac{3}{4}-\frac{\eta+\eta^{*}}{4}\right)=\frac{1}{3}
\end{aligned}
$$

Have used $\eta+\eta^{*}=-1$
The change $n=1 \rightarrow n=2$ corresponds to $\eta \rightarrow \eta^{*}$ since $\eta^{2}=\eta^{*}$ no change since the probabilities are real
c) Normalization of probabilities

$$
\begin{aligned}
& \sum_{n} \vec{p}(n \mid k)=1 \Rightarrow p(k)=\sum_{n} p(k \mid n) \\
& p(1)=p(1 \mid 0)+p(1 \mid 1)+p(1 \mid 2)=\frac{5}{12}+2 \cdot \frac{1}{6}=\frac{9}{12}=\frac{3}{4}
\end{aligned}
$$

Probabilities for $k=1, n=0,1,2$

$$
\begin{aligned}
& \bar{p}(0 \mid 1)=\frac{p(1 \mid 0)}{p(1)}=\frac{5}{12} \cdot \frac{12}{9}=\frac{5}{9} \\
& \bar{p}(1 \mid 1)=\frac{p(1 \mid 1)}{p(1)}=\frac{1}{6} \cdot \frac{12}{9}=\frac{2}{9} \\
& \bar{p}(2 \mid 1)=\frac{2}{9}
\end{aligned}
$$

The message $n=0$ is most probable, with probability $\frac{5}{9}$, while $n=1$ and 2 have probability $\frac{2}{9}$.

FYS $4110 / 9110$ Elsamen 2013
Lфsninger
Oppgave 1
a) Utrytter $\hat{\alpha}^{+} \hat{\alpha}=|e\rangle\langle g \mid g\rangle\langle e|=|e\rangle\langle e|$

Lindbladligning

$$
\frac{d \hat{\rho}}{d t}=-\frac{i}{\hbar}\left[\hat{H}_{0}, \hat{\rho}\right]-\frac{1}{2} \gamma\{|e\rangle\langle e| \hat{\rho}+\hat{\rho}|e\rangle\langle e|-2|g\rangle\langle e| \hat{\rho}|e\rangle\langle g|\}
$$

for matriseelementer, uthy tter

$$
\begin{aligned}
& \langle e|\left[\hat{H}_{0}, \hat{\rho}\right]|e\rangle=\langle g|\left[\hat{H}_{0}, \hat{\rho}\right]|g\rangle=0 \\
& \langle e|\left[\hat{H}_{0}, \hat{\rho}\right]|g\rangle=\left(E_{e}-E_{g}\right)\langle e| \hat{\rho}|g\rangle=\hbar \omega\langle e| \hat{\rho}|g\rangle \\
\Rightarrow & \frac{d p_{e}}{d t}=-\gamma p_{e} \quad p_{e}(t)=e^{-\gamma t} p_{e}(0) \\
& \frac{d p_{e}}{d t}=\gamma p_{e} \Rightarrow p_{g}(t)=1-p_{e}(t) \\
& \frac{d b}{d t}=\left(-i \omega-\frac{1}{2} \gamma\right) b \Rightarrow b(t)=e^{-i \omega t-\frac{1}{2} \gamma t} b(0)
\end{aligned}
$$

Initialbetingelser

$$
\begin{aligned}
& p_{e}(0)=1, p_{g}(0)=0, b(0)=0 \\
\Rightarrow & p_{e}(t)=e^{-\gamma t}, p_{g}(t)=1-e^{-\gamma t}, b(t)=0
\end{aligned}
$$

b) Nye initial betingelses

$$
\begin{aligned}
& p_{e}(0)=|\langle e \mid \psi\rangle|^{2}=\frac{1}{2} \\
& p_{g}(0)=|\langle g \mid \psi\rangle|^{2}=\frac{1}{2} \\
& b(0)=\langle e \mid \psi\rangle\langle\psi \mid g\rangle=\frac{1}{2}
\end{aligned}
$$

Tidsutvilking

$$
\begin{aligned}
& p_{e}(t)=\frac{1}{2} e^{-\gamma t}, p g(t)=1-\frac{1}{2} e^{-\gamma t}, b(t)=\frac{1}{2} e^{-i \omega t-\frac{1}{2} \gamma t} \\
& \Rightarrow \quad p(t)=\frac{1}{2}\left(\begin{array}{ll}
e^{-\gamma t} & e^{-i \omega t-\frac{1}{2} \gamma t} \\
e^{i \omega t-\frac{1}{2} \gamma t} & 2-e^{-\gamma t}
\end{array}\right)
\end{aligned}
$$

c)

$$
\begin{aligned}
\hat{p} & =\frac{1}{2}(\mathbb{1}+\vec{r} \cdot \vec{\sigma})=\frac{1}{2}\left(\begin{array}{cc}
1+z & x-i y \\
x+i y & 1-z
\end{array}\right) \\
\Rightarrow & z=p_{e}-p_{g}, x=2 \operatorname{Re} b, y=-2 \operatorname{lm} b \\
\Rightarrow & r^{2}=(p e-p g)^{2}+4|b|^{2}
\end{aligned}
$$

Tilfelle a):

$$
r^{2}=\left(2 e^{-\gamma^{t}}-1\right)^{2}
$$

minimume for $e^{-\gamma t}=\frac{1}{2}, \quad t=\frac{1}{\gamma} \ln 2 \quad \quad r_{\text {min }}=0$
$\Rightarrow \hat{p}=\frac{1}{2} \mathbb{1}$, maksimalt blandet $\Rightarrow A+B$ er maksimalt sammenfiltret.
Tilfelle bs

$$
\begin{aligned}
& r^{2}=\left(e^{-\gamma t}-1\right)^{2}+e^{-\gamma t}=e^{-2 \gamma t}-e^{-\gamma t}+1 \\
& \frac{d}{d t} r^{2}=0 \Rightarrow-2 e^{-2 \gamma t}+e^{-\gamma t}=0 \Rightarrow e^{-\gamma t}=\frac{1}{2}, t=\frac{1}{\gamma} \ln 2 \\
& \Rightarrow r_{\min }^{2}=\frac{1}{4}-\frac{1}{2}+1=\frac{3}{4}, r_{\min }=\frac{1}{2} \sqrt{3}
\end{aligned}
$$

Siden $r_{\min }<1$ er $\hat{\rho}$ en blandet tilstand, $\Rightarrow A+B$ er sammenfiltret, men nindre enn i tilfellet a)
1 begge tilfeller er $r=1$ baide for $t=0$ og $t \rightarrow \infty$, dos. sammenfiltringen er bare nidlertidig under henfallet $|\psi\rangle_{\text {init }} \rightarrow|g\rangle$.

Oppgave 2
a) Reduserte tetthetsoperatores

$$
\begin{aligned}
& \hat{p}_{A}=T_{r_{B C}}(|\psi\rangle\langle\psi|)=\frac{1}{2}(|\mu\rangle\langle u|+|d\rangle\langle d|)=\frac{\frac{1}{2} \mathbb{1}_{A}}{} \\
& \hat{\rho}_{B C}=T_{A}(|\psi\rangle\langle\psi|)=\frac{1}{2}(|\mu u\rangle\langle u u|+|d d\rangle\langle d|)
\end{aligned}
$$

\hat{p}_{A} er maksimalt blandet \Rightarrow sammenfiltringsentropien er maksimal: $S=-T_{r_{A}}\left(\hat{p}_{A} \log \rho_{A}\right)=\log 2$
$\hat{P}_{B C}$ er separabel, dos en sum av produkt tilstander, $|u\rangle \otimes|\mu\rangle \operatorname{og}|d\rangle \otimes|d\rangle$. Ingen sammerefilting
b) UHrgkker A - Ailstanden $i\left|\frac{\pi}{2},+\right\rangle \equiv|f\rangle$ og $\left|\frac{\pi}{2},-\right\rangle \equiv|b\rangle$

$$
\begin{aligned}
& |\mu\rangle=\frac{1}{\sqrt{2}}(|f\rangle-|b\rangle),|d\rangle=\frac{1}{\sqrt{2}}(|f\rangle+|b\rangle) \\
\Rightarrow & |\psi\rangle=\frac{1}{2}|f\rangle \otimes(|u u\rangle+|d d\rangle)+\frac{1}{2}|b\rangle \otimes(|\mu u\rangle-|d d\rangle)
\end{aligned}
$$

Mälingeu gir $f($ spinn opp $) \Rightarrow$
$|\psi\rangle \rightarrow\left|\psi^{\prime}\right\rangle=\frac{1}{\sqrt{2}}|f\rangle \theta(|\mu u\rangle+|d d\rangle)$ nomert

$$
\hat{\rho}_{B C} \rightarrow \hat{\rho}_{B C}^{\prime}=\frac{1}{2}(|\mu u\rangle\langle\mu u|+|d d\rangle\langle d d|+|\mu u\rangle\langle d d|+|d d\rangle\langle\mu u|)
$$

Dette er en ren tilstaud

$$
\hat{p}_{B}=T_{C} \hat{\rho}_{B C}=\frac{1}{2}(|u\rangle\langle u|+|d\rangle\langle d|)=\frac{1}{2} 1_{B}
$$

Denne er maksinealt blandet $\Rightarrow B+C$ er maks. sammentiltet Nälingen pë A gjor B+C sammentiltret!
c) Roterte tilstander

$$
\begin{aligned}
&|u\rangle=\cos \frac{\theta}{2}\left|\theta_{1}+\right\rangle-\sin \frac{\theta}{2}\left|\theta_{1}-\right\rangle \\
&|d\rangle=\sin \frac{\theta}{2}\left|\theta_{1}+\right\rangle+\cos \frac{\theta}{2}\left|\theta_{1}-\right\rangle \\
& \Rightarrow|\psi\rangle=\frac{1}{\sqrt{2}}\left\{\left|\theta_{1}+\right\rangle \otimes\left(\cos \frac{\theta}{2}|u u\rangle+\sin \frac{\theta}{2}|d d\rangle\right)\right. \\
&\left.+\left|\theta_{1}-\right\rangle \otimes\left(-\sin \frac{\theta}{2}|u u\rangle+\cos \frac{\theta}{2}|d d\rangle\right)\right\}
\end{aligned}
$$

Náleresultat $(\theta,+) \Rightarrow$

$$
\begin{aligned}
|\psi\rangle & \rightarrow\left|\theta_{1}+\right\rangle \otimes\left(\cos \frac{\theta}{2}|\mu u\rangle+\sin \frac{\theta}{2}|d d\rangle\right) \\
& \equiv\left|\theta_{1}+\right\rangle \otimes\left|\psi_{B C}^{\prime \prime}(\theta)\right\rangle \\
\hat{\rho}_{B C} & \rightarrow \hat{\rho}_{B C}^{\prime}=\left|\psi_{B C}^{\prime}\right\rangle\left\langle\psi_{B C}^{\prime}\right| \quad \text { ren tilstand } \\
& =\frac{\cos ^{2} \frac{\theta}{2}|\mu u\rangle\langle u u|+\sin ^{2} \frac{\theta}{2}|d d\rangle\langle d d|}{}+\frac{\cos \frac{\theta}{2} \sin \frac{\theta}{2}(|\mu u\rangle\langle d d|+|d d\rangle\langle u u|)}{}
\end{aligned}
$$

Redusert totthetsopecator

$$
\hat{\rho}_{B}=\operatorname{Tr}_{C} \hat{\rho}_{B C}=\cos ^{2} \frac{\theta}{2}|\mu\rangle\langle\mu|+\sin ^{2} \frac{\theta}{2}|d\rangle\langle d|
$$

$\langle u \mid d\rangle=0 \Rightarrow \cos ^{2} \frac{\theta}{2}$ og $\sin ^{2} \frac{\theta}{2}$ er equeverdier til $\hat{\rho}_{B}$
Eutropi $S=-\cos ^{2} \frac{\theta}{2} \ln \left(\cos ^{2} \frac{\theta}{2}\right)-\sin ^{2} \frac{\theta}{2} \ln \sin ^{2} \frac{\theta}{2}$
= sammenfiltringsentropien nellom Bog C

Oppgave 3

$$
\text { a) } \left.\begin{array}{rl}
\vec{\sigma} & =\sigma_{x} \vec{e}_{x}+\sigma_{y} \vec{e}_{y}+\sigma_{z} \vec{e}_{z} \\
= & \left(\begin{array}{c}
\vec{e}_{z} \\
\vec{e}_{x}-i \vec{e}_{y} \\
\vec{e}_{x}+i \vec{e}_{y}
\end{array}-\vec{e}_{z}\right.
\end{array}\right) \quad \begin{aligned}
& \vec{\sigma}_{B A}= \\
& \left.\left(\vec{k} \times \vec{\varepsilon}_{\vec{k} a}\right) \cdot \vec{e}_{t}=(-\ldots-)\binom{1}{0}=\vec{e}_{t}+i \vec{e}_{y} \equiv \vec{e}_{+}\right) \cdot \vec{\varepsilon}_{\vec{k} a} \\
& \vec{k}= \\
& =k\left(\cos \varphi \sin \theta \vec{e}_{x}+\sin \varphi \sin \theta \vec{e}_{y}+\cos \theta \vec{e}_{z}\right) \\
& \Rightarrow \vec{e}_{t} \times \vec{k}=i k\left(\cos \theta \vec{e}_{t}-e^{i \varphi} \sin \theta \vec{e}_{z}\right)
\end{aligned}
$$

Vinhelawhengighet til $\left.\left|\left\langle\left. B\right|_{\mid \overrightarrow{F a}}\right| \hat{H},\right| A, 0\right\rangle\left.\right|^{2}$:

$$
\begin{aligned}
p(\theta, \varphi) & =N \sum_{a}\left|\left(\vec{e}_{+} \times \vec{k}\right) \cdot \vec{\varepsilon}_{\vec{k} a}\right|^{2} \quad \swarrow=0 \quad N \text { norm.faktor } \\
& =N\left(\left|\vec{e}_{+} \times \vec{k}\right|^{2}-\left|\left(\vec{e}_{+} \times \vec{k}\right) \cdot \frac{\vec{k}}{k}\right|^{2}\right) \\
& =N k^{2}\left(2 \cos ^{2} \theta+\sin ^{2} \theta\right) \quad\left|\vec{e}_{+}\right|^{2}=2 \\
& =N k^{2}\left(1+\cos ^{2} \theta\right) \quad \text { wash as } \varphi
\end{aligned}
$$

Normering

$$
\begin{aligned}
& \text { lering } \int d \varphi \int d \theta \sin \theta\left(1+\cos ^{2} \theta\right)=2 \pi \int_{-1}^{1}\left(1+u^{2}\right) d u=2 \pi\left[u+\frac{1}{3} u^{2}\right]_{-1}^{1} \\
&=\frac{16}{3} \pi \\
& \Rightarrow p(\theta, \varphi)=\frac{3}{16 \pi}\left(1+\cos ^{2} \theta\right)
\end{aligned}
$$

b) $\vec{k}=k \vec{e}_{x}$

Sanusynlighet for detekejou as foton med polarisasjon iretning $\vec{\varepsilon}(\alpha)$,

$$
\vec{e}_{+} \times \vec{e}_{x}=-i \vec{e}_{z}
$$

$$
\begin{aligned}
& p(\alpha)=N^{\prime}\left|\left(\vec{e}_{+} \times \vec{e}_{x}\right) \cdot \vec{\varepsilon}(\alpha)\right|^{2} \\
&=N^{\prime}\left|\vec{e}_{z} \cdot \vec{\varepsilon}(\vec{\alpha})\right|^{2} \\
&=N^{\prime} \sin ^{2} \alpha \\
& p(\alpha)+p\left(\alpha+\frac{\pi}{2}\right)=N^{\prime}=1 \Rightarrow p(\alpha)=\sin ^{2} \alpha
\end{aligned}
$$

Sannsyulighet for deteksjon:

$$
\begin{array}{ll}
p(0)=0 & \alpha=0 \Rightarrow \vec{\varepsilon}=\vec{e}_{y} \\
p\left(\frac{\pi}{2}\right)=1 & \alpha=\frac{\pi}{2} \Rightarrow \vec{\varepsilon}=\vec{e}_{z}
\end{array}
$$

viser at fotoner utsendt langs x-alisen er polarisest langs z-aksen

FYS4110, Exam 2014
Solutions
Problem 1

$$
\text { a) } \begin{aligned}
\hat{\rho}_{I} & =\cos ^{2} x|1\rangle\langle 1|+\sin ^{2} x|2\rangle\langle 2|+\cos x \sin x(|1\rangle\langle 2|+|2\rangle\langle 1|) \\
& =\frac{1}{2} \cos ^{2} x(1+-\rangle\langle+-1+1-+\rangle\langle-+1+\mid+-\rangle\langle-+|+|-+\rangle\langle+-1) \\
& +\frac{1}{2} \sin ^{2} x(1+-\rangle\langle+-1+\mid-+\rangle\langle-+1-\mid+-\rangle\langle-+|-|-+\rangle\langle+-1) \\
+ & \frac{1}{2} \cos x \sin x(1+-\rangle\langle+-|-|-+\rangle\langle-+\mid-1+-\rangle\langle-+\mid+1-+\rangle\langle+-1) \\
+ & \frac{1}{2} \cos x \sin x(1+-\rangle\langle+-1-\mid-+\rangle\langle-+\mid+1+-\rangle\langle-+|-|-+\rangle\langle+-1) \\
= & \frac{\frac{1}{2}(1+\sin (2 x))|+-\rangle\langle+-|+\frac{1}{2}(1-\sin (2 x)|-+\rangle\langle-+1}{} \quad+\frac{1}{2} \cos 2 x(1+-\rangle\langle-+1+\mid-+\rangle\langle+-1)
\end{aligned}
$$

Reduced density operators

$$
\begin{aligned}
\hat{\rho}_{I A}=\operatorname{Tr}_{B} \hat{\rho}_{I} & =\frac{1}{2}(1+\sin (2 x))|+\rangle\left\langle+1+\frac{1}{2}(1-\sin (2 x)) 1-\right\rangle\langle-1 \\
& =\frac{1}{2}\left(\mathbb{1}+\sin (2 x) \sigma_{Z}\right) \\
\hat{\rho}_{I B}=\operatorname{Tr}_{A} \hat{\rho}_{I} & \left.=\frac{1}{2}(1-\sin (2 x)) 1+\right\rangle\left\langle\left.+1+\frac{1}{2}(1+\sin (2 x)) \right\rvert\,-\right\rangle\langle-1 \\
& =\frac{1}{2}\left(\mathbb{1}-\sin (2 x) \sigma_{Z}\right)
\end{aligned}
$$

Entropies: $S_{I}=O$ (pure state)

$$
S_{I A}=S_{I B}=-\frac{1}{2}(1+\sin (2 x)) \log \left(\frac{1}{2}(1+\sin (2 x))-\frac{1}{2}(1-\sin (2 x)) \log \left(\frac{1}{2}(1-\sin (2 x))\right)\right.
$$

$x=0, \frac{\pi}{2} \quad S_{I A}=S_{I B}=\log 2$; maximally entangled states
$x=\frac{\pi}{4} \quad S_{I A}=S_{I B}=0$, non-entangled, product Δ tate $|\psi\rangle=|+\rangle \theta|-\rangle$
b) Case II

$$
\begin{aligned}
& \hat{\rho}_{\text {II }}=\cos ^{2} x|1\rangle\langle 1|+\sin ^{2} x|2\rangle\langle 2| \\
\Rightarrow & S_{\text {II }}=-\cos ^{2} x \log \left(\cos ^{2} x\right)-\sin ^{2} x \log \left(\sin ^{2} x\right)
\end{aligned}
$$

$\hat{p}_{\text {II }}$ obtained from \hat{p}_{I} by deleting terms proportional to $\cos x \sin x=\frac{1}{2} \sin (2 x)$:

$$
\begin{aligned}
& \hat{\rho}_{\text {II }}=\frac{1}{2}(1+-\rangle\langle+-1+1-+\rangle\langle-+1)+\frac{1}{2} \cos (2 x)(1+-\rangle\langle-+1+1-+\rangle\langle+-1) \\
& \Rightarrow \hat{\rho}_{\text {IA }}=\hat{\rho}_{\text {IB }}=\frac{1}{2} \mathbb{I} \Rightarrow S_{\text {IA }}=S_{\text {II }}=\log 2
\end{aligned}
$$

$x=0, \pi / 2$ Same as in case I
$x=\pi / 4, S_{\text {II }}=\log 2 ;$ maximally mixed

$$
\hat{\rho}_{\text {II }}=\frac{1}{2}(1+-\rangle\langle+-1+1-+\rangle\langle-+1)
$$

separable (sum of product states) \Rightarrow non-entangled
c) $\Delta_{I}=-S_{I A}=-S_{I B}$
is negative, unless $S_{I A}=S_{I B}=0$,
which happens for $x=\pi / 4$.

$$
\Delta_{\text {III }}=S_{\text {II }}-\log 2
$$

$S_{I I} \leq \log 2$ since the Hilbert space is two-dinensional $\Rightarrow \Delta_{\text {II }} \leq 0, \Delta_{\text {II }}=0$ only when $S_{\text {II }}=\log 2$, this happens only when $x=\pi / 4 \Rightarrow \cos ^{2} x=\sin ^{2} x=\frac{1}{2}$

Problem 2
a) Matrix elements of \hat{x}

$$
\begin{aligned}
x_{m n} & =\sqrt{\frac{\hbar}{2 m \omega}}\left(\langle m| \hat{a}^{+}|n\rangle+\langle m| \hat{a}|n\rangle\right) \\
& =\sqrt{\frac{\hbar}{2 m \omega}}\left(\sqrt{n+1} \delta_{m, n+1}+\sqrt{n} \delta_{m, n-1}\right)
\end{aligned}
$$

Non-vanishing: $x_{n-1, n}=x_{n, n-1}=\sqrt{\frac{\hbar n}{2 m \omega}}$
Photon emission: $|n\rangle \rightarrow|n-1\rangle \quad\left(E_{n} \rightarrow E_{n-1}+\hbar \omega\right)$

$$
\Rightarrow W_{n-1, n}=\frac{2 \alpha \hbar}{3 m c^{2}} \omega^{2} n=\gamma^{n}
$$

b)

$$
\begin{aligned}
\frac{d p_{n}}{d t} & =\langle n|\left(-\frac{i}{\hbar}\left[\hat{H}_{0}, \hat{p}\right]-\frac{1}{2} \gamma\left(\hat{a}^{+} \hat{a} \hat{p}+\hat{p} \hat{a}^{+} \hat{a}-2 \hat{a} \hat{\rho} \hat{a}^{+}\right)\right)|n\rangle \\
& =-\gamma\left(n p_{n}-(n+1) p_{n+1}\right)
\end{aligned}
$$

$W_{n-1, n}=$ transition rate when state $|n\rangle$ occupied

$$
\Rightarrow p_{n}=1, p_{m}=0 \quad m \neq n
$$

With this assumption, conservation of probability gives $\quad \frac{d p_{n}}{d t}=-W_{n-1, n}$

$$
=-\gamma^{n}(\text { from eq. }(9))
$$

consistent with eq. (8).
c) Excitation energy

$$
\begin{aligned}
E & =T_{r}\left(\hat{H}_{0} \hat{\rho}\right)-\frac{1}{2} \hbar \omega \\
& =\sum_{n} \hbar \omega\left(n+\frac{1}{2}\right)\langle n| \hat{\rho}|n\rangle-\frac{1}{2} \hbar \omega \\
& =\sum_{n} \hbar \omega n p_{n} \\
\Rightarrow \frac{d E}{d t} & =\hbar \omega \sum_{n} n \frac{d p_{n}}{d t} \\
& =-\gamma \hbar \omega \sum_{n}\left(n^{2} p_{n}-n(n+1) p_{n+1}\right) \\
& =-\gamma \hbar \omega \sum_{n}\left(n^{2}-n(n-1)\right) p_{n} \\
& =-\gamma \hbar \omega \sum_{n} n p_{n} \\
& =-\gamma E
\end{aligned}
$$

Integrated

$$
\begin{aligned}
& \frac{d E}{E}=-\gamma d t \Rightarrow \ln E=-\gamma t+\text { cons } \\
& \Rightarrow E(t)=E(0) e^{-\gamma t} \quad \text { exponential decay }
\end{aligned}
$$

Problem 3
a)

$$
\begin{aligned}
& \operatorname{Tr} \hat{\rho}=1 \Rightarrow N(\beta)^{-1}=\operatorname{Tr}\left(e^{-\beta H}\right) \\
&=\sum_{n} e^{-\beta E_{n}} \\
& E(\beta)=\operatorname{Tr}(\hat{H} \hat{p})=N \operatorname{Tr}\left(\hat{H} e^{-\beta \hat{H}}\right) \\
&=-N \frac{\partial}{\partial \beta} \operatorname{Tr}\left(e^{-\beta \hat{H}}\right)=-N \frac{\partial}{\partial \beta} N^{-1} \\
&=\frac{1}{N} \frac{\partial}{\partial \beta} \ln N=\frac{\partial}{\partial \beta} \ln N(\beta)
\end{aligned}
$$

Entropy: $S(\beta)=-\operatorname{Tr}(\hat{\rho} \ln \hat{\rho})$

$$
\begin{aligned}
& =-\operatorname{Tr}\left(N e^{-\beta \hat{H}}(\ln N-\beta \hat{H})\right) \\
& =-\ln N \operatorname{Tr} \hat{\rho}+\beta \operatorname{Tr}(\hat{H} \hat{\rho}) \\
& =-\ln N+\beta E(\beta) \\
& =\beta \frac{\partial}{\partial \beta} \ln N(\beta)-\ln N(\beta)
\end{aligned}
$$

b)

$$
\begin{aligned}
& \hat{H}=\frac{1}{2} \varepsilon \sigma_{2} \Rightarrow E_{ \pm}= \pm \frac{1}{2} \varepsilon \\
& \Rightarrow N^{-1}=e^{\frac{1}{2} \varepsilon \beta}+e^{-\frac{1}{2} \varepsilon \beta}=2 \cosh \left(\frac{1}{2} \varepsilon \beta\right) \\
& N(\beta)=\frac{1}{2 \cosh \left(\frac{1}{2} \varepsilon \beta\right)} \\
& E(\beta)=-2 \cosh \left(\frac{1}{2} \varepsilon \beta\right) \frac{1}{2 \cosh ^{2}\left(\frac{1}{2} \varepsilon \beta\right)} \sinh \left(\frac{1}{2} \varepsilon \beta\right) \cdot \frac{1}{2} \varepsilon \\
& = \\
& \underline{-\frac{1}{2} \varepsilon \tanh \left(\frac{1}{2} \varepsilon \beta\right)} \\
& \underline{S(\beta)=}
\end{aligned}
$$

$$
\begin{aligned}
& E(\beta)=-\frac{1}{2} \varepsilon \tanh \left(\frac{1}{2} \varepsilon \beta\right) \\
&=-\frac{1}{2} \varepsilon \frac{e^{\frac{1}{2} \varepsilon \beta}-e^{-\frac{1}{2} \varepsilon \beta}}{e^{\frac{1}{2} \varepsilon \beta}+e^{-\frac{1}{2} \varepsilon \beta}} \\
& T \rightarrow 0 \Rightarrow \beta \rightarrow \infty \Rightarrow E(\beta) \simeq-\frac{1}{2} \varepsilon\left(1-e^{-\varepsilon \beta}\right) \rightarrow-\frac{1}{2} \varepsilon \\
& T \rightarrow \infty \Rightarrow \beta \rightarrow 0 \Rightarrow E(\beta) \simeq-\frac{1}{4} \varepsilon^{2} \beta=-\frac{1}{4} \frac{\varepsilon^{2}}{k_{\beta} T} \longrightarrow 0 \\
& \frac{1}{2} \varepsilon+E
\end{aligned}
$$

c)

$$
\hat{\rho}=\frac{1}{2}(\mathbb{1}+\vec{r} \cdot \vec{\sigma}) \Rightarrow \vec{r}=\operatorname{Tr}(\vec{\sigma} \hat{\rho})
$$

since $\operatorname{Tr} \sigma_{i}=0$ and $\operatorname{Tr}\left(\sigma_{i} \sigma_{j}\right)=2 \delta_{i j}$

$$
\begin{aligned}
\vec{r} & =N \operatorname{Tr}\left(\vec{\sigma} e^{\left.-\frac{1}{2} \varepsilon \beta \sigma_{z}\right)}\right. \\
& =N \operatorname{Tr}\left(\sigma_{z} e^{\left.-\frac{1}{2} \varepsilon \beta \sigma_{z}\right)} \vec{k}\right. \\
& =-\frac{2}{\varepsilon} N \frac{\partial}{\partial \beta}\left(\operatorname{Tr} e^{-\frac{1}{2} \varepsilon \beta \sigma_{z}}\right) \vec{k} \\
& =-\frac{2}{\varepsilon} N \frac{\partial}{\partial \beta} N^{-1} \vec{k} \\
& =-\frac{2}{\varepsilon} E(\beta) \vec{k} \\
& =\frac{\tanh \left(\frac{1}{2} \varepsilon \beta\right) \vec{k}}{\vec{r}}=\left[\vec{k} \text { with } r=-\frac{2}{\varepsilon} E(\beta)\right.
\end{aligned}
$$

$T=0(\beta=\infty): r=1$ pure state
$T \rightarrow \infty(\beta \rightarrow 0): r \rightarrow 0$ maximally mixed

EXAM in FYS 4110/9110 Modern Quantum Mechanics 2015
Solutions

PROBLEM 1

a) Hamiltonian

$$
\begin{equation*}
\hat{H}=\frac{1}{2} \hbar \omega\left(\sigma_{z} \otimes \mathbb{1}-\mathbb{1} \otimes \sigma_{z}\right)+\hbar \lambda\left(\sigma_{+} \otimes \sigma_{-}+\sigma_{-} \otimes \sigma_{+}\right) \tag{1}
\end{equation*}
$$

Action on the basis states

$$
\begin{align*}
\hat{H}|++\rangle & =\hat{H}|--\rangle=0 \\
\hat{H}|+-\rangle & =\hbar \omega|+-\rangle+\hbar \lambda|-+\rangle \\
\hat{H}|-+\rangle & =-\hbar \omega|-+\rangle+\hbar \lambda|+-\rangle \tag{2}
\end{align*}
$$

Matrix form of \hat{H}

$$
H=\hbar\left(\begin{array}{cc}
\omega & \lambda \tag{3}\\
\lambda & -\omega
\end{array}\right)=\hbar a\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
\sin \theta & -\cos \theta
\end{array}\right)
$$

b) Eigenvalue equation

$$
\left(\begin{array}{cc}
\cos \theta & \sin \theta \tag{4}\\
\sin \theta & -\cos \theta
\end{array}\right)\binom{\alpha}{\beta}=\epsilon\binom{\alpha}{\beta}
$$

Secular equation

$$
\begin{equation*}
\epsilon^{2}-\cos ^{2} \theta-\sin ^{2} \theta=0 \quad \Rightarrow \quad \epsilon= \pm 1 \equiv \epsilon_{ \pm} \tag{5}
\end{equation*}
$$

Energy eigenvalues

$$
\begin{equation*}
E_{ \pm}= \pm \hbar a= \pm \hbar \sqrt{\omega^{2}+\lambda^{2}} \tag{6}
\end{equation*}
$$

Eigenvectors

$$
\begin{align*}
& \cos \theta \alpha_{ \pm}+\sin \theta \beta_{ \pm}= \pm \alpha_{ \pm} \\
& \Rightarrow \quad \alpha_{+} / \beta_{+}=(1+\cos \theta) / \sin \theta=\cot \frac{\theta}{2} \\
& \alpha_{-} / \beta_{-}=(-1+\cos \theta) / \sin \theta=-\tan \frac{\theta}{2} \tag{7}\\
& \Rightarrow \quad\left|\psi_{+}\right\rangle=\cos \frac{\theta}{2}|+-\rangle+\sin \frac{\theta}{2}|-+\rangle \\
& \left|\psi_{-}\right\rangle=\sin \frac{\theta}{2}|+-\rangle-\cos \frac{\theta}{2}|-+\rangle \tag{8}
\end{align*}
$$

The states $|++\rangle$ and $|--\rangle$ are energy eigenstates with eigenvalues $E=0$.
c) Product states

$$
\begin{equation*}
\hat{\rho}_{1}=|++\rangle\langle++|, \quad \hat{\rho}_{2}=|--\rangle\langle--| \tag{9}
\end{equation*}
$$

have no entanglement. Reduced density operators

$$
\begin{equation*}
\hat{\rho}_{1}^{A}=\hat{\rho}_{1}^{B}=|+\rangle\langle+|, \quad \hat{\rho}_{2}^{A}=\hat{\rho}_{2}^{B}=|-\rangle\langle-| \tag{10}
\end{equation*}
$$

Non-product states

$$
\begin{align*}
\hat{\rho}_{ \pm}=\left|\psi_{ \pm}\right\rangle\left\langle\psi_{ \pm}\right| & =\cos ^{2} \frac{\theta}{2}|+-\rangle\langle+-|+\sin ^{2} \frac{\theta}{2}|-+\rangle\langle+-| \\
& \pm \cos ^{2} \frac{\theta}{2} \sin ^{2} \frac{\theta}{2}(|+-\rangle\langle-+|+|-+\rangle\langle+-|) \tag{11}
\end{align*}
$$

Reduced density operators

$$
\begin{align*}
& \hat{\rho}_{+}^{A}=\hat{\rho}_{-}^{B}=\cos ^{2} \frac{\theta}{2}|+\rangle\langle+|+\sin ^{2} \frac{\theta}{2}|-\rangle\langle-| \\
& \hat{\rho}_{-}^{A}=\hat{\rho}_{+}^{B}=\sin ^{2} \frac{\theta}{2}|+\rangle\langle+|+\cos ^{2} \frac{\theta}{2}|-\rangle\langle-| \tag{12}
\end{align*}
$$

Entanglement entropies

$$
\begin{equation*}
S_{ \pm}(\theta)=\cos ^{2} \frac{\theta}{2} \log \left(\cos ^{2} \frac{\theta}{2}\right)+\sin ^{2} \frac{\theta}{2} \log \left(\sin ^{2} \frac{\theta}{2}\right) \tag{13}
\end{equation*}
$$

Minimum entanglement for $\theta=0(\lambda / \omega=0)$, with $S_{ \pm}(0)=0$, maximum entanglement for $\theta= \pm \pi / 2(\omega / \lambda=0)$, with $S_{ \pm}(0)=\log 2$. This is identical to the maximum possible entanglement entropy in the two-spin system.

PROBLEM 2

a) Hamiltonian

$$
\begin{equation*}
\hat{H}=\hbar \omega_{0}\left(\hat{a}^{\dagger} \hat{a}+\frac{1}{2}\right)+\hbar \lambda\left(\hat{a}^{\dagger} e^{-i \omega t}+\hat{a} e^{i \omega t}\right) \tag{14}
\end{equation*}
$$

In the Heisenberg picture

$$
\begin{equation*}
\dot{\hat{a}}_{H}=\frac{i}{\hbar}[\hat{H}, \hat{a}]_{H}=-i \omega_{0} \hat{a}_{H}-i \lambda e^{-i \omega t} \mathbb{1} \tag{15}
\end{equation*}
$$

gives

$$
\begin{equation*}
\ddot{\hat{a}}_{H}=\frac{i}{\hbar}\left[\hat{H}, \dot{\hat{a}}_{H}\right]+\frac{\partial \dot{a}_{H}}{\partial t}=-\omega_{0}^{2} \hat{a}_{H}-\lambda\left(\omega_{0}+\omega\right) e^{-i \omega t} \mathbb{1} \tag{16}
\end{equation*}
$$

which gives $C=-\lambda\left(\omega_{0}+\omega\right)$.
b) Assume

$$
\begin{equation*}
\hat{a}_{H}=\hat{a} e^{-i \omega_{0} t}+D\left(e^{-i \omega t}-e^{-i \omega_{0} t}\right) \mathbb{1} \tag{17}
\end{equation*}
$$

Differentiation gives

$$
\begin{array}{r}
\ddot{\hat{a}}_{H}=-\omega_{0}^{2} \hat{a} e^{-i \omega_{0} t}-D\left(\omega^{2} e^{-i \omega t}-\omega_{0}^{2} e^{-i \omega_{0} t}\right) \\
=-\omega_{0}^{2} \hat{a}_{H}-\left(\omega^{2}-\omega_{0}^{2}\right) D e^{-i \omega t} \tag{18}
\end{array}
$$

which is of the form (16) with

$$
\begin{equation*}
D=\frac{\lambda}{\omega-\omega_{0}} \tag{19}
\end{equation*}
$$

c) Time evolution

$$
\begin{align*}
|\psi(0)\rangle & =|0\rangle, \quad \hat{a}|0\rangle=0 \\
|\psi(t)\rangle & =\hat{\mathcal{U}}(t)|\psi(0)\rangle \tag{20}
\end{align*}
$$

gives

$$
\begin{align*}
\hat{a}|\psi(t)\rangle & =\hat{\mathcal{U}}(t) \hat{\mathcal{U}}^{\dagger}(t) \hat{a} \hat{\mathcal{U}}(t)|\psi(0)\rangle \\
& =\hat{\mathcal{U}}(t) \hat{a}_{H}(t)|\psi(0)\rangle \\
& =\hat{\mathcal{U}}(t)\left(\hat{a} e^{-i \omega_{0} t}+D\left(e^{-i \omega t}-e^{-i \omega_{0} t}\right)|\psi(0)\rangle\right. \\
& =\frac{\lambda}{\omega-\omega_{0}}\left(e^{-i \omega t}-e^{-i \omega_{0} t}\right)|\psi(t)\rangle \tag{21}
\end{align*}
$$

This shows that $|\psi(t)\rangle$ is a coherent state with time dependent complex parameter $z(t)$, and with real part $x(t)$, given by

$$
\begin{equation*}
z(t)=\frac{\lambda}{\omega-\omega_{0}}\left(e^{-i \omega t}-e^{-i \omega_{0} t}\right), \quad x(t)=\frac{\lambda}{\omega-\omega_{0}}\left(\cos \omega t-\cos \omega_{0} t\right) \tag{22}
\end{equation*}
$$

The time evolution of the coordinate $x(t)$ is the same as for the classical driven harmonic oscillator,

$$
\begin{equation*}
\ddot{x}+\omega_{0}^{2} x=-\lambda\left(\omega_{0}+\omega\right) \cos \omega t \tag{23}
\end{equation*}
$$

PROBLEM 3

a) Hamiltonian

$$
\begin{equation*}
\hat{H}=\frac{1}{2} \hbar \omega \sigma_{z}+\hbar \omega \hat{a}^{\dagger} \hat{a}+\frac{1}{2} \hbar \lambda\left(\hat{a}^{\dagger} \sigma_{-}+\hat{a} \sigma_{+}\right) \tag{24}
\end{equation*}
$$

Action on the states $|-, 1\rangle$ and $|+, 0\rangle$,

$$
\begin{align*}
\hat{H}|-, 1\rangle & =\frac{1}{2} \hbar(\omega|-, 1\rangle+\lambda|+, 0\rangle) \\
\hat{H}|+, 0\rangle & =\frac{1}{2} \hbar(\omega|+, 0\rangle+\lambda|-, 1\rangle) \tag{25}
\end{align*}
$$

Matrix form

$$
\begin{equation*}
\hat{H}=\frac{1}{2} \hbar \omega \mathbb{1}+\frac{1}{2} \hbar \lambda \sigma_{x} \tag{2}
\end{equation*}
$$

Eigenvalues for σ_{x} are ± 1, gives energy eigenvalues

$$
\begin{equation*}
E_{ \pm}=\frac{1}{2} \hbar(\omega \pm \lambda) \tag{27}
\end{equation*}
$$

Energy eigenstates

$$
\begin{equation*}
\left|\psi_{ \pm}\right\rangle=\frac{1}{\sqrt{2}}(|-, 1\rangle \pm|+, 0\rangle), \quad \hat{H}\left|\psi_{ \pm}\right\rangle=E_{ \pm}\left|\psi_{ \pm}\right\rangle \tag{28}
\end{equation*}
$$

Time dependent state

$$
\begin{equation*}
|\psi(t)\rangle=c_{+} e^{-\frac{i}{\hbar} E_{+} t}\left|\psi_{+}\right\rangle+c_{-} e^{-\frac{i}{\hbar} E_{-} t}\left|\psi_{-}\right\rangle \tag{29}
\end{equation*}
$$

Initial condition $|\psi(0)\rangle=|-, 1\rangle$ implies $c_{+}=c_{-}=\frac{1}{\sqrt{2}}$,

$$
\begin{equation*}
|\psi(t)\rangle=e^{-\frac{i}{2} t}\left(\cos \left(\frac{\lambda}{2} t\right)|-, 1\rangle-i\left(\sin \left(\frac{\lambda}{2} t\right)|+, 0\rangle\right)\right. \tag{30}
\end{equation*}
$$

which gives $\epsilon=-\omega / 2$ and $\Omega=\lambda / 2$.
b) The Lindblad equation gives for the occupation probability of the ground state

$$
\begin{equation*}
\frac{d p_{g}}{d t}=-\frac{i}{\hbar}\langle-, 0|[\hat{H}, \hat{\rho}]|-, 0\rangle+\gamma\langle-, 0| \hat{a} \hat{\rho} \hat{a}^{\dagger}|-, 0\rangle=\gamma\langle-, 1| \hat{\rho}|-, 1\rangle \tag{31}
\end{equation*}
$$

When a photon is present in the cavity, $\langle-, 1| \hat{\rho}|-, 1\rangle \neq 0$, this gives $\dot{p}_{g}>0$, which implies that the occupation probability of the ground state increases until there is no photon in the cavity, $\langle-, 1| \hat{\rho}|-, 1\rangle=0$.
c) Evaluation of the matrix elements of the Lindblad equation in the subspace spanned by $|-, 1\rangle$ and $|+, 0\rangle$ gives

$$
\begin{align*}
\dot{p}_{1} & =-\frac{i}{2} \lambda(\langle+, 0| \hat{\rho}|-, 1\rangle-\langle-, 1| \hat{\rho}|+, 0\rangle)-\gamma p_{1} \\
\dot{p}_{0} & =-\frac{i}{2} \lambda(\langle-, 1| \hat{\rho}|+, 0\rangle-\langle+, 0| \hat{\rho}|-, 1\rangle) \\
\dot{b} & =-\frac{i}{2} \lambda(\langle+, 0| \hat{\rho}|+, 0\rangle-\langle-, 1| \hat{\rho}|-, 1\rangle)-\frac{1}{2} \gamma b \tag{32}
\end{align*}
$$

which simplifies to

$$
\begin{align*}
\dot{p}_{1} & =-\gamma p_{1}-\lambda b \\
\dot{p}_{0} & =\lambda b \\
\dot{b} & =-\frac{1}{2} \gamma b+\frac{1}{2} \lambda\left(p_{1}-p_{0}\right) \tag{33}
\end{align*}
$$

Expected time evolution: Exponentially damped oscillations between the states $|-, 1\rangle$ and $|+, 0\rangle$, with the system ending in the photon less ground state $|-, 0\rangle$.

Exam FYS4110, fall semester 2016

Solutions

PROBLEM 1

a) Matrix elements of \hat{H} in the two-dimensional subspace

$$
\begin{align*}
\hat{H}|0,+1\rangle & =\frac{1}{2} \hbar\left(\omega_{0}+\omega_{1}\right)|0,+1\rangle+\lambda \hbar|1,-1\rangle \\
\hat{H}|1,-1\rangle & =\frac{1}{2} \hbar\left(3 \omega_{0}-\omega_{1}\right)|0,+1\rangle+\lambda \hbar|0,+1\rangle \tag{1}
\end{align*}
$$

In matrix form

$$
H=\frac{1}{2} \hbar\left(\begin{array}{cc}
\omega_{0}+\omega_{1} & 2 \lambda \tag{2}\\
2 \lambda & 3 \omega_{0}-\omega_{1}
\end{array}\right)=\frac{1}{2} \hbar \Delta\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
\sin \theta & -\cos \theta
\end{array}\right)+\epsilon \hbar \mathbb{1}
$$

which gives

$$
\begin{equation*}
\Delta \cos \theta=\omega_{1}-\omega_{0}, \quad \Delta \sin \theta=2 \lambda, \quad \epsilon=\omega_{0} \tag{3}
\end{equation*}
$$

and from this

$$
\begin{equation*}
\Delta=\sqrt{\left(\omega_{1}-\omega_{0}\right)^{2}+4 \lambda^{2}} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\cos \theta=\frac{\omega_{1}-\omega_{0}}{\sqrt{\left(\omega_{1}-\omega_{0}\right)^{2}+4 \lambda^{2}}}, \quad \sin \theta=\frac{2 \lambda}{\sqrt{\left(\omega_{1}-\omega_{0}\right)^{2}+4 \lambda^{2}}} \tag{5}
\end{equation*}
$$

b) Eigenvalue problem for the matrix

$$
\begin{align*}
& \left(\begin{array}{cc}
\cos \theta & \sin \theta \\
\sin \theta & -\cos \theta
\end{array}\right)\binom{\alpha}{\beta}=\delta\binom{\alpha}{\beta} \\
& \left|\begin{array}{cc}
\cos \theta-\delta & \sin \theta \\
\sin \theta & -\cos \theta-\delta
\end{array}\right|=0 \\
& \Rightarrow \quad \delta^{2}-\cos ^{2} \theta-\sin ^{2} \theta=0 \Rightarrow \delta= \pm 1 \tag{6}
\end{align*}
$$

Energy eigenvalues

$$
\begin{equation*}
E_{ \pm}=\hbar\left(\epsilon \pm \frac{1}{2} \Delta\right)=\hbar\left(\omega_{0} \pm \frac{1}{2} \sqrt{\left(\omega_{1}-\omega_{0}\right)^{2}+4 \lambda^{2}}\right) \tag{7}
\end{equation*}
$$

Eigenvectors

$$
\begin{equation*}
(\cos \theta \mp 1) \alpha+\sin \theta \beta=0 \quad \Rightarrow \quad \frac{\beta}{\alpha}= \pm \frac{1 \mp \cos \theta}{\sin \theta} \tag{8}
\end{equation*}
$$

This gives

$$
\begin{equation*}
\binom{\alpha_{ \pm}}{\beta_{ \pm}}=N_{ \pm}\binom{ \pm \sin \theta}{1 \mp \cos \theta} \tag{9}
\end{equation*}
$$

with normalization factor

$$
\begin{equation*}
N_{ \pm}^{2}=\sin ^{2} \theta+(1 \mp \cos \theta)^{2}=2(1 \mp \cos \theta) \tag{10}
\end{equation*}
$$

Finally

$$
\begin{equation*}
\binom{\alpha_{ \pm}}{\beta_{ \pm}}=\frac{1}{\sqrt{2(1 \mp \cos \theta)}}\binom{ \pm \sin \theta}{1 \mp \cos \theta}=\frac{1}{\sqrt{2}}\binom{ \pm \sqrt{1 \pm \cos \theta}}{\sqrt{1 \mp \cos \theta}} \tag{11}
\end{equation*}
$$

and in bra-ket form

$$
\begin{equation*}
\left|\psi_{ \pm}\right\rangle=\frac{1}{\sqrt{2}}(\pm \sqrt{1 \pm \cos \theta}|0,+1\rangle+\sqrt{1 \mp \cos \theta}|1,-1\rangle) \tag{12}
\end{equation*}
$$

c) Density operator

$$
\begin{align*}
\hat{\rho}_{ \pm}= & \frac{1}{2}(1 \pm \cos \theta)(|0\rangle\langle 0| \otimes|+1\rangle\langle+1|)+\frac{1}{2}(1 \mp \cos \theta)(|1\rangle\langle 1| \otimes|-1\rangle\langle-1|) \\
& \pm \frac{1}{2} \sin \theta(|0\rangle\langle 1| \otimes|+1\rangle\langle-1|+|1\rangle\langle 0| \otimes|-1\rangle\langle+1|) \tag{13}
\end{align*}
$$

Reduced density operators

$$
\begin{align*}
\text { position : } & \hat{\rho}_{ \pm}^{p}=\operatorname{Tr}_{s} \hat{\rho}_{ \pm}=\frac{1}{2}(1 \pm \cos \theta)|0\rangle\langle 0|+\frac{1}{2}(1 \mp \cos \theta)|1\rangle\langle 1| \\
\text { spin }: & \hat{\rho}_{ \pm}^{s}=\operatorname{Tr}_{p} \hat{\rho}_{ \pm}=\frac{1}{2}(1 \pm \cos \theta)|+1\rangle\langle+1|+\frac{1}{2}(1 \mp \cos \theta)|-1\rangle\langle-1| \tag{14}
\end{align*}
$$

Entanglement entropy

$$
\begin{align*}
S_{ \pm}^{p}=S_{ \pm}^{s} & =-\left[\frac{1}{2}(1-\cos \theta) \log \left(\frac{1}{2}(1-\cos \theta)\right)+\frac{1}{2}(1+\cos \theta) \log \left(\frac{1}{2}(1+\cos \theta)\right]\right. \\
& =-\left[\cos ^{2} \frac{\theta}{2} \log \left(\cos ^{2} \frac{\theta}{2}\right)+\sin ^{2} \frac{\theta}{2} \log \left(\sin ^{2} \frac{\theta}{2}\right)\right] \equiv S \tag{15}
\end{align*}
$$

Maximum entanglement

$$
\begin{equation*}
\theta=\frac{\pi}{2}: \quad \cos ^{2} \frac{\theta}{2}=\sin ^{2} \frac{\theta}{2}=\frac{1}{2} \quad \Rightarrow \quad S=\log 2 \tag{16}
\end{equation*}
$$

Minimum entanglement

$$
\begin{array}{lll}
\theta=0: & \cos ^{2} \frac{\theta}{2}=1, \sin ^{2} \frac{\theta}{2}=0 \quad & \Rightarrow \quad S=0 \\
\theta=\pi: & \cos ^{2} \frac{\theta}{2}=0, \sin ^{2} \frac{\theta}{2}=1 \quad \Rightarrow \quad S=0 \tag{17}
\end{array}
$$

PROBLEM 2

a) Change of variables

$$
\begin{align*}
\hat{c}^{\dagger} \hat{c}= & \mu^{2} \hat{a}^{\dagger} \hat{a}+\nu^{2} \hat{b}^{\dagger} \hat{b}+\mu \nu\left(\hat{a}^{\dagger} \hat{b}+\hat{b}^{\dagger} \hat{a}\right) \\
\hat{d}^{\dagger} \hat{d}= & \nu^{2} \hat{a}^{\dagger} \hat{a}+\mu^{2} \hat{b}^{\dagger} \hat{b}-\mu \nu\left(\hat{a}^{\dagger} \hat{b}+\hat{b}^{\dagger} \hat{a}\right) \\
\Rightarrow \quad \omega_{c} \hat{c}^{\dagger} \hat{c}+\omega_{d} \hat{d}^{\dagger} \hat{d}= & \left(\mu^{2} \omega_{c}+\nu^{2} \omega_{d}\right) \hat{a}^{\dagger} \hat{a}+\left(\nu^{2} \omega_{c}+\mu^{2} \omega_{d}\right) \hat{b}^{\dagger} \hat{b} \\
& +\mu \nu\left(\omega_{c}-\omega_{d}\right)\left(\hat{a}^{\dagger} \hat{b}+\hat{b}^{\dagger} \hat{a}\right) \tag{18}
\end{align*}
$$

To get the correct form for the Hamiltonian, define $\omega_{c}, \omega_{d}, \mu$ and ν so that the following equations are satisfied

$$
\begin{array}{rrl}
\text { I } & \mu^{2}+\nu^{2} & =1 \\
\text { II } & \mu^{2} \omega_{c}+\nu^{2} \omega_{d} & =\omega \\
\text { III } & \nu^{2} \omega_{c}+\mu^{2} \omega_{d} & =\omega \\
\text { IV } & \mu \nu\left(\omega_{c}-\omega_{d}\right) & =\lambda \tag{19}
\end{array}
$$

From I, II and III follows

$$
\begin{align*}
\operatorname{IIb} & \frac{1}{2}\left(\omega_{c}+\omega_{d}\right)
\end{align*}=\omega
$$

Since $\omega_{c} \neq \omega_{d}$ from IV, we have $\mu^{2}=\nu^{2}=1 / 2$, and therefore (by convenient choice of sign factors) $\mu=\nu=1 / \sqrt{2}$. Inserted in IV this gives

$$
\begin{equation*}
\operatorname{IVb} \quad \frac{1}{2}\left(\omega_{c}-\omega_{d}\right)=\lambda \tag{21}
\end{equation*}
$$

which together with IIb gives

$$
\begin{equation*}
\omega_{c}=\omega+\lambda, \quad \omega_{d}=\omega-\lambda \tag{22}
\end{equation*}
$$

Commutation relations

$$
\begin{align*}
{\left[\hat{c}, \hat{c}^{\dagger}\right] } & =\mu^{2}\left[\hat{a}, \hat{a}^{\dagger}\right]+\nu^{2}\left[\hat{b}, \hat{b}^{\dagger}\right]=\left(\mu^{2}+\nu^{2}\right) \mathbb{1}=\mathbb{1} \\
{\left[\hat{c}, \hat{d}^{\dagger}\right] } & =-\mu \nu\left(\left[\hat{a}, \hat{a}^{\dagger}\right]-\left[\hat{b}, \hat{b}^{\dagger}\right]\right)=0 \tag{23}
\end{align*}
$$

Similar evaluations of other commutators show that the two sets of ladder operators satify the standard commutation rules for two independent harmonic oscillators.
b) Time evolution of a coherent state

$$
\begin{align*}
|\psi(t)\rangle & =\hat{\mathcal{U}}(t)|\psi(0)\rangle, \quad \hat{\mathcal{U}}(t)=\exp \left[-i\left(\omega_{c} \hat{c}^{\dagger} \hat{c}+\omega_{d} \hat{d}^{\dagger} \hat{d}+\omega \mathbb{1}\right)\right] \\
\Rightarrow \quad \hat{c}|\psi(t)\rangle & =\hat{\mathcal{U}}(t) \hat{\mathcal{U}}(t)^{-1} \hat{c} \hat{\mathcal{U}}(t)|\psi(0)\rangle \\
& =\hat{\mathcal{U}}(t) e^{i \omega_{c} t \hat{c}^{\dagger} \hat{c}} \hat{c} e^{-i \omega_{c} t \hat{c}^{\dagger} \hat{c}}|\psi(0)\rangle \\
& =e^{-i \omega_{c} t} \hat{\mathcal{U}}(t) \hat{c}|\psi(0)\rangle \\
& =e^{-i \omega_{c} t} z_{c 0}|\psi(0)\rangle \tag{24}
\end{align*}
$$

$|\psi(t)\rangle$ is thus a coherent state of the c-oscillator with eigenvalue $z_{c}(t)=e^{-i \omega_{c} t} z_{c 0}$. Simlar result is valid for the d - oscillator with $z_{d}(t)=e^{-i \omega_{d} t} z_{d 0}$.
c) Since all the operators $\hat{a}, \hat{b}, \hat{c}$, and \hat{d} commute, they have a common set of eigenvalues. This implies that a state which is a coherent state of \hat{c}, and \hat{d} will also be a coherent state of \hat{a} and \hat{b}. As follows from a) we have

$$
\begin{equation*}
\hat{a}=\frac{1}{\sqrt{2}}(\hat{c}-\hat{d}), \quad \hat{b}=\frac{1}{\sqrt{2}}(\hat{c}+\hat{d}) \tag{25}
\end{equation*}
$$

The corresponding relations between the eigenvalues are

$$
\begin{align*}
z_{a}(t) & =\frac{1}{\sqrt{2}}\left(z_{c}(t)-z_{d}(t)\right) \\
& =\frac{1}{\sqrt{2}}\left(e^{-i \omega_{c} t} z_{c 0}-e^{-i \omega_{d} t} z_{d 0}\right) \\
& =\frac{1}{2} e^{-i \omega t}\left(e^{-i \lambda t}\left(z_{a 0}+z_{b 0}\right)+e^{i \lambda t}\left(z_{a 0}-z_{b 0}\right)\right) \\
& =\frac{1}{2} e^{-i \omega t}\left(\cos (\lambda t) z_{a 0}-i \sin (\lambda t) z_{b 0}\right) \tag{26}
\end{align*}
$$

and similarly

$$
\begin{align*}
z_{b}(t) & =\frac{1}{2} e^{-i \omega t}\left(-e^{-i \lambda t}\left(z_{a 0}+z_{b 0}\right)+e^{i \lambda t}\left(z_{a 0}-z_{b 0}\right)\right) \\
& =\frac{1}{2} e^{-i \omega t}\left(i \sin (\lambda t) z_{a 0}+\cos (\lambda t) z_{b 0}\right) \tag{27}
\end{align*}
$$

PROBLEM 3

a) Time derivatives of matrix elements

$$
\begin{align*}
\text { I } & \dot{p}_{e} & =\langle e| \frac{d \hat{\rho}}{d t}|e\rangle=-\gamma p_{e}+\gamma^{\prime} p_{g} \\
\text { II } & \dot{p}_{g} & =\langle g| \frac{d \hat{\rho}}{d t}|g\rangle=-\gamma^{\prime} p_{g}+\gamma p_{e} \\
\text { III } & \dot{b} & =\langle e| \frac{d \hat{\rho}}{d t}|g\rangle=\left[\frac{i}{\hbar} \Delta E-\frac{1}{2}\left(\gamma+\gamma^{\prime}\right)\right] b
\end{align*}
$$

From I and II follows $\frac{d}{d t}\left(p_{e}+p_{g}=0\right)$, the sum of occupation probabilities is constant.
b) Conditions satisfied by the density operator

$$
\begin{align*}
\text { 1) } & \hat{\rho} \\
\text { 2) } & =\hat{\rho}^{\dagger} \\
3) & \geq 0 \tag{29}\\
\text { 3r } \hat{\rho} & =1
\end{align*}
$$

1) implies that p_{e} and p_{g} are real, which is consistent with the interpretation of these as probabilities. 3) gives the normalization $\left.p_{e}+p_{g}=1.2\right)$ means that the eigenvalues of $\hat{\rho}$ are non-negative. To see the implication of this we find the eigenvalues from the secular equation

$$
\begin{align*}
& \left|\begin{array}{cc}
p_{e}-\lambda & b \\
b^{*} & p_{g}-\lambda
\end{array}\right|=0 \\
\Rightarrow & \lambda^{2}-\lambda+p_{e} p_{g}-|b|^{2}=0 \\
\Rightarrow & \lambda_{ \pm}=\frac{1}{2}\left(1 \pm \sqrt{1+4\left(|b|^{2}-p_{e} p_{g}\right)}\right. \tag{30}
\end{align*}
$$

Positivity of λ_{-}then requires $|b|^{2} \leq p_{e} p_{g}$.
c) At thermal equilibrium we have $\dot{p}_{e}=\dot{p}_{g}=\dot{b}=0$. I then implies

$$
\begin{equation*}
\gamma p_{e}=\gamma^{\prime} p_{g} \quad \Rightarrow \quad \frac{p_{e}}{p_{g}}=\frac{\gamma^{\prime}}{\gamma}=e^{-\Delta E / k T} \tag{31}
\end{equation*}
$$

Using $p_{g}=1-p_{e}$ we find

$$
\begin{align*}
& p_{e}=\frac{\gamma^{\prime} / \gamma}{1+\gamma^{\prime} / \gamma}=\frac{1}{1+e^{\Delta E / k T}} \\
& p_{g}=\frac{1}{1+\gamma^{\prime} / \gamma}=\frac{1}{1+e^{-\Delta E / k T}} \tag{32}
\end{align*}
$$

From III follows $\dot{b}=0 \Rightarrow b=0$.
d) From the initial values $p_{e}(0)=1, p_{g}(0)=0$, and the constraint on $|b|^{2}$ follows

$$
\begin{equation*}
|b(0)|^{2} \leq p_{e}(0) p_{g}(0)=0 \quad \Rightarrow \quad b(0)=0 \tag{33}
\end{equation*}
$$

We apply in the following the general formula

$$
\begin{equation*}
\dot{x}=a x \quad \Rightarrow \quad x(t)=e^{a t} x(0) \tag{34}
\end{equation*}
$$

For b this means

$$
\begin{equation*}
b(t)=e^{-\frac{i}{b} \Delta E-\frac{1}{2}\left(\gamma+\gamma^{\prime}\right) t} b(0)=0 \tag{35}
\end{equation*}
$$

With $p_{e}=1-p_{g}$ eq. II gives for p_{g}

$$
\begin{equation*}
\dot{p}_{g}=-\left(\gamma+\gamma^{\prime}\right) p_{g}+\gamma=-\left(\gamma+\gamma^{\prime}\right)\left(p_{g}-\frac{1}{1+\gamma^{\prime} / \gamma}\right) \tag{36}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{d}{d t}\left(p_{g}-\frac{1}{1+\gamma^{\prime} / \gamma}\right)=-\left(\gamma+\gamma^{\prime}\right) p_{g}+\gamma=-\left(\gamma+\gamma^{\prime}\right)\left(p_{g}-\frac{1}{1+\gamma^{\prime} / \gamma}\right) \tag{37}
\end{equation*}
$$

Integrating the equation gives

$$
\begin{equation*}
p_{g}(t)-\frac{1}{1+\gamma^{\prime} / \gamma}=e^{-\left(\gamma+\gamma^{\prime}\right) t}\left(p_{g}(0)-\frac{1}{1+\gamma^{\prime} / \gamma}\right) \tag{38}
\end{equation*}
$$

which with $p_{g}(0)=1$ is solved to

$$
\begin{equation*}
p_{g}(t)=\frac{1}{1+\gamma^{\prime} / \gamma}\left(1+\left(\gamma^{\prime} / \gamma\right) e^{-\left(\gamma+\gamma^{\prime}\right) t}\right) \tag{39}
\end{equation*}
$$

and for $p_{e}=1-p_{g}$ gives

$$
\begin{equation*}
p_{e}(t)=\frac{\gamma^{\prime} / \gamma}{1+\gamma^{\prime} / \gamma}\left(1+e^{-\left(\gamma+\gamma^{\prime}\right) t}\right) \tag{40}
\end{equation*}
$$

We note that the above expressions reproduce correctly, in the limit $t \rightarrow \infty$, the values for p_{e} and p_{g} at thermal equilibrium.

The limit $T \rightarrow 0$ gives $\gamma^{\prime} / \gamma \rightarrow 0$. This gives $p_{g}(t) \rightarrow 1$ and $p_{e}(t) \rightarrow 0$ consistent with the fact that the system remains in the ground state when $T=0$. In the limit $T \rightarrow \infty$ we have $\gamma^{\prime} / \gamma \rightarrow 1$, which gives

$$
\begin{align*}
& p_{g}(t) \rightarrow \frac{1}{2}\left(1+e^{-2 \gamma t}\right) \\
& p_{e}(t) \rightarrow \frac{1}{2}\left(1-e^{-2 \gamma t}\right) \tag{41}
\end{align*}
$$

In this case the time evolution gives $\lim _{t \rightarrow \infty} p_{e}=\lim _{t \rightarrow \infty} p_{g}=\frac{1}{2}$.

Fys 4110 exam 2017 Solutions.
Problem 1.
a)

$$
\begin{aligned}
& H=\frac{\hbar}{2} g \sigma_{z}^{A} \theta_{z}^{\beta}=\frac{\hbar}{2} g\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \\
& U=e^{-\frac{1}{\hbar} H t}=\left(\begin{array}{llll}
z^{*} & 0 & 0 \\
0 & z & 0 & 0 \\
0 & 0 & z & 0 \\
0 & 0 & 0 & z^{*}
\end{array}\right) \quad \text { where } z=e^{\frac{i g t}{2}} \\
& \quad|z|=1 .
\end{aligned}
$$

b) Alternation 1 (Bombe farce)

$$
\begin{aligned}
& |\psi(0)\rangle=\binom{a}{b} \otimes\binom{c}{a}=\left(\begin{array}{ll}
a & c \\
a & d \\
b & c \\
b & d
\end{array}\right) \\
& |\psi(t)\rangle=u|\psi(0)\rangle=\left(\begin{array}{l}
z^{*} a c \\
z a d \\
z b c \\
z b b d
\end{array}\right) \\
& \rho=|4\rangle\langle\psi|=\left(\begin{array}{cc}
z^{*} a c \\
z a d \\
z a b \\
z a b \\
z^{*} b d
\end{array}\right)\left(z a^{*} c^{*}, z^{*} a^{*} d^{*}, z^{*} b^{*} c^{*}, z b^{*} d^{*}\right) \\
& =\left(\begin{array}{cccc}
|a c|^{2} & z^{\alpha^{2}}|a|^{2} c d^{*} & z^{* 2} a b^{*}|a|^{2} & a b^{*} c d^{*} \\
z^{2}|a|^{2} c^{*} d & |a d|^{2} & a b^{*} c^{*} d & z^{2} a b^{*}|d|^{2} \\
z^{2} a^{*} b|c|^{2} & a^{*} b c d^{*} & |b c|^{2} & z^{2}|b|^{2} c d^{*} \\
a^{*} b c^{*} d & z^{* 2} a^{*} b|d|^{2} & z^{* 2^{*}|b|^{2} c^{*} d} & |b d|^{2}
\end{array}\right) \\
& S_{A}=\operatorname{Tr}_{B} \zeta=\left(\begin{array}{cc}
|a|^{2} & a b^{*}\left(z^{* 2}|c|^{2}+z^{2}|d|^{2}\right) \\
a^{*} b\left(z^{2}|c|^{2}+\left.z^{* 2}| | d\right|^{2}\right) & |b|^{2}
\end{array}\right) \\
& \rho_{B}=T_{A} \rho=\left(\begin{array}{ll}
\mid a^{2} & c d^{*}\left(z^{* 2}|a|^{2}+z^{2} \mid b d^{2}\right) \\
c^{2} d\left(z^{2}|a|^{2}+z^{*}| | b^{2}\right. & |d|^{2}
\end{array}\right)
\end{aligned}
$$

Attanetive 2 (More sophisticated, but not really simpler...)
With $z=x+i y$ wee finch

$$
\begin{aligned}
& U=x 4^{A} \cdot 1^{8}-i y o_{z}^{A} c_{z}^{B} \\
& \rho(t)=|\psi(t)\rangle\langle\psi(t)|=\underbrace{U|\psi(0)\rangle(\psi(\theta) \mid}_{\rho(0)=f^{*}(0) \mid \rho^{\beta}(0)} u^{t}
\end{aligned}
$$

Let $\rho^{t}(0)=\frac{1}{2}(1+\overrightarrow{4} \cdot \vec{a}) \quad g^{(}(0)=\frac{1}{2}(1+\vec{u} \cdot \vec{\sigma})$

$$
\begin{aligned}
& \rho(t)=\left(x 1^{A} \cdot 1^{B}-i y \sigma_{z}^{A} \sigma_{z}^{B}\right) f^{A}(0) \rho_{\rho}^{B}(0)\left(x 1^{A} 1^{A}+i g \sigma_{z}^{A} \sigma_{z}^{B}\right) \\
& =x^{2} \rho(0) \operatorname{ag} \rho(0)+y^{2} \sigma_{z}^{A} \otimes \theta_{z}^{B} \rho(0) \in \rho^{B}(0) \sigma_{z}^{A} \sigma_{\rho}^{S} \\
& +i x y\left[s^{A}(0) \otimes s^{B}(0) \sigma_{z}^{A} \otimes_{z}^{\beta}=\sigma_{z}^{A} \otimes \sigma_{z}^{B} s^{A}(0) \in S^{B}(0)\right] \\
& =x^{2} g^{A}(0) \otimes g^{B}(0)+y^{2} \sigma_{z}^{A} g^{A}(0) \sigma_{z}^{A} \otimes \sigma_{z}^{B} s^{B}(0) \sigma_{z}^{B} \\
& \text { tixy[S } \left.(0) \sigma_{z}^{A} \otimes \rho^{B}(0) \sigma_{z}^{B}-\sigma_{z}^{*} \rho^{*}(0) \otimes \sigma_{z}^{B} \rho^{B}(0)\right]
\end{aligned}
$$

Wee have

$$
\begin{aligned}
& \operatorname{Tr} \rho^{A}(0)=1 \\
& \operatorname{Tr} \sigma_{z}^{A} \rho^{A}(0) \sigma_{z}^{A}=\operatorname{Tr} \operatorname{Tr}_{z}^{A}(1+\vec{m} \cdot \vec{\sigma}) \sigma_{z}^{A}=1 \\
& \operatorname{Tr} g^{A}(0) \sigma_{z}^{A}=\frac{1}{2} \operatorname{Tr}\left(\dot{\sigma}_{z}^{A}+\vec{m} \cdot \vec{\sigma} \sigma_{z}^{A}\right)=m_{z}=\operatorname{Tr} \sigma_{z}^{A} g^{A}(0)
\end{aligned}
$$

and similar for system B

$$
\begin{aligned}
& \Rightarrow \rho^{A}(y)= J_{r_{B}} g= \\
& x^{2} \rho^{A}(0)+y^{2} \sigma_{z}^{A} \rho^{A}(0) \sigma_{z}^{A}+i x y\left[s_{A}(t), \sigma_{z}^{A}\right] \\
&=\frac{1}{2}\left[1+\left(m_{x} \cos g t-m_{y} n_{z} \sin g t\right) \sigma_{x}^{A}\right. \\
&\left.+\left(m_{y} \cos g t+m_{x} n_{z} \sin g t\right) \sigma_{y}^{A}+m_{z} \sigma_{z}^{A}\right] \\
& \rho^{B}(t)=\frac{1}{2}\left[1+\left(n_{x} \cos g t-n_{y} m_{z} \sin g t\right) \sigma_{x}^{B}\right. \\
&\left.+\left(n_{y} \cos g t+m_{x} m_{s} \sin g t\right) \sigma_{y}^{B}+u_{z} \sigma_{z}^{A}\right]
\end{aligned}
$$

${ }^{〔}$ Alternative 1
Using $z^{2}=e^{i g t}=\cos g t+i \operatorname{sing} t \quad$ and $a=b=\frac{1}{\sqrt{2}}$:

$$
\left.\begin{array}{rl}
\rho^{A} & =\frac{1}{2}\left(\begin{array}{c}
1 \\
c \cdot c \\
c \cdot c
\end{array} \frac{\left(|c|^{2}+\left|d^{2}\right|\right.}{1}\right)-i \operatorname{singt}\left(\frac{\left(\left.c\right|^{2}-|d|^{2}\right)}{m_{z}}\right.
\end{array}\right)
$$

Alternation?

$$
\begin{aligned}
g^{A}(0) & =\binom{a}{b}\left(a^{*} b^{*}\right)=\frac{1}{2}(1)(11)=\frac{1}{2}(11)=\frac{1}{2}\left(1+\sigma_{x}\right) \\
& \Rightarrow m_{x}=1, m_{y}=m_{z}=0 \\
s^{A}(t) & =\frac{1}{2}\left(1+\cos g t \sigma_{x}^{A}+n_{z} \sin g t \sigma_{g}^{A}\right)
\end{aligned}
$$

d) Maximal entanglement when the Bloch-mector is shortest $\Rightarrow g t=\frac{\pi}{2} \quad \cos g t=0 \quad \sin g t=1$.

$$
s^{A}(t)=\frac{1}{2}\left(1+n_{z} \sigma_{y}^{A}\right)=\frac{1}{2}\left(\begin{array}{cc}
1 & -i n_{z} \\
i n_{z} & 1
\end{array}\right)
$$

Eigenvalues: $\quad\left(\frac{1}{2}-x\right)^{2}-\left(\frac{n_{2}}{2}\right)^{2}=0 \quad \Rightarrow \lambda_{ \pm}=\frac{1}{2}\left(1 \pm u_{z}\right)$

$$
\begin{aligned}
S_{\max } & =-\frac{1+u_{2}}{2} \ln \frac{1+u_{z}}{2}-\frac{1-u_{z}}{2} \ln \frac{1-u_{z}}{2} \\
& =\ln 2-\frac{1}{2}\left[\left(1+u_{z}\right) \ln \left(1+u_{z}\right)+\left(1-u_{z}\right) \ln \left(1-u_{2}\right)\right]=\left\{\begin{array}{cc}
0 & n_{z}= \pm 1 \\
\ln 2 & u_{z}=0
\end{array}\right.
\end{aligned}
$$

Problem 2

$$
\begin{aligned}
& \text { a) } S(J)=e^{-\frac{1}{2}\left(3 a^{2}-3^{*} a^{t^{2}}\right)} \quad B=\frac{1}{2}\left(3 a^{2}-J^{*} a^{+2}\right) \\
& B^{+}=-8 \\
& S^{+} a S=e^{B} a e^{-B}=a+[B, a]+\frac{1}{2}[B,[B, a]]+\ldots \\
& {[B, a]=-\frac{1}{2} 3^{*}\left[a^{+2}, a\right]=-\frac{1}{2} 3^{*}\left(a^{+}\left[a^{+}, a\right]+\left[a^{+}, a\right] a^{+}\right)=3^{*} a^{t}} \\
& {\left[B, a^{+}\right]=\frac{1}{2} 3\left[a^{2}, a^{+}\right]=\frac{1}{2} 3\left(a\left[a, a^{+}\right]+\left[a, a^{+}\right] a\right)=3 a} \\
& S^{t} a S=a+3^{*} a^{+}+\frac{1}{2} 3^{*} 3 a+\frac{1}{3}!J^{* 2} b^{+}+\frac{1}{4!} 3^{*} 3^{2} a+\cdots \\
& =\left[1+\frac{1}{3}!|\zeta|^{2}+\frac{1}{4}!|\xi|+\ldots\right] a+\left[3^{*}+\frac{1}{3}!\xi^{4} 3+\frac{1}{5}!3^{3^{3} \xi^{2}}+\ldots\right] a^{+} \\
& =\left[1+\frac{1}{2} b r^{2}+\frac{1}{4!} r^{4}+\ldots\right] a+e^{-i \phi}\left[r+\frac{1}{3}!r^{3}+\frac{1}{5}!r^{5}+\ldots\right] a^{+} \\
& =\cosh r \cdot a+e^{-i \phi} \sin h r a^{t} \\
& s^{t} a^{t} s=\cosh r a^{t}+e^{i \phi} \sinh r a
\end{aligned}
$$

b)

$$
\Delta x^{2}=\left\langle s q_{s}\right| x^{2}\left|s s_{s}\right\rangle=\left\langle 0 \mid s^{+} \times s s^{+} \times s 10\right\rangle
$$

$$
=\frac{\frac{\hbar}{2}}{2 m \cos }\left(\cosh r+e^{0 \phi \sinh r}\right)\left(\cosh r+e^{-i \phi} \sinh r\right)
$$

$$
=\frac{\hbar}{2 m m r}[\underbrace{\cosh ^{2} r+\sinh ^{2} r}_{\cosh 2 r}+\underbrace{\cosh r \sinh r}_{\frac{1}{2} \sinh 2 r}(\underbrace{\left.e^{i \phi}+e^{-i \phi}\right)}_{2 \cos \phi})]
$$

$$
=\frac{\hbar}{2 m \omega}(\cosh 2 r+\sinh 2 r \cos \phi)
$$

$$
\begin{aligned}
\Delta p^{2} & =\left\langle s q_{s}\right| p^{2}\left|s q_{3}\right\rangle=\langle 0| s t p s s t p s|0\rangle \\
& =\frac{\hbar \operatorname{h\omega }}{2}\left(\cosh r-e^{i \phi} \sinh r\right)\left(\cosh r-e^{-i \phi} \sinh r\right) \\
& =\frac{\operatorname{tin} \omega}{2}\left[\cosh ^{2} r+\sinh r-\cosh r \sinh r\left(e^{i \phi}+e^{-i \phi}\right)\right] \\
& =\frac{\hbar \operatorname{mon}}{2}(\cosh 2 r-\sinh 2 r \cos \phi)
\end{aligned}
$$

$$
\begin{aligned}
& \left\langle s q_{3}\right| x\left|q_{q_{3}}\right\rangle=\langle 0| s^{t} \times s|0\rangle=\sqrt{\frac{5}{2 m i c t}}\langle 0| s^{+}\left(a^{+}+a\right) s|0\rangle \\
& =\sqrt{\frac{\pi}{2 m \omega}}\left\langle 01\left(\text { (osh } r+e^{-i \phi} \sinh r\right) n t+\left(\cosh r+e^{i q} \sinh r\right) a \mid 0\right\rangle=0 \\
& \left\langle q_{s}\right| p\left|s q_{s}\right\rangle=\langle 0| s^{+} p s(0\rangle=i \sqrt{\frac{t_{m i n}}{2}}\langle 0| s^{+}\left(a^{+}-a|s| 0\right\rangle \\
& =i \sqrt{\frac{\sqrt{m b o}}{2}}<0\left(\cosh r-e^{-i \phi} \sin h r\right) a^{t}-\left(\cosh r-\xi^{i \phi} \sinh r\right) a|0\rangle=0
\end{aligned}
$$

c)

$$
\begin{aligned}
\Delta x \Delta p & =\frac{\hbar}{2} \sqrt{\cosh ^{2} r-\sinh ^{2} r \cos ^{2} \phi} \\
& =\frac{\pi}{2} \sqrt{\cosh ^{2} r-\sinh ^{2} r\left(1-\sin ^{2} \phi\right)} \\
& =\frac{\pi}{2} \sqrt{1+\sinh ^{2} r \sin ^{2} \phi}
\end{aligned}
$$

Minimal mencortainly: $\quad \Delta x \Delta p=\frac{1}{2}$

$$
\Rightarrow \sin \phi=0 \quad \phi \quad \phi=n \pi
$$

d) Far $\phi=n \bar{n}:$

$$
\begin{aligned}
& \Delta x=\sqrt{\frac{\hbar}{2 m}} \sqrt{\cosh 2 r+(-1)^{n} \sinh 2 r}=\sqrt{\frac{\hbar}{2 m \omega}} e^{(-1)^{n} r} \\
& \Delta p=\sqrt{\frac{\hbar m \omega}{2} \sqrt{\cosh 2 r-(-1)^{n} \sinh 2 r}=\sqrt{\frac{\hbar m \omega}{2}} e^{-(-1)^{n} r}}
\end{aligned}
$$

Fer n even Δx increases by a pactor e^{r}
Δp derereses by a fuetur e^{r}
For h odd Δx decveases and Δp checrates.
Spread of wrumefuctivn in planse sperce (Vregher function)

e) We guess that for other 中 then wave tanction is sfacezel in a dimetton ust parallel to
 the axres. Thus we woust to de time "rotatect" operatues x_{ϕ} aurel $p p_{p}$. For this to be nacahily foll we intadnce coorchiwates with same dimen sion

$$
\begin{aligned}
& \xi=x \sqrt{m \omega}=\sqrt{\frac{\hbar}{2}}\left(a^{+}+a\right) \\
& \pi=\frac{D}{\sqrt{m \omega}}=i \sqrt{\frac{\hbar}{2}}\left(a^{+}-a\right)
\end{aligned}
$$

Coordinates rotated by angh α :

$$
\begin{aligned}
& \xi_{\alpha}=\cos \alpha \xi-\sin \alpha \pi \\
& \pi_{\alpha}=\sin \alpha \xi+\cos \alpha \pi
\end{aligned}
$$

From b): $\left\langle s q_{3}\right| \xi^{2}\left|s_{\xi}\right\rangle=\frac{\hbar}{2}[\cosh 2 r+\sinh 2 r \cos \phi]$

$$
\begin{gathered}
\left\langle s_{q_{3}}\right| \pi^{2}\left|s_{q_{3}}\right\rangle=\frac{H}{2}[\cosh 2 r-\sinh 2 r \cos \phi] \\
\left\langle s_{q_{3}}\right| \xi_{k}\left|s_{q_{3}}\right\rangle=\left\langle s_{q_{3}}\right| \pi_{\alpha}\left|s_{q_{s}}\right\rangle=0 \\
\left\langle s_{q_{3}}\right| \xi_{\alpha}\left|s_{q_{s}}\right\rangle=\left\langle s_{q_{s}}\right| \cos ^{2} \alpha \xi^{2}-\cos \alpha \sin \alpha\left(3 \pi+\pi \xi^{3}\right)+\sin ^{2} \alpha \pi^{2}\left|s_{f z}\right\rangle
\end{gathered}
$$

We nood to tind

$$
\begin{aligned}
& \left\langle S_{q_{3}}\right| \xi \pi\left|S_{q_{3}}\right\rangle=\langle 0| s^{+} \xi S S^{+} \pi S|0\rangle \\
& =i \frac{\hbar}{2}\left(\cosh r+e^{i \neq \sinh r}\right)\left(\cosh r-e^{-i \phi} \sinh r\right) \\
& \quad=i \frac{\hbar}{2}[\underbrace{\cosh ^{2} r-\sinh ^{2} r}_{1}+\underbrace{\cosh \sinh r}_{\frac{1}{2} \sinh 2 r}\left(\frac{\left.e^{i \phi}-e^{-i \phi}\right)}{2 i \sin \phi}\right] \\
& \left.\left.\quad=\frac{\hbar}{2}\left(i^{*}-\sinh 2 r \sin \phi\right)=\left\langle s_{3}\right| \pi \xi \right\rvert\, q_{3}\right)^{*}
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow \Delta \xi_{o}^{2}= & \frac{\hbar}{2}\left[\cos ^{2} \alpha(\cosh 2 r+\sinh 2 r \cos \phi)+\sinh ^{2} k(\cosh 2 r-\sin h 2 r \cos \phi)\right. \\
& +\cos \alpha \sin \alpha \sinh 2 r \sin \phi] \\
= & \frac{\hbar}{2}[\cosh 2 r+\sinh 2 r \cos (2 \alpha-\phi)]
\end{aligned}
$$

Simildarly we find

$$
\Delta \pi_{\alpha}^{2}=\frac{\pi}{2}\left[\cos 2_{r}-\sinh 2 r \cos (2 \alpha-\phi)\right]
$$

We reproduce the mimimal uncertainfy exprasitions fron d) if we choose $2 \alpha-\phi=0 \Rightarrow \alpha=\phi / 2$
We should check thut the commentator is vight.

$$
\begin{aligned}
{\left[\xi, \pi_{\alpha}\right] } & =[\cos \alpha \xi-\sin \alpha \pi, \sin \alpha \xi+\cos \alpha \pi] \\
& =\cos ^{2} \alpha[\xi, \pi]-\sin ^{2} \alpha[\pi, \xi]=[\xi, \pi]
\end{aligned}
$$

FMS 4110 exam 2018 Solutions.
Problem 1
a) A pare state is the most accurate clescription possible of a quantum system. It is represented by a state vector (ψ) in Hilbert space. A mixed stat is used when we do not know the exact quantum state, but only probabilities p_{i} for a Set of possible states $\left|\psi_{i}\right\rangle$. (t is representral by a density matrix $\rho=\sum_{i} p_{i}\left|\psi_{i}\right\rangle \psi_{i} \mid$. Mixed states also occur for composite systems in pure states. The reduced densityunatix of one component is thess a unixecl state when there is entanglement between the component and the rest of the system.
b) We measure the spin in the x-direction.
$\mid \rightarrow>$ is an eigenstite of σ_{x} with eigenvalue +1 , which means that we will measure spin up in x for all particles in ensemble A. Far ensemble B we will measure spin up and spin dolor randomly with equal probabilities.

G We consider the density matures:

$$
\begin{aligned}
\rho_{B}= & \frac{1}{2}|\uparrow\rangle\langle\uparrow|+\frac{1}{2}|b\rangle\langle b| \\
\rho_{C}= & \left.\frac{1}{2}|\rightarrow\rangle\langle->|+\frac{1}{2} \right\rvert\, c>\langle-1 \\
= & \frac{1}{4}(|\uparrow\rangle+|\downarrow\rangle)(\langle\uparrow|+\langle\downarrow|)+\frac{1}{4}(|\uparrow\rangle-|\downarrow\rangle)(\langle\uparrow|-\langle\downarrow|) \\
= & \frac{1}{4}(\mid \uparrow \nu\langle\uparrow|+|\uparrow\rangle\langle 山|+|\downarrow\rangle\langle\uparrow|+|\downarrow\rangle\langle\downarrow| \\
& +|\uparrow\rangle\langle\uparrow|-|\uparrow\rangle\langle\downarrow|-|\downarrow\rangle\langle\uparrow|+|\downarrow\rangle\langle\downarrow|) \\
= & \frac{1}{2}(\uparrow\rangle\langle\uparrow|+\frac{1}{2}|\downarrow\rangle\langle\downarrow|=\rho_{B}
\end{aligned}
$$

Since the density matrices are the same we will get the same statistics for all possible measurements, and we can not distinguish the ensembles.
d)

$$
|\psi\rangle=\frac{1}{\sqrt{2}}(|\uparrow \downarrow\rangle-|\psi \uparrow\rangle)
$$

It is clear thant if we uneager the first particle along the z-axis we have equal probabilities of measuring up or down, and the second particle will collapse ot the opposite stater, generating ensemble B. Ensemble C is generated by measuring the first partich in the x-direction. To see this we recurnite 14\rangle in terms of the states $1 \rightarrow\rangle$ and $|\leftrightarrow\rangle$

We han $|\uparrow\rangle=\frac{1}{\sqrt{2}}(|\rightarrow\rangle+|\leftrightarrow\rangle)$

$$
\begin{aligned}
&\mid \downarrow)=\frac{1}{\sqrt{2}}(|\rightarrow\rangle-|<\rangle) \\
&|\psi\rangle=\left.\frac{1}{2 \sqrt{2}}(|\rightarrow+| \leftarrow\rangle\right) \otimes(|\rightarrow\rangle-|\infty\rangle)-\frac{1}{2 \sqrt{2}}(|\rightarrow\rangle-|\leqslant\rangle)(|\rightarrow\rangle+|\leqslant\rangle) \\
&= \frac{1}{2 \sqrt{2}}(|\rightarrow \rightarrow\rangle-|\rightarrow \infty\rangle+|\leftrightarrow \rightarrow\rangle-\mid \leftrightarrow \infty \\
&-|\rightarrow \rightarrow\rangle-|\rightarrow \infty\rangle+|-\rightarrow\rangle+|-\infty\rangle) \\
&=\left.\frac{1}{\sqrt{2}}(|\leftrightarrow \rightarrow\rangle-1 \rightarrow \infty\rangle\right)
\end{aligned}
$$

${ }^{e}$) Consider the case where person 1 measures spin along the z-axi sand therefore prepares ensemble B. If person 2 also measures along the z-axis, the oufromes of the taro measurements will always be perfectly auticorrelatad. If airhead person 1 measures x-spin ancl prepares ensemble C while person 2 still meas cover z-spian, the results will be uncorrelated. Nothing changes if parson 1 measures after parson 2.

Problem2.
a)

$$
\begin{aligned}
& H=\hbar \omega\left(a^{t} a+b^{t} b\right)+\hbar \lambda\left(a^{t} b+b^{t} a\right) \\
& H=\hbar \omega_{c} c^{t} c+\hbar \omega_{d} d^{t} d \\
& =\hbar \omega_{c}\left(\mu a^{+}+v b^{+}\right)(\mu a+v b)+\hbar \omega_{d}\left(-v a^{+}+\mu_{d} b^{*}\right)(-v a+\mu b) \\
& =\hbar \omega_{c}\left(\mu^{2} a^{t} a+\mu \nu\left(a^{t} b+b^{t} a\right)+v^{2} b^{t} b\right) \\
& +\hbar \omega_{d}\left(v^{2} a^{+} a-\mu v\left(a^{+} b+b^{t} a\right)+\mu^{2} b^{+} b\right) \\
& =\hbar\left(\omega_{c} \mu^{2}+\omega_{d} \nu^{2}\right) a^{+} a+\hbar\left(\omega_{c} \nu^{2}+\omega_{d} \mu^{2}\right) b^{+} b \\
& +\hbar\left(\omega_{c}-\omega_{d}\right) \mu v\left(a^{+} b+b^{+} a\right) \\
& \left.\begin{array}{rl}
\Rightarrow \omega_{c} \mu^{2}+\omega_{d} p^{2} & =\omega \\
\omega_{c} v^{2}+\omega_{c} \mu^{2} & =\omega
\end{array}\right] \mu^{2}=v^{2} \Rightarrow \mu=v=\frac{1}{\sqrt{2}} \\
& \omega_{c} v^{2}+\omega_{d} \mu^{2}=\omega \quad \mathrm{J} \Rightarrow \frac{1}{2}\left(\omega_{c}+\omega_{d}\right)=\omega \\
& \left(\omega_{c}-\omega_{d}\right) \mu \nu=\lambda \quad=\frac{1}{2}\left(\omega_{c}-\omega_{d}\right)=\lambda \\
& \Rightarrow \omega_{c}=\omega+\lambda \quad \omega_{d}=\omega-\lambda \\
& {\left[c, c^{+}\right]=\left[\mu a+\nu b, \mu a^{4}+\nu b^{+}\right]=\mu^{2}[\underbrace{\left[a, a^{+}\right]}_{1}+v^{2}[\underbrace{b, b^{+}}_{1}]=\mu^{2}+v^{2}=1} \\
& {\left[d, d^{+}\right]=\left[-\nu a+\mu b,-\nu a^{+}+\mu b^{+}\right]=v^{2}\left[a, a^{+}\right]+\mu^{2}\left[b, b^{*}\right]=1 .} \\
& {[c, d]=[\mu a+v b,-v a+\mu b]=0} \\
& {\left[c_{1} d^{t}\right]=\left[\mu a+v b,-v a^{*}+\mu b^{t}\right]=-\mu v\left[a, a^{t}\right]+\mu v\left[b, b^{t}\right]=0}
\end{aligned}
$$

$$
\begin{aligned}
& \left.\begin{array}{l}
c=\frac{1}{\sqrt{2}}(a+b) \\
d=\frac{1}{\sqrt{2}}(-a+b)
\end{array}\right\} \Rightarrow \begin{array}{l}
a=\frac{1}{\sqrt{2}}(c-d) \\
b=\frac{1}{\sqrt{2}}(c+d)
\end{array} \\
& |H(c)\rangle=\left|1_{a} 0_{b}\right\rangle=a^{+}|0\rangle=\frac{1}{\sqrt{2}}\left(c^{+}-d^{+}| | 0\right\rangle=\frac{1}{\sqrt{2}}\left(\left|1_{c} 0_{d}\right\rangle-\left|0_{c} 1_{d}\right\rangle\right) \\
& |\psi(t)\rangle=e^{-\frac{i}{\hbar} H t}|\psi(0)\rangle=-L e^{-i \omega_{c} t c^{c} c-i \omega_{d} t d t d}\left(\left|1_{c} 0_{d}\right\rangle-\left|0_{c} 1_{d}\right\rangle\right) \\
& =\frac{L}{\sqrt{2}}\left(e^{-i \omega_{c} t}\left|1_{c} 0_{d}\right\rangle-e^{-i \omega_{d} t}\left|o_{c} 1_{d}\right\rangle\right) \\
& =\frac{1}{2}\left[e^{-i \omega_{c} t}\left(a^{+}+b_{b}^{t}\right)|0\rangle-e^{-i \omega_{d} t}\left(-a^{t}+b_{b}^{t}\right)|0\rangle\right] \\
& =\frac{1}{2}[(\underbrace{e^{-i \omega_{c} t}+e^{-i \omega_{d} t}}_{A})\left|1_{a} 0_{b}\right\rangle+(\underbrace{e^{-i \omega_{c} t}-e^{-i \omega_{d} t}}_{B})\left|0_{a} 1_{b}\right\rangle] \\
& \left\langle N_{1}\right\rangle=\langle\psi(t)| a^{t} a|\psi(t)\rangle \\
& =\frac{1}{4}\left(e^{i \omega_{c} t}+e^{i \omega_{d} t}\right)\left(e^{-i \omega_{c} t}+e^{-i \omega_{d} t}\right) \\
& =\frac{1}{4}(2+\underbrace{\left.e^{-i\left(\omega_{c}-\omega_{d}\right) t}+e^{i\left(\omega_{c}-\omega_{d}\right) t}\right)}_{2 \cos \left(\omega_{c}-\omega_{d}\right) t=2 \cos 2 \lambda t} \\
& =\frac{1}{2}(1+\cos 2 \lambda t)=\cos ^{2} \lambda t \\
& \left\langle N_{B}\right\rangle=\langle\psi(t)| b+b|\psi(t)\rangle \\
& =\frac{1}{4}\left(e^{i \omega_{c} t}-e^{i \omega_{d} t}\right)\left(e^{-i \omega_{c} t}-e^{-i \omega_{d} t}\right) \\
& =\frac{1}{2}(1-\cos 2 \lambda t)=\sin ^{2} \lambda t
\end{aligned}
$$

Energy is oscillationg betweon the two oscillatios.
c)

$$
\begin{aligned}
\rho_{A} & =\operatorname{Tr}_{B}|\psi(t)\rangle\langle\psi(t)|=\frac{1}{4} T_{B}\left(A\left|1_{a}, 0_{b}\right\rangle+B\left|0_{a} 1_{b}\right\rangle\right)\left(A^{*}\left\langle I_{a} 0_{b}\right|+B^{*}\left\langle D_{a} 1_{b}\right|\right) \\
& =\frac{1}{4}\left(|A|^{2}\left|1_{a}\right\rangle\left\langle 1_{a},\right|+|B|^{2}\left|0_{a},\right\rangle<0_{a}, \mid\right) \\
& =\cos ^{2} \lambda t\left|1_{a}, \lambda<1_{a},\left|+\sin ^{2} \lambda t\right| 0_{a}, \lambda<0_{a}\right| \\
S & =-\cos ^{2} \lambda t \ln \cos ^{2} \lambda t-\sin ^{2} \lambda t \ln \sin ^{2} \lambda t
\end{aligned}
$$

Maximal value when $\cos ^{2} \lambda t=\sin ^{2} \lambda t=\frac{1}{2}$

$$
S_{\max }=-\frac{1}{2} \ln \frac{1}{2}-\frac{1}{2} \ln \frac{1}{2}=\ln 2
$$

$S=0 \quad$ when $\cos ^{2} \lambda t$ or $\sin ^{2} \lambda t=0$
$\Rightarrow \quad \lambda t=n \frac{\pi}{2} \quad n=0,1,2 \ldots$.
The system is then in state $\left(1, O_{b}\right)$ or $\left|O_{a} 1_{6}\right\rangle$.

Problem 3.
a) $H_{0}=\frac{1}{2} \hbar \omega_{0} \sigma_{z}$

$$
f=\left(\begin{array}{ll}
P_{c} & b \\
b & p_{g}
\end{array}\right)
$$

$$
\text { te }\rangle=\binom{1}{0}
$$

$$
\langle g\rangle=(i)
$$

$$
\begin{aligned}
\Rightarrow \dot{p}_{e} & =-\gamma p_{e} \\
\dot{p}_{g} & =\gamma p_{e} \\
\dot{b} & =-\left(\frac{\gamma}{2}+i \omega_{0}\right) b \\
\frac{d}{d t}\left(p_{e}+p_{g}\right) & =\dot{p}_{e}+\dot{p}_{g}=-\gamma p_{e}+\gamma p_{e}=0
\end{aligned}
$$

b)

$$
\begin{aligned}
& |\psi(t)\rangle=\frac{1}{\sqrt{2}}(|e\rangle+|g\rangle)=\frac{1}{\sqrt{2}}\binom{1}{1} \\
& g(0)=|\psi(0)\rangle\langle\psi(0)|=\frac{1}{2}\left(1 \left\lvert\,(1)(1)=\frac{1}{2}(1 \mid 1)\right.\right. \\
& \Rightarrow P_{e}(0)=P_{g}(0)=b(0)=\frac{1}{2} \\
& P_{e}(t)=e^{-\gamma t} P_{e}(0)=\frac{1}{2} e^{-\gamma t} \\
& P_{g}(t)=1-P_{e}(t)=1=\frac{1}{2} e^{-\gamma t}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d \rho}{d t}=-\frac{i}{\hbar}\left[H_{0, \rho} \rho\right]-\frac{r}{2}\left[\alpha^{+} \alpha \rho+\rho \alpha^{+} \alpha-2 \alpha \rho \alpha^{+}\right] \\
& \alpha=\lg) \text { cel }=(i)(10) \\
& =\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =-i \omega_{0}\left(\begin{array}{cc}
0 & b \\
-b^{*} & 0
\end{array}\right)-\frac{\gamma}{2}\left(\begin{array}{cc}
2 p_{e} & b \\
b^{x} & -2 p_{c}
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& b(t)=e^{-\left(\frac{y}{2}+i \omega_{0}\right) t} b(0)=\frac{1}{2} e^{-\left(\frac{y}{2}+i \omega_{0}\right) t} \\
& \rho=\frac{1}{2}(1+\vec{r} \cdot \vec{\sigma})_{\vec{r}=(x, y, z)}=\frac{1}{2}\left(\begin{array}{cc}
1+z & x=i y \\
x+i y & 1=z
\end{array}\right) \\
& \Rightarrow z=p_{e}-p_{g}=e^{-\gamma t}-1 \\
& x=2 \operatorname{Re} b=e^{-\frac{x}{2} t} \cos \omega_{0} t \\
& y=-2 \ln b=e^{-\frac{x}{2} t} \sin \omega_{0} t
\end{aligned}
$$

A spiral in the $x y$-plane starting on the surface of the Bloch sphere and decaying to the axis and a decay of the z-component to the ground state.
c)

$$
\begin{aligned}
& T(t)=e^{\frac{i}{2} \omega t o_{z}} \\
& |\psi\rangle=T|(\mid) \psi\rangle \\
& \rho^{\prime}=T S T^{H} \\
& \frac{d g^{\prime}}{d t}=\dot{T} \rho T^{+}+T \delta \dot{T}^{+}+T \dot{8} T^{+} \\
& =\frac{\frac{i}{2} \omega \sigma_{z} \rho^{\prime}-\frac{i}{2} \omega \rho^{\prime} \sigma_{z}+T\left\{-\frac{i}{\hbar}[A, \rho]-\frac{\gamma}{2}\left[\alpha^{+} \alpha \rho+\rho \alpha^{+} \alpha-2 \alpha \rho \alpha^{+}\right]\right] J^{+}}{\frac{i}{\hbar}\left[\frac{\hbar}{2} \omega \sigma_{z}, \rho^{\prime}\right]} \\
& T[H, g] T^{+}=T H \rho T^{+}-T \& H T^{+}=T H T^{+} g^{\prime}-g^{\prime} T H T^{+} \\
& T=e^{\frac{i}{2} \omega t \sigma_{z}}=\cos \frac{\omega t}{2}+i \sin \frac{\omega t}{2} \delta_{z} \\
& T H T^{+}=\frac{1}{2} \hbar \omega_{0} \sigma_{z}+\frac{1}{2} \hbar \omega_{1}\left(\cos \omega t T \sigma_{x} T^{+}+\sin \omega t T \sigma_{y} T^{+}\right)
\end{aligned}
$$

$$
\begin{aligned}
& T \sigma_{R} T^{t}=\left(\cos \frac{\omega t}{2}+i \sin \frac{\omega t}{2} \sigma_{z}\right) \sigma_{x}\left(\cos \frac{\omega t}{2}-i \sin \frac{\omega t}{2} \sigma\right) \\
& =\cos ^{2} \frac{\omega t}{2} \sigma_{x}+i \sin \frac{\omega t}{2} \cos \frac{\omega t}{2}[\underbrace{\left[\sigma_{z}, \sigma_{x}\right.}_{2 i \sigma_{y}}]+\sin ^{2} \frac{\omega t}{2} \underbrace{\sigma_{z} \sigma_{x} \sigma_{z}}_{-\sigma_{x}} \\
& =\cos \omega t \delta_{x}-\sin \omega t \delta_{y} \\
& T \sigma_{y} T^{t}=\left(\cos \frac{\omega t}{2}+i \sin \frac{\omega t}{2} \delta_{z}\right) \sigma_{y}\left(\cos \frac{\omega t}{2}-i \sin \frac{\omega t}{2} \delta_{z}\right) \\
& =\cos ^{2} \frac{\omega t}{2} \sigma_{y}+i \sin \frac{\omega t}{2} \cos \frac{\omega t}{2} \underbrace{\left[\delta_{z}, \sigma_{y}\right]}_{-2 i \delta_{x}}+\operatorname{sit}^{2} \frac{\omega t}{2} \underbrace{\delta_{z} \sigma_{y} \sigma_{z}}_{-\delta_{y}} \\
& =\cos \omega t \sigma_{y}+\sin \omega t \sigma_{x} \\
& T H T^{+}=\frac{1}{2} \operatorname{ta} \omega_{0} \sigma_{z}+\frac{1}{2} \omega_{1} \omega_{1}\left(\cos ^{2} \omega t \sigma_{x}-\cos \omega_{0} t \sin \omega t \sigma_{y}\right. \\
& +\cos \omega t \sin \omega t v_{y}+\sin ^{2} \operatorname{cit}^{t} \delta_{x} \text {) } \\
& =\frac{1}{2} t \omega_{0} \delta_{2}+\frac{1}{2} \hbar_{1} \omega_{x}
\end{aligned}
$$

$$
\begin{aligned}
& =(\cos \omega t-i \sin \omega t) \alpha=e^{-i \omega t} \alpha \\
& T x^{t+T^{+}}=e^{i \omega t} \alpha^{+} \\
& \Rightarrow \frac{d s^{\prime}}{d t}=-\frac{i}{\hbar}\left[H^{\prime}, s^{\prime}\right]-\frac{\gamma}{2}\left[x^{+} \alpha s^{\prime}+s^{\prime} x^{t} x-2 \alpha s^{\prime} \alpha^{t}\right] \\
& H^{\prime}=T H T+-\frac{1}{2} \hbar \omega \sigma_{z}=\frac{1}{2} h(\underbrace{\left.\omega_{0}-\omega\right)}_{\Delta} \delta_{z}+\frac{1}{2} \hbar \omega_{1} v_{x}
\end{aligned}
$$

d) Let $g^{\prime}=\left(\begin{array}{ll}\mathrm{pe}^{2} & b \\ b^{*} & p_{g}\end{array}\right)$

$$
\begin{aligned}
& {\left[\begin{array}{l}
\sigma_{x}, g^{\prime}
\end{array}\right]=\binom{0}{10}\left(\begin{array}{ll}
p e & b \\
b^{*} & p_{g}
\end{array}\right)-\left(\begin{array}{ll}
p_{t} b \\
b^{*} & p_{g}
\end{array}\right)\binom{0}{10}=\left(\begin{array}{ll}
b^{*}-b & p_{g}-p_{e} \\
p_{k}-p_{g} & b-b^{*}
\end{array}\right)} \\
& \frac{d f^{\prime}}{d t}=-i \Delta\left(\begin{array}{cc}
0 & b \\
-b^{*} & 0
\end{array}\right)-\frac{1}{2} \omega_{1}\left(\begin{array}{cc}
b^{*}-b & p_{j}-p_{e} \\
R_{e}-p_{g} & b-b^{*}
\end{array}\right)=\frac{x}{2}\left(\begin{array}{cc}
2 p_{e} & b \\
b^{*} & -2 p_{e}
\end{array}\right) \\
& \dot{p}_{e}=-\frac{i}{2} \omega_{1}\left(b^{*}-b\right)=\gamma R_{e} \\
& \dot{p} g=\frac{i}{2} w_{1}\left(b^{*}-b\right)+\gamma p_{c} \\
& \dot{b}=-i \Delta b-\frac{i}{2} \omega_{1}\left(p_{g}-p_{e}\right)-\frac{r}{2} b
\end{aligned}
$$

Stationary state: $\dot{p}_{e}=\dot{p}_{g}=\dot{b}=0$

$$
\begin{aligned}
& -\frac{i}{2} \omega_{1}\left(b^{2}-b\right)-\gamma p_{e}=0 \\
& -\Delta b-\frac{i}{2} \omega_{1}\left(p_{g}-p_{e}\right)-\frac{\gamma}{2} b=0 \\
& \Rightarrow b=\frac{\omega_{1}\left(p_{e}-\frac{1}{2}\right)}{\Delta-\frac{i \gamma}{2}} \quad b^{*}=\frac{\omega_{1}\left(p_{e}-\frac{1}{2}\right)}{\Delta+\frac{i r}{2}} \\
& p_{e}=-\frac{i \omega_{1}}{2 \gamma}\left(b^{*}-b\right)=\frac{\frac{1}{4} \omega_{1}^{2}}{\Delta^{2}+\frac{r^{2}}{4}+\frac{\omega_{1}^{2}}{2}} \\
& b=-\frac{\omega_{1}}{2} \frac{\Delta+\frac{i r}{2}}{\Delta^{2}+\frac{r^{2}}{4}+\frac{\omega_{1}^{2}}{2}}
\end{aligned}
$$

$\omega_{1} \ll \sqrt{s^{2}+\frac{r^{2}}{4}}: p_{e} \ll 1,|b| \ll 1$ Driving is weak and state is close to grounded state
$\omega_{1} \gg \sqrt{\Delta^{2}+\frac{x^{2}}{4}}: \quad P_{e} \approx \frac{1}{2} \quad b \approx 0$ Driving is strong and $P_{e}=P_{g}$. All relative phases hear the same probability and b b 0 .

Fys 4110, 2019 Solutions
Problem 1

$$
\begin{aligned}
& |\psi\rangle=\frac{1}{\sqrt{3}}(|\uparrow \downarrow \omega\rangle+|\downarrow \uparrow \downarrow\rangle+|\downarrow \downarrow \uparrow\rangle) \\
& \text { a) } \rho=|\psi\rangle\langle\psi|=\frac{1}{3}(|1 \omega \downarrow\rangle+|\omega \uparrow \downarrow\rangle+|\omega \downarrow\rangle)(\langle\uparrow \downarrow \downarrow|+\langle\omega \uparrow\rangle \mid+\langle\omega \uparrow|) \\
& \left.\rho_{A}=T_{B C} \rho=\sum_{i, N}=\uparrow, b, i j_{B}|f| i_{N}\right\rangle \\
& =\frac{1}{3}(|\uparrow\rangle\langle\uparrow|+2|\psi\rangle\langle\omega|) \\
& \left.\rho_{B}=\operatorname{Tr}_{A} \rho=\frac{1}{3}(|\omega \downarrow\rangle\langle\downarrow \downarrow|+|\uparrow|\rangle\langle\uparrow \downarrow|+|\uparrow \downarrow\rangle\langle\omega \uparrow|+\mid\langle\uparrow\rangle\langle\uparrow \downarrow|+\mid \downarrow T<\langle\uparrow|\right) \\
& S=-T_{r_{A}} s_{A} \ln \rho_{A}=-T_{B C} \rho_{B C} \ln \rho_{B C} \quad \text { Easiest to usee } \rho_{A} \\
& S=-\frac{1}{3} \ln \frac{1}{3}-\frac{2}{3} \ln \frac{2}{3}
\end{aligned}
$$

b) Measure $\uparrow:|\psi\rangle \rightarrow|\uparrow \downarrow\rangle\rangle \quad S_{B C}=0$

Measure $b: \quad|4\rangle \rightarrow \frac{1}{\sqrt{2}}(|\uparrow \downarrow\rangle+(6 \uparrow\rangle) \quad S_{B C}^{\prime}=\ln 2$
9) Ergenstates for $\sigma_{x}: \quad|\rightarrow\rangle=\frac{1}{\sqrt{2}}(|\uparrow\rangle+(| \rangle\rangle) \quad \sigma_{x}|\rightarrow\rangle=|->\rangle$

Ergenstates for $\left.\sigma_{x}: \quad|\omega\rangle=\frac{1}{\sqrt{2}}(1 \uparrow\rangle-|\omega\rangle\right) \quad \sigma_{x}|\omega\rangle=-|c\rangle$

$$
\begin{aligned}
& |\uparrow\rangle=\frac{1}{\sqrt{2}}(|\rightarrow\rangle+|-\rangle) \quad|b\rangle=\frac{1}{\sqrt{2}}(|\rightarrow\rangle-\mid\langle \rangle) \\
& \left.\left.|\uparrow\rangle=\frac{1}{\sqrt{6}}(|\rightarrow \omega\rangle+|\langle\mid \downarrow\rangle+| \rightarrow \uparrow \uparrow\rangle-|-\uparrow \downarrow\rangle+|-b\rangle\right\rangle-|-\downarrow \uparrow\rangle\right)
\end{aligned}
$$

Measume $\rightarrow: \quad|\psi\rangle \rightarrow\left|\rightarrow \frac{1}{\sqrt{3}}(|\downarrow j\rangle+|\uparrow \downarrow\rangle+|\downarrow 1\rangle)\right.$
Measure - : $\left.|4\rangle \rightarrow|-\rangle \frac{1}{\sqrt{3}}(|\omega 6\rangle-|\uparrow|\rangle-|61\rangle\right)$

For BC we have

In unativiz form $|1\rangle=\binom{1}{0} \quad|6\rangle=\binom{0}{1}$

$$
s_{B}=\frac{1}{3}\left(\begin{array}{ll}
1 & \pm 1 \\
\pm 1 & 2
\end{array}\right)
$$

Eigenvalues $\left|\begin{array}{cc}\frac{1}{3}-\lambda & \pm \frac{1}{3} \\ \pm \pm \frac{2}{3}-\lambda\end{array}\right|=\left(\lambda-\frac{1}{3}\right)\left(\lambda-\frac{2}{3}\right)-\frac{1}{9}=0$

$$
\Rightarrow \quad(3 \lambda-1)(3 \lambda-2)-1=9 \lambda^{2}-9 \lambda-1=0 \quad \Rightarrow \lambda_{2}=\frac{9 \pm \sqrt{81+36}}{18}=\frac{1 \pm \sqrt{13}}{2}
$$

Entanglement entropy: $\quad S=-\frac{1+\sqrt{13}}{2} \ln \frac{1+\sqrt{13}}{2}-\frac{1-\sqrt{13}}{2} \ln \frac{1-\sqrt{13}}{2}$

Problem 2.

$$
H=\frac{\pi}{2} \omega_{0} \sigma_{z}+\frac{\hbar}{2} A\left(\cos \omega t o_{y}+\sin \omega t o_{y}\right)
$$

a)

$$
\begin{aligned}
i \hbar \frac{d}{d t}|\psi\rangle & =H|\psi\rangle \quad\left|\psi^{\prime}\right\rangle=e^{i \frac{\omega t}{2} \sigma_{z}}|\psi\rangle \\
i \hbar \frac{d}{d t}|\psi\rangle & =i \hbar\left(i \frac{b 0}{2} \sigma_{z}\left|\psi^{\prime}\right\rangle+e^{i \frac{\omega}{2} t \sigma_{z}} \frac{d}{d t}|\psi\rangle\right) \\
& =(\underbrace{\left.-\frac{\hbar}{2} \omega \sigma_{z}+e^{i \frac{\omega t}{2} \sigma_{z}} H e^{-\frac{i \omega t}{2} \sigma_{z}}\right)\left|\psi^{\prime}\right\rangle}_{\psi^{\prime}}
\end{aligned}
$$

$$
\begin{aligned}
& e^{\frac{i \omega t}{2} \sigma_{z}} \sigma_{x} e^{-\frac{i \omega t}{2} \sigma_{z}}=\left(\cos \frac{\cot }{2} 1+i \sin \frac{\omega t}{2} \sigma_{z}\right) \sigma_{x}\left(\cos \frac{\cot }{2} 1-i \sin \frac{\omega t}{2} \sigma_{z}\right) \\
& =\cos ^{2} \frac{\omega t}{2} \sigma_{x}+i \cos \frac{\operatorname{st}}{2} \sin \frac{\omega t}{2} \underbrace{\left[\sigma_{z} \sigma_{x}\right]}_{2 i \sigma_{y}}+\sin ^{2} \frac{\cot \frac{\sigma^{2}}{\sigma_{z} \sigma_{x}} \underbrace{}_{z}}{\underbrace{\sigma_{y}}_{-\sigma_{x}}}
\end{aligned}
$$

$$
=\cos \omega t \partial_{x}-\sin \omega t \delta_{y}
$$

$$
\begin{aligned}
& \left.\left|\psi_{B C}\right\rangle=\frac{1}{\sqrt{3}}\left(1 \Psi_{4}\right)+|\psi 1\rangle \pm \mid \psi b\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left.\rho_{3}=\operatorname{Tr}_{c} \rho_{B C}=\frac{1}{3}(21 \downarrow\rangle\langle\downarrow|+|1\rangle\langle\uparrow| \pm|\uparrow\rangle\langle 山| \pm|\downarrow\rangle\langle\uparrow|\right)
\end{aligned}
$$

$$
\begin{aligned}
& e^{\frac{i \omega t}{2} \sigma_{z}} \sigma_{y} e^{-\frac{i \omega t}{2} \delta_{z}}=\left(\cos \frac{\omega t}{2} 1+i \sin \frac{\omega t}{2} \sigma_{z}\right) \sigma_{y}\left(\cos \frac{\omega t}{2} 1-i \sin \frac{\omega t}{2} \sigma_{z}\right) \\
& = \\
& \cos \omega t \sigma_{y}+\sin \omega t \sigma_{x} \\
& H^{\prime}=-\frac{\hbar}{2} \omega \sigma_{z}+\frac{\hbar}{2} \omega \sigma_{0} \sigma_{z}+\frac{\hbar}{2} A\left[\cos ^{2} \omega t \sigma_{x}-\cos \omega t \sin \omega t \sigma_{y}\right. \\
& \left.\quad+\cos \omega t \sin \omega t \sigma_{y}+\sin ^{2} \omega t \sigma_{x}\right]
\end{aligned}
$$

$$
=\frac{\hbar}{2}\left(\omega_{0}-\omega\right) \sigma_{z}+\frac{\hbar}{2} A \sigma_{x}
$$

Time isclependert

Resonance when $\omega=\omega$.
b)

$$
\begin{aligned}
H^{\prime} & =\frac{\hbar}{2}\left(\omega_{0}-\omega\right) \sigma_{z}+\frac{\hbar}{2} A[\underbrace{\cos ^{2} \omega t}_{\frac{1}{2}(1+\cos 2 \omega t)} \sigma_{x}-\underbrace{\cos t \sin \phi t \sigma_{y}}_{\frac{1}{2} \sin 2 \omega t}] \\
& =\frac{\hbar}{2}\left(\omega_{0}-\omega\right) \sigma_{z}+\frac{\hbar}{4} A \sigma_{x}+\frac{\hbar A}{4}(\underbrace{\cos 2 \omega t \sigma_{y}-\sin 2 \omega t \sigma_{y}}_{\text {Rotating with frequency } 2 \omega})
\end{aligned}
$$

The oscillating field $\cos s \cos _{x}$ can be thought of as tors cometrostabing fields

$$
\cos \omega t \sigma_{x}=\frac{1}{2}\left(\cos \operatorname{sit} \sigma_{x}+\sin \cos t \sigma_{y}\right)+\frac{1}{2}\left(\cos \cot \sigma_{x}-\sin \cot \sigma_{y}\right)
$$

When transforming to the rotating frame, the first term will appear constant bole thu seconded forum lesill appear as rotating at trice the frequency.

We can neglect the tin $\frac{t_{A}}{4}(\cos 2 \sin$ of $-\sin 2 e s t o g)$ when A is sufficient h small because "it changes rapidly in time and its effect on the state docs not have time to build up before it changes direction. On average it does not have large effect, and the true state will wiggle around the approximate state that we final using the rotating wace approximation.
C) $H^{\prime}=-\hbar \frac{d s}{d t}+e^{i s} H e^{-i s}$

$$
\begin{aligned}
& S=\frac{A}{2 \omega} \xi \sin \operatorname{tat} \sigma_{x}=\hat{A} \sigma_{x} \\
& \frac{d S}{d t}=\frac{A}{2} \xi \cos \omega t \sigma_{x}
\end{aligned}
$$

$$
\begin{aligned}
& e^{i S} \sigma_{z} e^{-i S}=e^{i \hat{A} \sigma_{x}} \sigma_{z} e^{-i \hat{A} \sigma_{x}}=\left(\cos \hat{A} 1+i \sin \hat{A} \sigma_{x}\right) \sigma_{z}\left(\cos \hat{A} 1-i \sin \hat{A}_{x}\right) \\
& =\cos ^{2} \hat{A} \sigma_{z}+i \cos \hat{A} \sin A \underbrace{\left[\sigma_{x} \sigma_{z}\right]}_{-2 i \sigma_{y}}+\sin ^{2} \hat{A} \sigma_{x} \sigma_{-\sigma_{z}} \sigma_{x} \\
& =\cos 2 \pi \sigma_{z}+\sin 2 \pi \sigma_{y} \\
& H^{\prime}=-\frac{\hbar \Delta}{2} \xi \cos \omega t \sigma_{x}+\frac{\hbar}{2} \omega_{0} \cos \left[\frac{A}{\Delta} \xi \sin \omega t\right] \sigma_{z}+\frac{\hbar}{2} \omega_{0} \sin [A \xi \sin \Delta t] \sigma_{y} \\
& +\frac{\hbar}{2} A \cos \cot \sigma x \\
& =\frac{\pi}{2} \omega_{0}\left\{\cos \left[\frac{A}{\omega} \xi \sin \omega t\right] \sigma_{z}+\sin \left[\frac{A}{4} \xi \sin n t\right] \sigma^{2}\right\}+\frac{\hbar}{2} A(1-\xi) \cos n t \sigma_{x}
\end{aligned}
$$

d) If $J_{1}\left(\frac{A}{\Delta} \xi\right) \omega_{0}=\frac{1}{2} A(1-\xi)=\frac{1}{2} A^{\prime}$ we have

$$
H^{\prime} \approx \frac{\hbar}{2} \omega_{0} J_{0}\left(\frac{A}{\omega} \xi\right) \sigma_{z}+\frac{\hbar}{2} A^{\prime}\left(\cos \omega t \sigma_{x}+\sin \omega t \sigma_{y}\right)
$$

with His choose of ξ, the components of the fell in the x-and y-directions have the sam amplitach, and we lave a rotelly field sumilou to that in question is but with ω orescalad by the Bessel function. The resshance comciltion is therefore $\omega=\omega_{0} J_{0}\left(\frac{A}{\omega} \xi\right)$
e)

$$
\begin{aligned}
& J_{1}\left(\frac{A}{\omega} \xi\right) \omega_{0} \approx \frac{A}{2 \omega} \xi \omega_{0}=\frac{1}{2} A(1-\xi) \\
& \Rightarrow \xi=\frac{1}{1+\frac{\omega_{0}}{\omega}}=\frac{\omega}{\omega_{0}+\omega} \\
& \omega=\omega_{0} J_{0}\left(\frac{A}{\omega} \xi\right)=\omega_{0} J_{0}\left(\frac{A}{\omega_{0}+\omega}\right) \approx \omega_{0}\left(1-\frac{A^{2}}{4\left(\omega_{0}+\omega\right)^{2}}\right)
\end{aligned}
$$

For $A=0$ we have $\omega=\omega_{0}$ and in geural $\omega=\omega_{0}+() A^{2}$
To losurest orch we cons then emplace ω_{0} tho $\rightarrow 2 \omega_{0}$ in the denominator tret

$$
\omega=\omega_{0}-\frac{A^{2}}{16 \omega_{0}}
$$

Problen 3
a) $P(\theta, \phi)=N \sum\left|\left(\vec{b} \times \vec{G}_{b a}\right) \cdot \vec{\sigma}_{B A}\right|^{2}$
wrtare N is a bormaliestion for ar ormarmind it the sural.

$$
\begin{aligned}
& \left.\vec{\sigma}_{B r_{x}}=\langle d)^{\vec{\sigma}}(1\rangle=(101)\binom{0}{10}\binom{1}{0},(01)\binom{0}{i}(d)(0)\binom{0}{0}(d)\right) \\
& =(1, i, 0)
\end{aligned}
$$

$$
\begin{aligned}
& \overrightarrow{k_{h}}=(\sin \theta \cos \phi, \sin \theta \sin \alpha, \cos \theta) \\
& \vec{O}_{B A} \cdot \frac{E_{E}}{E}=\sin \theta e^{\hat{l} \phi} \quad\left|\overrightarrow{b_{g n}}\right|^{2}=2 \\
& \Rightarrow p(\theta, \theta)=N t^{2}\left(2-\sin ^{2} \theta\right)=\operatorname{coc}^{2}\left(1+\cos ^{2} \theta\right) \\
& \int_{0}^{2 \pi} d+\int_{0}^{\pi} d \theta \operatorname{cin} \theta(\theta, \phi)=N k^{2} \cdot 2 \pi \int_{0}^{\pi} d \theta \sin \theta\left(1+\cos ^{2} b\right) \\
& u=\cos \theta
\end{aligned}
$$

$\Rightarrow \quad P(\theta, \phi)=\frac{3}{16 \pi}\left(1+\cos ^{2} \theta\right)$
b) $\vec{b}=(1,0,0) \quad \vec{e}_{1,2}(0, \cos \sin , \sin x)$

$$
\begin{aligned}
& p(x)=N \mid \underbrace{\left(1_{2}^{2} \times E_{21}^{-2}\right)}_{(0,-\sin \alpha,(\cos x)} \cdot \delta_{B A}^{2}=N \sin ^{2} \alpha \\
& \int_{0}^{2 \pi} p(x) d x=N \int_{0}^{2 \pi} \sin ^{2} w d x-N \pi \quad 1 \quad N=\frac{d}{\pi} \\
& \omega p(x) \in \frac{1}{4} \sin ^{2} \alpha
\end{aligned}
$$

It is oqually reassuabh to restrict $0 \leq k$ en,
 and usomedite accovding ho $\int_{0}^{\text {Th}} d x p(x)=1$ $\operatorname{ct} \quad p(\alpha)=\frac{2}{6} \sin ^{2} \alpha$
c)

$$
\begin{aligned}
& \left.\omega_{B A+}=\frac{V}{(2 \pi \hbar)^{2}} \int d^{3} k \sum_{\alpha}\left|\left\langle B,\left.\right|_{\text {Lat }}\right| A_{i}\right| A, d\right\rangle\left.\right|^{2} \delta\left(\omega-\omega_{B}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{e^{2} \hbar}{32 \pi^{2} m^{2} \epsilon_{0} c^{5}} 2 \pi \underbrace{\int_{0}^{\pi} d \theta\left(1+\cos ^{2} \theta \operatorname{cin}^{\infty} \int_{0}^{\infty} \omega^{3} d \omega \delta\left(\omega-\omega_{s}\right)\right.}_{8 / 3} \\
& =\frac{e^{2} \hbar \omega_{3}^{3}}{16 \operatorname{ran}^{2} t_{0} c^{5}} \\
& T=\frac{\omega_{B A}}{\omega_{B A}}=\frac{6 \pi m^{2} t_{0} c^{5}}{e^{2} \hbar \omega_{B}^{3}}
\end{aligned}
$$

FYS 4110/9110 Modern Quantum Mechanics
 Exam, Fall Semester 2020. Solution

Problem 1: Quantum circuit for controlled R_{k}

a) We define $\phi=2 \pi / 2^{k}$ and get

$$
\begin{aligned}
\left|\psi_{1}\right\rangle \otimes\left|\psi_{2}\right\rangle & =\left(a_{0}|0\rangle+a_{1}|1\rangle\right) \otimes\left(b_{0}|0\rangle+b_{1}|1\rangle\right) \\
& \xrightarrow{R_{k+1}}\left(a_{0}|0\rangle+a_{1} e^{i \phi / 2}|1\rangle\right) \otimes\left(b_{0}|0\rangle+b_{1} e^{i \phi / 2}|1\rangle\right) \\
& \xrightarrow{C N O T} a_{0}|0\rangle \otimes\left(b_{0}|0\rangle+b_{1} e^{i \phi / 2}|1\rangle\right)+a_{1} e^{i \phi / 2}|1\rangle \otimes\left(b_{0}|1\rangle+b_{1} e^{i \phi / 2}|0\rangle\right) \\
& \xrightarrow{R_{k+1}^{\dagger}} a_{0}|0\rangle \otimes\left(b_{0}|0\rangle+b_{1}|1\rangle\right)+a_{1} e^{i \phi / 2}|1\rangle \otimes\left(b_{0} e^{-i \phi / 2}|1\rangle+b_{1} e^{i \phi / 2}|0\rangle\right) \\
& \xrightarrow{C N O T} a_{0}|0\rangle \otimes\left(b_{0}|0\rangle+b_{1}|1\rangle\right)+a_{1}|1\rangle \otimes\left(b_{0}|0\rangle+b_{1} e^{i \phi}|1\rangle\right) \\
& =a_{0}|0\rangle \otimes\left|\psi_{2}\right\rangle+a_{1}|1\rangle \otimes R_{k}\left|\psi_{2}\right\rangle
\end{aligned}
$$

This is the controlled R_{k} operation.
b) Let $U|\psi\rangle=e^{i \phi}|\psi\rangle$. The situation is described by this circuit

The evolution of the state is

$$
\begin{gathered}
\frac{1}{\sqrt{2}}\left(|0\rangle+|1\rangle \otimes|\psi\rangle \stackrel{\text { control }-U}{ } \frac{1}{\sqrt{2}}(|0\rangle \otimes|\psi\rangle+|1\rangle \otimes U|\psi\rangle)\right. \\
=\frac{1}{\sqrt{2}}\left(|0\rangle+e^{i \phi}|1\rangle\right) \otimes \psi
\end{gathered}
$$

c) Since multiplying by a phase factor does not change a quantum state, U does not really change the state of the target if the initial state is an eigenstate. However, the relative phase between two states does make a physical difference. Therefore, when the control is in a superposition, there is a phase difference between the two states after the control-U operation. Since the state of the target is the same in both cases, it factors out, leaving a product state with the relative phase between the two states of the control qubit.

Problem 2: Destruction of entanglement by noise

a) ρ is a pure state if one eigenvalue is 1 and the rest 0 .

$$
\left|\begin{array}{cccc}
a-\lambda & 0 & 0 & 0 \\
0 & b-\lambda & z & 0 \\
0 & z^{*} & c-\lambda & 0 \\
0 & 0 & 0 & d-\lambda
\end{array}\right|=(a-\lambda)(d-\lambda)\left[(b-\lambda)(c-\lambda)-|z|^{2}\right]=0
$$

which gives the eigenvalues

$$
\begin{equation*}
\lambda_{a}=a, \quad \lambda_{d}=d, \quad \lambda_{ \pm}=\frac{1}{2}(b+c) \pm \sqrt{\frac{1}{4}(b-c)^{2}+|z|^{2}} . \tag{1}
\end{equation*}
$$

Thus we have that ρ is pure if
1: $a=1, b=c=d=z=0$.
2: $b=1, a=b=c=z=0$.
3: $a=d=0$. Since $\operatorname{Tr} \rho=1$ we must then have $b+c=1$. This means that

$$
\lambda_{ \pm}=\frac{1}{2} \pm \sqrt{\frac{1}{4}(b-c)^{2}+|z|^{2}} .
$$

For ρ to be pure we must have $\lambda_{+}=1$ and $\lambda_{-}=0$, and therefore

$$
\frac{1}{4}(b-c)^{2}+|z|^{2}=\frac{1}{4}
$$

which gives

$$
|z|^{2}=\frac{1}{4}\left[1-(b-c)^{2}\right]=\frac{1}{4}\left[1-(2 b-1)^{2}\right]
$$

where we used that $c=1-b$. Since $|z|^{2}>0, b$ is restricted to the interval $0 \leq b \leq 1$.
b) We write ρ on the form

$$
\rho=a|11\rangle\langle 11|+b|10\rangle\langle 10|+c|01\rangle\langle 01|+d|00\rangle\langle 00|+z|10\rangle\langle 01|+z^{*}|01\rangle\langle 10|
$$

from which we read out

$$
\begin{aligned}
& \rho^{A}=\operatorname{Tr}_{B} \rho=(a+b)|1\rangle\langle 1|+(c+d)|0\rangle\langle 0|=\left(\begin{array}{cc}
a+b & 0 \\
0 & c+d
\end{array}\right), \\
& \rho^{B}=\operatorname{Tr}_{A} \rho=(a+c)|1\rangle\langle 1|+(b+d)|0\rangle\langle 0|=\left(\begin{array}{cc}
a+c & 0 \\
0 & b+d
\end{array}\right) .
\end{aligned}
$$

We check the three cases of pure ρ from question a)

1: $a=1, b=c=d=z=0$:

$$
\rho^{A}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), \quad \rho^{B}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)
$$

This is not entangled since ρ^{A} and ρ^{B} are pure.
2: $d=1, a=b=c=z=0$: By symmetry with case 1 , this is not entangled.
3: $a=d=0,0 \leq b \leq 1, c=1-b,|z|^{2}=\frac{1}{4}\left[1-(2 b-1)^{2}\right]$:

$$
\rho^{A}=\left(\begin{array}{cc}
b & 0 \\
0 & 1-b
\end{array}\right), \quad \rho^{B}=\left(\begin{array}{cc}
1-b & 0 \\
0 & b
\end{array}\right) .
$$

This is entangled for all $b \neq 0,1$.
c) The two Lindbladoperators are σ_{-}^{A} and σ_{-}^{B}. Both correspond to transitions $\left|1_{A / B}\right\rangle \rightarrow\left|0_{A / B}\right\rangle$ that reduce the energy (we assume $\omega>0$), emitting energy to the environment. This means that the environment is at $T=0$.
d) With the given initial conditions, the matrix elements are

$$
a(t)=e^{-2 \gamma t}, \quad b(t)=c(t)=e^{-\gamma t}\left(1-e^{-\gamma t}\right), \quad d(t)=\left(1-e^{-\gamma t}\right)^{2}, \quad z(t)=0
$$

The von Neumann entropy is given as

$$
S=-\operatorname{Tr} \rho \ln \rho=-\sum_{i} \lambda_{i} \ln \lambda_{i}
$$

where λ_{i} are the eigenvalues of ρ. Using (1) we get

$$
\lambda_{a}=e^{-2 \gamma t}, \quad \lambda_{d}=\left(1-e^{-\gamma t}\right)^{2}, \quad \lambda_{ \pm}=e^{-\gamma t}\left(1-e^{-\gamma t}\right)
$$

The entropy is then
$S=-e^{-2 \gamma t} \ln e^{-2 \gamma t}-\left(1-e^{-\gamma t}\right)^{2} \ln \left(1-e^{-\gamma t}\right)^{2}-2 e^{-\gamma t}\left(1-e^{-\gamma t}\right) \ln \left[e^{-\gamma t}\left(1-e^{-\gamma t}\right)\right]=2 \gamma t-2\left(1-e^{-\gamma t}\right) \ln \left(e^{\gamma t}-1\right)$.
We plot $S(t)$

We see that the entropy is zero at $t=0$, corresponding to the initial state being pure. As time increases, the system goes to a mixed state and the entropy increases. Since $T=0$, the system will approach the ground state, and the entropy decreases again, approaching zero at $t \rightarrow \infty$.
e)

$$
\rho=\frac{1}{2}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \otimes \frac{1}{2}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

$S=\ln 2$ which is maximal for two-level systems.
f) We need to find

$$
\sigma_{y}^{A} \otimes \sigma_{y}^{B}=\left(\begin{array}{cccc}
0 & 0 & 0 & -1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
-1 & 0 & 0 & 0
\end{array}\right)
$$

and calculate

$$
M=\rho \sigma_{y}^{A} \otimes \sigma_{y}^{B} \rho^{*} \sigma_{y}^{A} \otimes \sigma_{y}^{B}=\left(\begin{array}{cccc}
a d & 0 & 0 & 0 \\
0 & b c+|z|^{2} & 2 b z & 0 \\
0 & 2 c z^{*} & b c+|z|^{2} & 0 \\
0 & 0 & 0 & a d
\end{array}\right)
$$

Two of the eigenvalues of M are

$$
\mu_{a}=\mu_{d}=a d
$$

The other two we find from

$$
\left|\begin{array}{cc}
b c+|z|^{2}-\mu & 2 b z \\
2 c z^{*} & b c+|z|^{2}-\mu
\end{array}\right|=\left(b c+|z|^{2}-\mu\right)^{2}-4 b c|z|^{2}=0
$$

which gives

$$
\mu_{ \pm}=(\sqrt{b c} \pm|z|)^{2}
$$

With the initial conditions $d_{0}=\frac{1}{3}-a_{0}, b_{0}=c_{0}=z_{0}=\frac{1}{3}$ we get

$$
\begin{aligned}
& \sqrt{\mu_{a}}=\sqrt{\mu_{d}}=\sqrt{a d}=e^{-\gamma t} \sqrt{a_{0}} \sqrt{1-\frac{2}{3} e^{-\gamma t}-a_{0} e^{-\gamma t}\left(2-e^{-\gamma t}\right)} \\
& \sqrt{\mu_{+}}=\frac{2}{3} e^{-\gamma t}+a_{0} e^{-\gamma t}\left(1-e^{-\gamma t}\right), \quad \sqrt{\mu_{-}}=a_{0} e^{-\gamma t}\left(1-e^{-\gamma t}\right)
\end{aligned}
$$

The largest eigenvalue is μ_{+}, so $\lambda_{1}=\sqrt{\mu_{+}}$. This gives

$$
\lambda_{1}-\lambda_{2}-\lambda_{3}-\lambda_{4}=\frac{2}{3} e^{-\gamma t}-2 e^{-\gamma t} \sqrt{a_{0}} \sqrt{1-\frac{2}{3} e^{-\gamma t}-a_{0} e^{-\gamma t}\left(2-e^{-\gamma t}\right)}
$$

g) $C=0$ when

$$
\frac{2}{3} e^{-\gamma t}-2 e^{-\gamma t} \sqrt{a_{0}} \sqrt{1-\frac{2}{3} e^{-\gamma t}-a_{0} e^{-\gamma t}\left(2-e^{-\gamma t}\right)}=0
$$

which we solve to get

$$
e^{-\gamma t}=\frac{1}{3 a_{0}}+1 \pm \frac{1}{a_{0}} \sqrt{a_{0}^{2}-\frac{4}{3} a_{0}+\frac{2}{9}}
$$

For $a_{0}=\frac{1}{3}$ we get $e^{-\gamma t}=2 \pm \sqrt{2}$. Since $e^{-\gamma t}<1$ for positive t and γ, we must choose $e^{-\gamma t}=2-\sqrt{2}$, which means

$$
t=\frac{1}{\gamma} \ln \frac{2+\sqrt{2}}{2} .
$$

At this time, the concurrence drops to exactly 0 . It means that even if the state approaches the ground state asymptotically, the entanglement (as measured by the concurrence) vanishes completely in a finite time.

FYS 4110/9110 Modern Quantum Mechanics
 Exam, Fall Semester 2021. Solution

Problem 1: SWAP gate

a) We write $|\psi\rangle=a|0\rangle+b|1\rangle$ and $|\phi\rangle=c|0\rangle+d|1\rangle$ and get

$$
\begin{aligned}
|\psi\rangle \otimes|\phi\rangle & =(a|0\rangle+b|1\rangle)(c|0\rangle+d|1\rangle) \\
& \xrightarrow{C N O T} a|0\rangle(c|0\rangle+d|1\rangle)+b|1\rangle(c|1\rangle+d|0\rangle) \\
& \xrightarrow{C N O T} a c|00\rangle+a d|11\rangle+b c|01\rangle+b d|10\rangle \\
& \xrightarrow{C N O T} a c|00\rangle+a d|10\rangle+b c|01\rangle+b d|11\rangle \\
& =(c|0\rangle+d|1\rangle)(a|0\rangle+b|1\rangle)=|\phi\rangle \otimes|\psi\rangle .
\end{aligned}
$$

b) In the basis $\{|00\rangle,|01\rangle,|10\rangle,|11\rangle\}$ the action of SWAP on the basis vectors is
$|00\rangle \xrightarrow{S W A P}|00\rangle$,
$|01\rangle \xrightarrow{S W A P}|10\rangle$,
$|10\rangle \xrightarrow{S W A P}|01\rangle$,
$|11\rangle \xrightarrow{S W A P}|11\rangle$,
which gives the matrix

$$
S W A P=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

c) We can SWAP multi-qubit registers one qubit at a time

We need $3 n$ CNOT gates.

Problem 2: Sending information with entangled photons?

a) The reduced density matrix of system A is given by the partial trace of the full density matrix over system B. The fyll density matrix is given by

$$
\rho=|\phi\rangle\langle\phi|=\sum_{i j} d_{i} d_{j}^{*}\left|n_{i}^{A}\right\rangle\left\langle n_{j}^{A}\right| \otimes\left|n_{i}^{B}\right\rangle\left\langle n_{j}^{B}\right| .
$$

Calculating the partial trace in the basis $\left|n_{i}^{B}\right\rangle$ we see that only terms with $i=j$ contribute, so the reduced density matrix is

$$
\rho_{A}=\sum_{i}\left|d_{i}\right|^{2}\left|n_{i}^{A}\right\rangle\left\langle n_{i}^{A}\right| .
$$

The expectation value of an operator $A \otimes \mathbb{1}$ on A is

$$
\begin{aligned}
\langle A\rangle & =\operatorname{Tr}(A \otimes \mathbb{1} \rho)=\sum_{k l}\left\langle n_{k}^{A} n_{l}^{B}\right| A \otimes \mathbb{1} \rho\left|n_{k}^{A} n_{l}^{B}\right\rangle=\sum_{k l}\left\langle n_{k}^{A} n_{l}^{B}\right| \sum_{i j} d_{i} d_{j}^{*} A\left|n_{i}^{A}\right\rangle\left\langle n_{j}^{A}\right| \otimes\left|n_{i}^{B}\right\rangle\left\langle n_{j}^{B} \| n_{k}^{A} n_{l}^{B}\right\rangle \\
& =\sum_{k}\left\langle n_{k}^{A}\right| A \sum_{i}\left|d_{i}\right|^{2}\left|n_{i}^{A}\right\rangle\left\langle n_{i}^{A} \| n_{k}^{A}\right\rangle=\operatorname{Tr}\left(A \rho_{A}\right) .
\end{aligned}
$$

b) Applying the unitary transformation U to system B means appying $U=\mathbb{1} \otimes U_{B}$ to the full system. We have the reduced density matrix for A after the transformation

$$
\begin{aligned}
\rho_{A}^{\prime} & =\operatorname{Tr}_{B}\left[\mathbb{1} \otimes U_{B} \rho \mathbb{1} \otimes U_{B}^{\dagger}\right]=\sum_{i j k} d_{i} d_{j}^{*}\left|n_{i}^{A}\right\rangle\left\langle n_{j}^{A}\right|\left\langle n_{k}^{B}\right| U_{B}\left|n_{i}^{B}\right\rangle\left\langle n_{j}^{B}\right| U_{B}^{\dagger}\left|n_{k}^{B}\right\rangle \\
& =\sum_{i j k} d_{i} d_{j}^{*}\left|n_{i}^{A}\right\rangle\left\langle n_{j}^{A}\right|\left\langle n_{j}^{B}\right| U_{B}^{\dagger}\left|n_{k}^{B}\right\rangle\left\langle n_{k}^{B}\right| U_{B}\left|n_{i}^{B}\right\rangle \\
& =\sum_{i}\left|d_{i}\right|^{2}\left|n_{i}^{A}\right\rangle\left\langle n_{i}^{A}\right|=\rho_{A} .
\end{aligned}
$$

So the reduced density matrix does not change.
c) An observable on system B has the form $\mathbb{1} \otimes B$. Let the eigenstates of B be given by

$$
B\left|\phi_{i}^{B}\right\rangle=\lambda_{i}\left|\phi_{i}^{B}\right\rangle
$$

Similarly to the Schmidt decomposition we can write the full state as

$$
|\psi\rangle=\sum_{i} \sqrt{p_{i}}\left|\phi_{i}^{A}\right\rangle \otimes\left|\phi_{i}^{B}\right\rangle
$$

The only difference is that when choosing the basis $\left|\phi_{i}^{B}\right\rangle$ for B we are not guarateed that the corresponding states $\left|\phi_{i}^{A}\right\rangle$ are orthogonal. Here p_{i} are the probabilities of the different meansurement outcomes. We have that the reduced density matrix for A is

$$
\rho_{A}=\sum_{i} p_{i}\left|\phi_{i}^{A}\right\rangle\left\langle\phi_{i}^{A}\right| .
$$

We measure the outcome ϕ_{i}^{B} with probability p_{i}, collapsing the wavefunction for A to $\left|\phi_{i}^{A}\right\rangle$. As long as we do not get to know the outcome of the measurement, the state of A is the mixed state

$$
\rho_{A}^{\prime}=\sum_{i} p_{i}\left|\phi_{i}^{A}\right\rangle\left\langle\phi_{i}^{A}\right| .
$$

The state changes from an entangled state to a mixed state, but the density matrix is unchanged.
d) If we get to know the outcome of the measurement on B, the state collapses and the density matrix corresponds to that state. If the outcome is ϕ_{i}^{B} the density matrix of A is

$$
\rho_{A}^{i}=\left|\phi_{i}^{A}\right\rangle\left\langle\phi_{i}^{A}\right| .
$$

Problem 3: Charge transfer by adiabatic passage

We have three quantum dots in a row and one electron. Each dot has one state for an electron, so that the electron has three possible states, $|1\rangle,|2\rangle$ and $|3\rangle$ (and it can of course also be in superpositions of these). The three basis states are orthogonal and normalized. The motion of the electron can be controlled by gates which change the tunneling amplitude between the dots. The system is described by the Hamiltonian

$$
H=-\hbar\left(\begin{array}{ccc}
0 & \Omega_{1} & 0 \\
\Omega_{1} & 0 & \Omega_{2} \\
0 & \Omega_{2} & 0
\end{array}\right)
$$

Here Ω_{1} is the tunneling amplitude between dots 1 and 2 while Ω_{2} is the tunneling amplitude between dots 2 and 3. Both amplitudes are controllable and can be time dependent. The initial state of the electron is $|1\rangle$, which means that the electron is localized on the first dot.
a) When $\Omega_{1}>0$ is constant and $\Omega_{2}=0$ the Hamiltonian is proportional to σ_{x} in the $\{|1\rangle,|2\rangle\}$ subspace, and the corresponding eigenvectors are $\left|\psi^{ \pm}\right\rangle=\frac{1}{\sqrt{2}}(|1\rangle \pm|2\rangle)$ with eigenvalues $\mp \hbar \Omega_{1}$. We have that the initial state $|1\rangle=\frac{1}{\sqrt{2}}\left(\left|\psi^{+}\right\rangle+\left|\psi^{-}\right\rangle\right)$, so
$|\psi(t)\rangle=e^{-\frac{i}{\hbar} H t}|1\rangle=\frac{1}{\sqrt{2}} e^{-\frac{i}{\hbar} H t}\left(\left|\psi^{+}\right\rangle+\left|\psi^{-}\right\rangle\right)=\frac{1}{\sqrt{2}}\left(e^{i \Omega_{1} t}\left|\psi^{+}\right\rangle+e^{-i \Omega_{1} t}\left|\psi^{-}\right\rangle\right)=\cos \Omega_{1} t|1\rangle+i \sin \Omega_{1} t|2\rangle$.
This means that the electron is oscillating between quantum dots 1 and 2.
b) The eigenvalues $E=\hbar \lambda$ are found from

$$
\left|\begin{array}{ccc}
\lambda & \Omega_{1} & 0 \\
\Omega_{1} & \lambda & \Omega_{2} \\
0 & \Omega_{2} & \lambda
\end{array}\right|=\lambda\left(\lambda^{2}-\Omega_{2}^{2}\right)-\Omega_{1}^{2} \lambda=0
$$

which gives the energies

$$
E_{0}=0, \quad E_{ \pm}= \pm \hbar \Omega, \quad \Omega=\sqrt{\Omega_{1}^{2}+\Omega_{2}^{2}}
$$

The corresponding eigenvectors are

$$
\begin{aligned}
\left|n_{0}\right\rangle & =\cos \theta|1\rangle-\sin \theta|3\rangle \\
\left|n_{ \pm}\right\rangle & =\frac{1}{\sqrt{2}}(\sin \theta|1\rangle \mp|2\rangle+\cos \theta|3\rangle)
\end{aligned}
$$

with

$$
\sin \theta=\frac{\Omega_{1}}{\Omega}, \quad \cos \theta=\frac{\Omega_{2}}{\Omega}
$$

c) We have

$$
i \hbar \frac{d}{d t}\left|\psi^{\prime}\right\rangle=i \hbar \dot{T}^{\dagger}|\psi\rangle+T^{\dagger} i \hbar \frac{d}{d t}|\psi\rangle=\left(T^{\dagger} H T+i \hbar \dot{T}^{\dagger} T\right)\left|\psi^{\prime}\right\rangle
$$

which is the Schrödinger equation with the transformed Hamiltonian

$$
H^{\prime}=T^{\dagger} H T+i \hbar \dot{T}^{\dagger} T
$$

d) The condition

$$
\tan \theta(0)=\frac{\Omega_{1}(0)}{\Omega_{2}(0)} \ll 1
$$

implies that $\theta(0) \approx 1$. This means that the eigenvectors at $t=0$ are approximately

$$
\left|n_{0}(0)\right\rangle=|1\rangle, \quad\left|n_{ \pm}(0)\right\rangle=\frac{1}{\sqrt{2}}(\mp|2\rangle+|3\rangle) .
$$

From this we see that the transformation

$$
T(t)=\left(\begin{array}{ccc}
\cos \theta & 0 & \sin \theta \\
0 & 1 & 0 \\
-\sin \theta & 0 & \cos \theta
\end{array}\right)
$$

and we can calculate the Hamiltonian

$$
H^{\prime}(t)=-\hbar \Omega(t)\left(\begin{array}{lll}
0 & 0 & 0 \tag{1}\\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)+i \hbar \frac{d \theta}{d t}\left(\begin{array}{ccc}
0 & 0 & -1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right)
$$

e) At $t=t_{m}$ we have

$$
\tan \theta(0)=\frac{\Omega_{1}\left(t_{m}\right)}{\Omega_{2}\left(t_{m}\right)}=e^{t_{m} / 2 \sigma} \gg 1
$$

which means that $\theta\left(t_{m}\right) \approx \frac{\pi}{2}$. When neglecting the term proportional to $\frac{d \theta}{d t}$ in the Hamiltonian we get that $H^{\prime}|1\rangle=0$, so the state will not change in time, giving $\left|\psi^{\prime}\left(t_{m}\right)\right\rangle \approx|1\rangle$. We then get

$$
\left|\psi\left(t_{m}\right)\right\rangle=T\left(t_{m}\right)|1\rangle=-|3\rangle .
$$

The electron is transferred from dot 1 to dot 3 .
f) At intermediate times, the state will be

$$
|\psi(t)\rangle=T(t)|1\rangle=\cos \theta|1\rangle-\sin \theta|3\rangle
$$

The probability of finding the electron in state $|2\rangle$ is zero during the process. This is a bit surprising, as the Hamiltonian only has terms for tunneling from dot 1 to to and from dot 2 to 3 . So there is no term that allows the electron to tunnel directly from dot 1 to dot 3 , it has to pass through dot 2 on the way. At a finite rate of change, $\frac{d \theta}{d t}$, we would not have the probability to be on dot 2 exactly zero, but it goes to zero as $\frac{d \theta}{d t} \rightarrow 0$. The tunneling rates are so adjusted in time, that as soon as the electron comes to dot 2 it is immediately tunneling on to $\operatorname{dot} 3$.

FYS 4110/9110 Modern Quantum Mechanics
 Exam, Fall Semester 2022. Solution

Problem 1: Approximate quantum cloning

a) The state after the action of the operator U is

$$
U|\psi\rangle_{A}|00\rangle_{B C}=\sqrt{\frac{2}{3}}(\alpha|000\rangle+\beta|111\rangle)+\sqrt{\frac{1}{6}}(\alpha|011\rangle+\alpha|101\rangle+\beta|010\rangle+\beta|100\rangle) .
$$

This gives the density matrix

$$
\begin{aligned}
& \rho=\left[\sqrt{\frac{2}{3}}(\alpha|000\rangle+\beta|111\rangle)+\sqrt{\frac{1}{6}}(\alpha|011\rangle+\alpha|101\rangle+\beta|010\rangle+\beta|100\rangle)\right] \\
& {\left[\sqrt{\frac{2}{3}}(\alpha\langle 000|+\beta\langle 111|)+\sqrt{\frac{1}{6}}(\alpha\langle 011|+\alpha\langle 101|+\beta\langle 010|+\beta\langle 100|)\right] . }
\end{aligned}
$$

The reduced density matrix of system A is then

$$
\rho_{A}=\frac{2}{3}\left(|\alpha|^{2}|0\rangle\langle 0|+|\beta|^{2}|0\rangle\langle 1| \alpha \beta^{*}|0\rangle\langle 1|+\beta \alpha^{*}|1\rangle\langle 0|\right)+\frac{1}{6} \mathbb{1}=\frac{2}{3}|\psi\rangle\langle\psi|+\frac{1}{6} \mathbb{1} .
$$

The density matrix ρ is symmetric in the A and B systems, so ρ_{B} has the same form.
b) The initial state $|\psi\rangle$ has Bloch vector $\mathbf{m}^{(0)}$ given by

$$
\rho_{0}=|\psi\rangle\langle\psi|=\frac{1}{2}\left(\mathbb{1}+m_{i}^{(0)} \sigma_{i}\right) .
$$

We can then find the final state Bloch vector \mathbf{m} from

$$
\rho_{A}=\frac{2}{3}|\psi\rangle\langle\psi|+\frac{1}{6} \mathbb{1}=\frac{1}{2}\left(\mathbb{1}+m_{i} \sigma_{i}\right)
$$

which gives that $\mathbf{m}=\frac{2}{3} \mathbf{m}^{(0)}$. This applies to both systems A and B since their reduced density matrices are the same. We see that the Bloch vector of the final state is parallell to the Bloch vector of the initial state, but with reduced length.
c)

$$
F=\langle\psi| \rho_{B}|\psi\rangle=\frac{5}{6} .
$$

d) We assume that the inital preparation step $|\psi\rangle_{A}|00\rangle_{B C} \rightarrow|\psi\rangle_{A}\left|\psi_{0}\right\rangle_{B C}$ already is implemented and follow the state through the rest of the circuit, numbering the CNOT-gates from left

$$
\begin{aligned}
|\psi\rangle_{A}\left|\psi_{0}\right\rangle_{B C} & =\sqrt{\frac{2}{3}} \alpha|000\rangle+\sqrt{\frac{1}{6}} \alpha|001\rangle+\sqrt{\frac{1}{6}} \alpha|011\rangle+\sqrt{\frac{2}{3}} \beta|100\rangle+\sqrt{\frac{1}{6}} \beta|101\rangle+\sqrt{\frac{1}{6}} \beta|111\rangle \\
& \xrightarrow{C N O T_{1}} \sqrt{\frac{2}{3}} \alpha|000\rangle+\sqrt{\frac{1}{6}} \alpha|001\rangle+\sqrt{\frac{1}{6}} \alpha|011\rangle+\sqrt{\frac{2}{3}} \beta|110\rangle+\sqrt{\frac{1}{6}} \beta|111\rangle+\sqrt{\frac{1}{6}} \beta|101\rangle \\
& \xrightarrow{C N O T_{2}} \sqrt{\frac{2}{3}} \alpha|000\rangle+\sqrt{\frac{1}{6}} \alpha|001\rangle+\sqrt{\frac{1}{6}} \alpha|011\rangle+\sqrt{\frac{2}{3}} \beta|111\rangle+\sqrt{\frac{1}{6}} \beta|110\rangle+\sqrt{\frac{1}{6}} \beta|100\rangle \\
& \xrightarrow{C N O T_{3}} \sqrt{\frac{2}{3}} \alpha|000\rangle+\sqrt{\frac{1}{6}} \alpha|001\rangle+\sqrt{\frac{1}{6}} \alpha|111\rangle+\sqrt{\frac{2}{3}} \beta|011\rangle+\sqrt{\frac{1}{6}} \beta|010\rangle+\sqrt{\frac{1}{6}} \beta|100\rangle \\
& \xrightarrow{N O T_{4}} \sqrt{\frac{2}{3}} \alpha|000\rangle+\sqrt{\frac{1}{6}} \alpha|101\rangle+\sqrt{\frac{1}{6}} \alpha|011\rangle+\sqrt{\frac{2}{3}} \beta|111\rangle+\sqrt{\frac{1}{6}} \beta|010\rangle+\sqrt{\frac{1}{6}} \beta|100\rangle \\
& =\sqrt{\frac{2}{3}}(\alpha|000\rangle+\beta|111\rangle)+\sqrt{\frac{1}{6}}(\alpha|011\rangle+\alpha|101\rangle+\beta|010\rangle+\beta|100\rangle) .
\end{aligned}
$$

Problem 2: Lindblad equation for pure dephasing

a) We parametrize the density matrix using the Bloch vector

$$
\rho=\frac{1}{2}\left(\mathbb{1}+m_{i} \sigma_{i}\right)
$$

and insert this into the Lindblad equation to get the equations

$$
\begin{aligned}
\dot{m}_{x} & =-\gamma m_{x}-\omega_{0} m_{y} \\
\dot{m}_{y} & =-\gamma m_{y}+\omega_{0} m_{x} \\
\dot{m}_{z} & =0 .
\end{aligned}
$$

We see immediately that $m_{z}(t)=m_{z}(0)$ is constant. Defining $m=m_{X}+i m_{y}$, the first two equations can be combined to

$$
\dot{m}=\left(i \omega_{0}-\gamma\right) m
$$

with solution

$$
m(t)=m(0) e^{\left(i \omega_{0}-\gamma\right) t}
$$

Writing the initial value inb poalr form, $m(0)=m_{0} e^{i \phi}$, we get

$$
\begin{aligned}
& m_{x}=m_{0} e^{-\gamma t} \cos \left(\omega_{0} t+\phi\right) \\
& m_{y}=m_{0} e^{-\gamma t} \sin \left(\omega_{0} t+\phi\right) \\
& m_{z}=m_{z}(0) .
\end{aligned}
$$

The Bloch vector rotates in a plane with constant m_{z} with a decreasing length on the x - and y components. It follows a spiral that approaches the z axis of the sphere.
b) We know that the entropy is given by

$$
S(r)=-\frac{1+r}{2} \ln \frac{1+r}{2}-\frac{1-r}{2} \ln \frac{1-r}{2}
$$

where $r=|\mathbf{m}|$ is the length of the Bloch vector. In our case we have

$$
r(t)=\sqrt{m_{0}^{2} e^{-2 \gamma t}+m_{z}^{2}(0)},
$$

which is monotonically decreasing as a function of time with $r(0)=1$ and $r(\infty)=m_{z}(0)$. The entropy will then monotonically increase as a function of t, starting at 0 and approaching asymptotically $S\left(m_{z}(0)\right.$. A plot of this function for different $m_{z}(0)$ is

Problem 3: Absolutely maximally entangled states

a) Let $\left\{|n\rangle_{A}\right\}$ and $\left\{|m\rangle_{B}\right\}$ be the bases where respectively ρ_{A} and ρ_{B} are diagonal, so that

$$
\begin{aligned}
\rho_{A}|n\rangle_{A} & =p_{n}^{A}|n\rangle_{A} \\
\rho_{B}|m\rangle_{B} & =p_{m}^{B}|m\rangle_{B} .
\end{aligned}
$$

Then

$$
\rho|n\rangle_{A} \otimes|m\rangle_{B}=p_{n}^{A} p_{m}^{B}|n\rangle_{A} \otimes|m\rangle_{B},
$$

so ρ is diagonal in the basis $\left\{|n\rangle_{A}\right\} \otimes\left\{|m\rangle_{B}\right\}$, and

$$
S=-\sum_{n m} p_{n}^{A} p_{m}^{B} \ln \left(p_{n}^{A} p_{m}^{B}\right)=-\sum_{n m} p_{n}^{A} p_{m}^{B}\left(\ln p_{n}^{A}+\ln p_{m}^{B}\right)=S_{A}+S_{B}
$$

with

$$
S_{A}=-\sum_{n} p_{n}^{A} \ln p_{n}^{A}, \quad S_{A}=-\sum_{m} p_{m}^{B} \ln p_{m}^{B} .
$$

b) We know that the maximal entropy for an n-dimensional system is $\ln n$ and occurs when the density matrix is equal to the identity matrix. The entropies of the two reduced density matrices are the same. This means that the maximal entropy must correspond to the smallest system having a reduced density matrix equal to the identity. This means that the maximal entanglement entropy is

$$
S_{\max }=\ln \left(\min \left(n_{A}, n_{B}\right)\right)
$$

c) The density matrix in the state $|\psi\rangle$ is

$$
\rho=|\psi\rangle\langle\psi|=\frac{1}{9} \sum_{i j i^{\prime} j^{\prime}}|i\rangle|j\rangle|i+j\rangle|i+2 j\rangle\left\langlei | ^ { \prime } \left\langle\left. j\right|^{\prime}\left\langle i^{\prime}+j^{\prime}\right|\left\langle i^{\prime}+2 j^{\prime}\right| .\right.\right.
$$

There are three ways to split the system in two subsystems of two three-level systems each: 12+34, $13+24$ and $14+23$. Consider first $12+34$ and trace over 1 and 2 to find ρ_{34}. Only terms with $i^{\prime}=i$ and $j^{\prime}=j$ will then contribute and we have

$$
\rho_{34}=\frac{1}{9} \sum_{i j}|i+j\rangle|i+2 j\rangle\langle i+j|\langle i+2 j| .
$$

This means that ρ_{34} is diagonal. To show that alle the diagonal elements are equal to $\frac{1}{9}$ we can list the values of $(i+j, 1+2 j)$ for all pairs (i, j)

$$
\begin{array}{c|ccccccccc}
(i, j) & (0,0) & (0,1) & (0,2) & (1,0) & (1,1) & (1,2) & (2,0) & (2,1) & (2,2) \\
\hline(i+j, i+2 j) & (0,0) & (1,2) & (2,1) & (1,1) & (2,0) & (0,2) & (2,2) & (0,1) & (1,0)
\end{array}
$$

We observe that all pairs $(i+j, 1+2 j)$ appear once in the table, which means that all the diagonal elements are generated once, and therefore

$$
\rho_{12}=\rho_{34}=\frac{1}{9} \mathbb{1}_{9 \times 9}
$$

Similar tables give the same result for the two other splittings.
d) We have shown that the reduced density matrix of the first two three-level systems,

$$
\rho_{12}=\frac{1}{9} \mathbb{1}_{9 \times 9}=\frac{1}{3} \mathbb{1}_{3 \times 3} \otimes \frac{1}{3} \mathbb{1}_{3 \times 3}
$$

This means that the reduced densty matrix ρ_{1} is the identity, therefore it is maximally entangled with the remaining three. It also means that the systems 1 and 2 are in a product state, and they are therefore are not entangled with each other. The same applies to any pair of three-level systems. So it means that all the four three-level systems are maximally entangled with thre remainig three. But any pair of three-level systems are not entangled.

