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FYS 4110: Non-relativistic quantum mechanics

Midterm Exam, Fall Semester 2004

The problem set is available from Friday October 15. The set consists of 2 problems written on
5 pages.

Deadline for returning solutions
is Friday October 22.

Return of solutions
The solutions can be returned either in written/printed form or as an e-mail attachment.
Written/printed solutions can be returned at Ekspedisjonskontoret in the Physics Building. Please
add a copy that the lecturer can keep for evaluation at the final exam.
E-mailed solutions: Please send the solutions as one file, preferably in pdf format. E-mail ad-
dress:j.m.leinaas@fys.uio.no.

Questions concerning the problems
Please ask the lecturer, Jon Magne Leinaas (Auditorium or Office 471); Monday morning avail-
able between 9 and 10 a.m.

Language
Solutions may be written in Norwegian or English, depending on your preference.

————————————————————————-

PROBLEMS

1 Particle encircling a magnetic flux
A particle with mass m and charge e moves freely on a circle of radius R. Through the circle
passes a solenoid that carries a magnet flux Φ. We may consider the total flux to be confined to
the solenoid so that the magnetic field vanishes on the circle where the particle moves.

In the following make use of the general expressions for the Hamiltonian of a particle in a
magnetic field

H =
1

2m
(p− eA)2 (1)

and for the probability current

j = − ih̄

2m
(ψ∗∇ψ − ψ∇ψ∗)− e

m
Aψ∗ψ (2)

Use the angle variable θ as coordinate for the particle on the circle.
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a) Assume rotational invariance about the center of the circle and show that the vector potential
on the circle takes the constant value A = Φ/2πR with direction along the circle. Explain why
this vector potential has no influence on the motion of the particle when this is described by the
classical equations of motion.

b) Express the Hamiltonian as an operator acting on the wave functions ψ(θ) for the particle on
the circle. Find the energy eigenvalues and show that the energy spectrum varies periodically
with the flux Φ. What is the flux period Φ0? Plot the four lowest energies as functions of Φ in
the interval from 0 to Φ0. Characterize the ground state by its angular momentum in the same
interval. What is special for the spectrum at Φ = Φ0/2?

c) Find the probability current for a general wave function ψ(θ), and determine the value of the
ground state current as a function of Φ. What is the maximum value of the ground state current
and what value for the particle velocity does that correspond to.

d) Find the propagator G(θ, t; 0, 0) = 〈θ, t|0, 0〉 expressed in terms of the Jacobi theta function
for general Φ. Use the definition of the Jacobi theta function as given in problem 2.4 (Problem
Set 2).

e) For the Lagrangian of a particle in a magnetic field the effect of the vector potential is to add
a term proportional to the velocity

L =
1

2
mv2 + eA · v (3)

Follow the path integral approach of problem 2.4 (Problem Set 2) to find the propagator by
summing over all classical paths with the given initial and final conditions. Show in the same
way as discussed there that the propagator derived in this way is equivalent to the one derived in
d). (Use the properties listed in Problem 2.4 for the Jacobi theta function.)
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2 Entangled photons
In this problem correlations between pairs of entangled photons are studied. The interesting
degree of freedom is the polarization of each photon. For a single photon this means that the
quantum state is a vector in a two-dimensional vector space spanned by the vectors |H〉 and |V 〉,
which correspond to linear polarization in the horizontal and vertical direction, respectively. A
general polarization state is a linear combination of these two. As special cases we consider
linearly polarized photons in a rotated direction,

|θ〉 = cos θ|H〉+ sin θ|V 〉 (4)

and circularly polarized photons with right-handed and left-handed orientation, respectively,

|R〉 = 1√
2
(|H〉+ i|V 〉) , |L〉 = 1√

2
(|H〉 − i|V 〉) (5)

The two-photon states, when only polarization is taken into account, are vectors in the tensor
product space spanned by the four vectors,

|HH〉 = |H〉 ⊗ |H〉 , |HV 〉 = |H〉 ⊗ |V 〉 ,
|V H〉 = |V 〉 ⊗ |H〉 , |V V 〉 = |V 〉 ⊗ |V 〉 , (6)

(Note that even if the photons are bosons there is no symmetry constraint on the two-photon
states, since we assume that the two photons can be distinguished by their different direction of
propagation.)
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As a specific way to produce entangled photon pairs we consider the method of parametric
down conversion, as described below and sketched in the Figure 2 and 3.

As illustrated in Fig. 2a a (weak) beam of photons enter a crystal, where each photon due
to the non-linear interaction with the crystal is split into two photons. These appear with equal
energy, half the energy of the incoming photon. The transverse momentum of the emerging pho-
tons is fixed so that their direction of propagation is limited to a cone, as indicated in the figure.
The photons appear with constant probability around the cone. However, due to conservation of
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total transverse momentum, the two photons in each a pair are correlated so that they always are
emitted at opposite sides of the cone.

There is furthermore a polarization effect, since photons with horizontal and vertical polariza-
tion (relative to the crystal planes) do not propagate in exactly the same way. As a consequence
the cones corresponding to these two polarizations are slightly shifted. This is shown in the head-
on view of Fig. 2b, where the cone corresponding to polarization H is slightly lifted relative to
the cone corresponding to polarization V.

Two photons in a correlated pair will be located on opposite points of the central point O,
like the pair of points 1 and 2 and the pair 3 and 4, and they always appear with orthogonal
polarization. As shown by the figure this means that for most directions of the emitted photons
the polarization of each photon is uniquely determined by its direction of propagation. For such
a pair the two-photon state is a product state of the form |HV 〉. As an illustration, the pair 3, 4
of directions of the cone, as shown in Fig.2b, will be of this type.

However two directions are different since they lie on both cones. This is illustrated by the
points 1 and 2 in Fig. 2b. A photon at one of these positions will be in a superposition of |H〉
and |V 〉. Due to correlations between the photons a pair located at this position will be described
by an entangled two-photon state of the form

|ψ〉 = 1√
2
(|HV 〉+ eiχ|V H〉) (7)

where the complex phase χ can be regulated in the experimental set up.
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We assume in the following that a filter close to the crystal will single out photons only in
the directions 1 and 2. This is schematically shown in Fig. 3. To analyze correlations between
the two photons in each pair, polarization filters are applied to photons in both directions as also
shown in the figure. Those that pass the polarization filters are registered in the detectors and the
registrations are paired by use of coincidence counters.

The polarization filters may be represented by operators that project on linearly polarized
states along a (rotated) direction

P̂ (θ) = |θ〉〈θ| (8)
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In the following we examine the expected results of the polarization measurements by calcu-
lating the following expectation values

P1(θ1) ≡
〈
P̂1(θ1)

〉
photon 1

P2(θ1) ≡
〈
P̂2(θ2)

〉
photon 2

P12(θ1, θ2) ≡
〈
P̂1(θ1)P̂2(θ2)

〉
photon 1 and photon 2 (9)

a) Assume a series of N entangled photon pairs are used in an experiment. In this series
n1 photons are registered in detector 1, n2 photons are registered in detector 2 and and n12 are
registered at coincidence in the two detectors. What are the relations between the registered
frequences n1/N , etc. and the the expectation values P1, P2 and P12?

b) For the general two-photon state of the form (7) find the density operator of the two-photon
pair, and find the corresponding reduced density operators for photon 1 and photon 2.

We consider three different situations where the the incoming photon pairs are in the state (7)
with I: χ = π, II: χ = 0 and III: χ = π/2.

c) Consider an input state of the form I. Determine the detection probability P1 of photon 1
as a function of the angle θ1 of polarizer 1. Do the same with P2 for photon 2. Determine next
the probability P12 for detecting photons at both analyzers as a function of the angles θ1 and θ2.
What do the results tell about correlations of the two photons?

d) Consider next a two-photon input state of the form II. Examine the same questions as in
c). Are the results obtained rotationally invariant? Compare the cases b) and c).

e) Consider finally the case III. Find also in this case the expectation values P1, P2 and P12 as
fuctions of the angles of the polarizers. Show that in this case there exists a mixed state, which
is an incoherent mixture of |HV 〉 and |V H〉, that has identical expectation values.

f) The Bell inequality, which is based on an assumed set of ”hidden variables” as a source
of the statistical distributions, can be written as a constraint on the function P12 in the following
way (see Sect. 2.3.2 of the lecture notes),

F (θ1, θ2, θ3) ≡ P12(θ2, θ3)− |P12(θ1, θ2)− P12(θ1, θ3)| ≥ 0 (10)

Examine the Bell inequality in the cases I, II and III for the special choice of angles θ1 = 0,
θ2 = θ and θ3 = 2θ by plotting the function F (0, θ, 2θ). Comment on which of the cases that
show that the Bell inequality is not satisfied. Is there a relation between the conclusion for the
case III and the results in e)?
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FYS 4110: Non-relativistic quantum mechanics

Midterm Exam, Fall Semester 2005

The problem set is available from Friday October 14. The set consists of 2 problems written on
4 pages.

Deadline for returning solutions
is Friday October 21.

Return of solutions
The solutions can be returned either in written/printed form or as an e-mail attachment.
Written/printed solutions can be returned at Ekspedisjonskontoret in the Physics Building. Please
add a copy that the lecturer can keep for evaluation at the final exam.
E-mailed solutions: Please send the solutions as one file, preferably in pdf format. E-mail ad-
dress:j.m.leinaas@fys.uio.no.

Questions concerning the problems
Please ask the lecturer, Jon Magne Leinaas ( Office: room 471).
Language
Solutions may be written in Norwegian or English, depending on your preference.

————————————————————————-

PROBLEMS

1 Spin motion in an oscillating field.
We study in this problem first spin motion in a constant magnetic field, then the effect of including
an additional, oscillating field. Results that are derived in Sect. 1.3.2 of the lecture notes may be
used in the solution.

An electron with spin vector

Ŝ = (h̄/2)σ (1)

and magnetic moment

µ̂ =
e

m
Ŝ (2)

is situated in a constant magnetic field B = B0k. The spin motion is assumed to be independent
of the orbital motion of the electron.

a) The spin state is described by a time dependent density matrix

ρ(t) =
1

2
(1+ r(t) · σ) (3)



2

As initial condition for the motion we have r = r0 for t = 0. Give a general expression for ρ(t)
in terms of the time evolution operator, and use this to determine the time dependent vector r(t).

b) Assume next the initial condition r0 = ak (k is the unit vector in the z-direction). What are
the allowed values of a? An oscillating field is turned on so that the total magnetic field is

B = B0 k+B1(cosωt i+ sinωtj). (4)

Find also in this case the time evolution of r.

c) Study the motion found in b) in the special case of resonance, ω = ω0 ≡ − eB0

m
. Determine

r(t) and make a qualitative description of the motion.

2 Charged particle in a strong magnetic field.

B

Figure 1:

We study in this problem a particle with electric charge e that moves in a strong magnetic
field B. The motion is assumed to be constrained to a plane (the x,y-plane) with the magnetic
field orthogonal to the plane. The magnetic field is assumed to be constant over the plane, and
eB is taken to be negative, with B as the z-component of B. We assume in the following that the
rotationally symmetric form of the vector potential is chosen, A = −(1/2)r × B. The relation
between velocity and (canonical) momentum is v = (p − eA)/m, and the Hamiltonian has the
standard form H = (1/2m)(p− eA)2.

We consider first the classical, non-relativistic form of the particle motion. Next we study the
quantum description, where a set of coherent states is introduced for the particle in the degenerate
ground state of the Hamiltonian. This description is particularly relevant for the study of the
quantum Hall effect, where a 2-dimensional electron gas moves under the influence of a strong
magnetic field.
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a) Use Newton’s second law for a charged particle in a magnetic field to show that, classically, the
particle moves in a circular orbit with constant angular velocity ω = −eB/m. Show, by use of
the equation of motion, that generally the mechanical angular momentum Lmek = m(xvy − yvx)
is not a constant of motion, whereas L = Lmek + (eB/2)r2 is conserved. (The last term can be
viewed as an electromagnetic contribution.)

b) Consider the following vector, R = r+(1/ω)k×v, with r as the position and v as the velocity,
k as the unit vector in the z-direction (orthogonal to the plane) and B as the z-component of the
magnetic field. Show that R is a constant of motion, and give a physical interpretation of R and
ρ = (1/ω)k× v for the circular orbits? R is known as the guiding center coordinate.

c) In the quantum description, the position r and momentum p are, in the standard way replaced
by operators r̂ and p̂ that satisfy the Heisenberg commutation relations. Show that the two
components X̂ and Ŷ of the vector R̂, in the quantized form, do not commute. In what sense
is the X,Y-plane similar to a two-dimensional phase space? Examine also commutators between
the components ρ̂x and ρ̂y of ρ̂ in the same way.

d) Introduce dimensionless operators

â =
1√
2lB

(X̂ + iŶ ) , b̂ =
1√
2lB

(ρ̂x − iρ̂y) (5)

where lB is the so-called magnetic length, lB =
√
h̄/|eB|. Show that the set of operators

{â, â†, b̂, b̂†} satisfy the same commutation algebra as that of two independent harmonic oscil-
lators. The corresponding set of harmonic oscillator states we denote by |m,n〉, where â† acts
as a raising operator on the m quantum number and b̂† as a raising operator on the n quantum
number.

e) Find expressions for the Hamiltonian Ĥ and angular momentum L̂ in terms of the â and b̂
operators. Show that Ĥ has an harmonic oscillator spectrum and find also the eigenvalues of L̂
expressed in terms of m and n. In the following we assume the particle to be restricted to the
degenerate ground state (the lowest Landau level). Show that this corresponds to the condition
n = 0, while m is a free variable, so that the states |m〉 ≡ |m, 0〉,m = 0, 1, 2, ... form a complete
set.

f) A coherent state in the Lowest Landau level can be defined by the equation

â|z〉 = z|z〉 , b̂|z〉 = 0 (6)

Calculate the expectation values of the components of the position operator, x̂ and ŷ in the co-
herent state and show that it is peaked around the point x =

√
2lB Re z, y =

√
2lB Im z in the

x,y-plane. Use the coherent state representation for the |m〉 states, to demonstrate that the num-
ber of independent states in the lowest Landau level increases linearly with the available area in
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the x,y-plane. Find the density of states in the x,y-plane.

g) We assume that a weak, constant electric field E is introduced in the x-direction. Show that
this effectively introduces the following Hamiltonian in the lowest Landau level,

H ′ =
1

2
h̄ω − lb√

2
eE(â+ â†) (7)

Also show that this Hamiltonian gives a time dependence to the coherent state |z(t)〉, correspond-
ing to a drift with constant velocity in the y-direction. What is the drift velocity?
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FYS 4110: Non-relativistic quantum mechanics

Midterm Exam, Fall Semester 2006

The problem set is available from Friday October 13. The set consists of 2 problems written on
5 pages.

Deadline for returning solutions
is Friday October 20.

Return of solutions
Written/printed solutions should be returned to Ekspedisjonskontoret in the Physics Building.
Questions concerning the problems
Please ask the lecturer, Jon Magne Leinaas ( Office: room 471, email: j.m.leinaas@fys.uio.no).
Language
Solutions may be written in Norwegian or English, depending on your preference.

For solving the problems, it may be useful to consult the relevant sections of the lecture notes.

————————————————————————-

PROBLEMS

1 Spin coherent states
We consider a quantum spin Ĵ which acts in a 2j+1 dimensional vector space. In the standard

way we introduce a set of basis vectors |j,m〉, where j is the quantum number of the total spin, so
that Ĵ2 = j(j + 1)h̄21 and m is the quantum number of the z-component, Ĵz|j,m〉 = mh̄|j,m〉.
Thus, m runs from −j to j and identifies the basis vectors, while j is a fixed number which
characterizes the size of the total spin.

We remind about the following relations,

Ĵz|j,m〉 = mh̄ |j,m〉
Ĵ−|j,m〉 =

√
(j +m)(j −m+ 1) h̄ |j,m− 1〉

Ĵ+|j,m〉 =
√
(j −m)(j +m+ 1) h̄ |j,m+ 1〉 (1)

where Ĵ− = Ĵx − iĴy and Ĵ+ = Ĵx + iĴy.
The spin system has a certain similarity with a harmonic oscillator, in the sense that Ĵ+ and Ĵ−

are raising and lowering operators like â† and â, and Ĵz like the harmonic oscillator Hamiltonian
Ĥho has a spectrum with constant separation between the levels, where these raising and lowering
operators act. There are differences, in particular since the spectrum of Ĵz has a finite number
of levels, whereas the number of levels of the harmonic oscillator is infinite. In spite of these
differences, coherent states for the spin system can be introduced in a somewhat analogous way
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to that of the harmonic oscillator, but not precisely in the same way. In particular the coherent
states cannot be defined as eigenstates of the lowering operator Ĵ−.

a) Since the m quantum number is limited by m ≤ j the lowering operator Ĵ− has only one
eigenvector, which is the lowest state |j,−j〉. How do you show this?

Instead of defining the coherent states as eigenvectors of the lowering operator, they are
defined to be states of minimum uncertainty in the three components of the spin variable. To be
more precise, such a state should minimize

(∆J)2 =
〈
Ĵ2

〉
−

〈
Ĵ
〉2

(2)

b) Assume a particular spin state points in the z-direction in the sense
〈
Ĵ
〉
= Jk. Show that

if this is a minimum uncertainty state, then J = jh̄ or J = −jh̄.
c) A maximum spin state is defined by

n · Ĵ |n, j〉 = jh̄|n, j〉 (3)

with n as a unit vector in an arbitrary direction. Based on the result of b), explain why such a
maximum spin state is a minimum uncertainty state, with expectation value for the spin vector

〈
Ĵ
〉
≡ 〈n, j|Ĵ|n, j〉 = jh̄n (4)

The above properties of |n, j〉 justifies this to be defined as a coherent states of the spin
system. The continuous set of all these states is specified by two variables, for example the polar
angles θ, φ of the vector n.

In the following we focus on the simplest case of spin half, j = 1/2. The spin coherent states
in this case are

|n〉 ≡ |n, 1
2
〉 (5)

corresponding to spin up along the n axis. For the particular case of spin along the z-axis we also
introduce the notation |0〉 for the spin down state (n = −k) and |1〉 for the spin up state (n = k).

d) Show that for j = 1/2 the condition of minimum uncertainty is trivially statisfied, so that
any state can be considered as a coherent state.

In order to bring the notation closer to that of the coherent states of the harmonic oscillator
we represent the unit vector n by a complex number z in the following way

z = e−iφ cot
θ

2
(6)

with φ and θ as the polar angles of n. (This mapping from the unit sphere to the complex plane
is referred to as a stereographic projection.) We further define |z〉 ≡ |n〉. With this definition
z = 0 corresponds to the spin-down state |0〉 along the z-axis, and for general z we have

σn|z〉 = |z〉 , σn = σ · n (7)



3

with n and z related by (6).
e) With |k〉, k = 0, 1 as the spin states along the z-axis, show that the transition function

between these basis states and the coherent states |z〉 can be written as

〈k|z〉 = zk√
1 + |z|2

, k = 0, 1 (8)

(This corresponds to a particular choice of the complex phase of the coherent state. In the fol-
lowing we will make use of this choice of phase.)

We now introduce a coherent state representation by using the coherent states as basis vectors.
For a general state |ψ〉 the wave function in the z-representation is then defined as

ψ(z) = 〈z|ψ〉 (9)

f) Determine for |ψ〉 = |z0〉 the square modulus of the wave function,

|ψz0(z)|2 ≡ |〈z|z0〉|2 (10)

g) Show that the spin coherent states satisfy a completeness relation of the form
∫ d2z

2π

4

(1 + |z|2)2 |z〉〈z| = 1 (11)

where d2z denotes the standard area element in the two-dimensional plane, and demonstrate how
this completeness relation can be used to reconstruct the abstract vector |ψ〉 of any spin state
from the corresponding wave function ψ(z).

2 Entanglement in a three-particle system.
Three spin-half particles, referred to as A, B and C, are produced by a source S in a correlated

quantum state. The corresponding state vector can be factorized in a spin state and a position
state. We focus on the spin state, which has the form

|ψ〉 = 1√
2
(|uuu〉 − |ddd〉) (12)

where |uuu〉 = |u〉A ⊗ |u〉B ⊗ |u〉C , is the tensor product of spin up along the z-axis for all the
three particles, while |ddd〉 = |d〉A⊗ |d〉B ⊗ |d〉C is the product state corresponding to spin down
for all the three particles along the z-axis. The state (12) is often referred to as a GHZ state
(Greenberger, Horne and Zeilinger). It corresponds to a so-called Bell-state for two particles,
and can obviously be generalized to an arbitrary number of spin half particles.

a) What do we mean by saying that the spins of the three particles are in a correlated state,
and what do we mean by calling the state entangled.

We first consider a division of the full system into two subsystems, ABC = A + BC, where
particle A is considered as one of the subsystems and the two other particles B and C as forming
the other subsystem.
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b) Find the reduced density matrices ρ̂A and ρ̂BC for the two subsystems. What are the
corresponding values for the (von Neuman) entropies SA and SBC . With the reference to these
values why do we call the GHZ state of the full system ABC maximally entangled? If we
consider only subsystem BC is there any entanglement between spin B and C?

We introduce two new sets of spin basis vectors corresponding to quantized spin in the x- and
y-directions. |f〉 = 1√

2
(|u〉 + |d〉) is spin up in the x-direction and |b〉 = 1√

2
(|u〉 − |d〉) is spin

down, while |r〉 = 1√
2
(|u〉 + i|d〉) is spin up in the y-direction and |l〉 = 1√

2
(|u〉 − i|d〉) is spin

down.

c) Rewrite the GHZ in two different ways, first by using basis vectors with quantized spin
along the x-axis for all three particles, then by using vectors with quantized spin along the y-axis
for spin A and B, but quantized spin along the x-axis for spin C.

d) Explain, by reference to the expressions for the GHZ state in c), how the three spin com-
ponents of particle A can be determined by performing spin measurements on particle B and C,
while not making any measurement on particle A. Specify in each of the three cases what direc-
tions should be chosen for spin measurements on B and C (not necessarily the same direction for
both particles).

We assume now the three particle spins to be in the GHZ state, and all the three particles to be
far apart. We follow the analysis of the EPR paradox and draw from point d) the conclusion that
all three spin components of spin A represent elements of reality and can therefore be ascribed
independent, measurable values mA

x , mA
y and mA

z , even before any measurement is performed
on the system. These values we have to consider as unknown, since they are not determined by
the quantum state. Note that exactly the same argument can be used for the spin components of
particle B and C.

We follow up this analysis by simply assuming the particles to have sharp, although unknown
valuesmx,my andmz, for all three spin components of each of the particles. For simplicity scale
the spin variables mx etc. to take values +1 and −1 for spin up and spin down. We confront this
assumption with the predictions of quantum mechanics.

e) Show that the following composite spin operators, Ô1 = σx⊗σy ⊗σy, Ô2 = σy ⊗σx⊗σy
and Ô3 = σy ⊗ σy ⊗ σx, have the GHZ state as an eigenstate. What are the corresponding
eigenvalues? We also consider a fourth operator Ô4 = σx⊗σx⊗σx. Show that Ô4 = −Ô1Ô2Ô3

and therefore also has the GHZ state as eigenstate. What is the corresponding eigenvalue.

f) Assuming the spin components of all three particles to have well defined values, denoted
mA

x , mA
y , etc., we interpret the eigenvalue equations for the operators Ô1, Ô2 and Ô3 as giving

similar equations for products of the m variables. Write these equations, which give constraints
on the unknown values.

Write also the corresponding equation for operator Ô4. Show that this equation is in conflict
with the three first ones.

This demonstrates that the assumption that all spin components have well defined, although
unknown values, by following EPR’s arguments about elements of reality, leads to a direct con-
flict with predictions of quantum mechanics. In the case discussed here we note that this conflict
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is a consequence of the technical point that different components of the spin operator of a parti-
cle anticommute while the corresponding measurable values mx, my and mz necessarily have to
commute.
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This set is available from Friday October 19.
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————————————————————————-

PROBLEMS

1 Density operators
A density operator of a two-level system can be represented by a 2 × 2 (density) matrix in

the form

ρ̂ =
1

2
(1+ r · σ) , |r| ≤ 1 (1)

where 1 is the 2× 2 identity matrix, r is a vector in three dimensions and σ is a vector operator
with the Pauli matrices as the Cartesian components. Geometrically the set of all density matrices
form of a sphere in three dimensions, with the pure states |r| = 1 as the surface of the sphere
(the Bloch sphere), and the mixed states as the interior of the sphere.

a) The density operator can also be expressed in bra-ket formulation as

ρ̂ = ρ11 |+〉〈+| + ρ12 |+〉〈−| + ρ21 |−〉〈+| + ρ22 |−〉〈−| (2)

where |±〉 is the state of the upper/lower level of the system, that is with σz|±〉 = ±|±〉. What
are the coefficients ρij, i, j = 1, 2, expressed in terms of the Cartesian components x, y, z of r?

We consider in the following a composite system with two subsystems A and B. These are
both two-level systems so that the Hilbert space of the full system H = HA⊗HB is of dimension
4. A density matrix of the composite system can be written as

ρ̂ =
1

4
(1⊗ 1+

∑

i

ai σi ⊗ 1+
∑

j

bj 1⊗ σj +
∑

ij

cijσi ⊗ σj) (3)
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with ai, bj and cij as coefficients, and with the first factor in the tensor product corresponding to
the A subsystem and the other to B.

b) Find the reduced density matrices of subsystems A and B expressed in terms of the a, b
and c coefficients. What condition should the a, b and c coefficients satisfy if the two subsystems
should be completely uncorrelated?

We examine the four Bell states of the composite system,

|c,±〉 = 1√
2
(|++〉 ± | − −〉)

|a,±〉 = 1√
2
(|+−〉 ± | −+〉) (4)

where |ij〉 = |i〉 ⊗ |j〉, i, j = ±, are tensor product states.

c) Give the expressions for the density operators of the four states, first in the bra-ket form,
and then written in the form (3). What are the reduced density matrices of subsystems A and
B for these four states? Give the entropy of the full system and the two subsystems in the four
cases. Why do we call the Bell states maximally entangled?

d) We consider linear combinations of the form

ρ̂ = xρ̂1 + (1− x)ρ̂2 (5)

where ρ̂1 and ρ2 represent two Bell states and x is a real parameter. Show that if we have
0 < x < 1 the linear combination is a density operator. Why is that not the case if x < 0 or
x > 1?

e) Choose a pair of Bell states and show that halfway between them (x = 1/2) the density
matrix gets a particularly simple form. Show that it can be written in the form

ρ̂ =
1

8
[(1+ n · σ)⊗ (1+m · σ) + (1− n · σ)⊗ (1−m · σ)] (6)

where n is a unit vector and m = ±n. What does this expression show about entanglement
between the two subsystems A and B for this particular state?

f) The Bell states define a subspace in the space of all 4× 4 density matrices. Show that the
density matrices in this subspace commute.

2 Jaynes-Cummings model
The Jaynes-Cummings model is a simplified model for the system of an atom interacting with

the electromagnetic field. One assumes that only two of the atomic energy levels are involved
in the interaction, so that the atom can be modelled as a two-level system. One further assumes
that only one field mode is excited, so that the field can be modelled by an harmonic oscillator.
In this oscillator model the different energy levels correspond to different numbers of photons in
the excited field mode. The situation is most relevant for an atom in a reflecting cavity where a
single mode of the field can be strongly excited.
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We write the Hamiltonian of the model in the following way

Ĥ =
1

2
h̄ω0σz + h̄ωa†a+ ih̄λ(a†σ− − aσ+) ≡ Ĥ0 + Ĥ1 (7)

where the Ĥ0 includes the two first terms, which describe the non-interacting atom and photons,
and Ĥ1 the third term, which describes interactions between the atoms and the photons. The
expression h̄ω0 in the first term gives the energy difference between the two atomic levels, while
h̄ω is the photon energy. (The zero point of the energy has been adjusted to absorb the ground
state energy of the harmonic oscillator and to place the energies of the two-level system sym-
metrically about E = 0.) The Pauli matrices act as operators between the atomic levels, with
σ± = (1/2)(σx ± iσy), and a† and a are operators that create and destroys a photon. The inter-
action term thus has two parts, where the first part creates a photon while lowering the atomic
energy and the other part destroys a photon while increasing the atomic energy. λ is a real valued
parameter that determines the strength of the interaction. The simple form of the interaction Ĥ1

given here is valid in the rotating wave approximation. This gives a good approximation to the
full interaction when the two frequencies ω0 and ω are close in value.

The objective is to study the time evolution of this system, where the interaction term will
induce oscillations between the atomic levels. These oscillations are called Rabi oscillations and
are examined in a somewhat different way in Sect. 1.3.2 of the lecture notes. There the electro-
magnetic field was treated as an external time dependent perturbation, while we here include the
field as a part of the full quantum system and describe it in terms of photons.

We use the notation |m,n〉 for the eigenstates of the non-interacting Hamiltonian Ĥ0, with
m = ±1 indicating the atomic state and n = 0, 1, 2, ... indicating the number of photons (which
is here the level number of the harmonic oscillator).

a) Show that the interaction Hamiltonian Ĥ1 couples the unperturbed levels only in pairs that
differ by one photon. We define such a pair of states as |1〉 ≡ |1, n − 1〉 and |2〉 ≡ | − 1, n〉.
Show that the Hamiltonian in the subspace spanned by this pair of states can be written as a 2x2
matrix of the form

H =
1

2
h̄
(
∆ −ig
ig −∆

)
+ ε1 (8)

with 1 as the 2× 2 identity matrix, and find the expressions for ∆, g and ε.

b) Solve the eigenvalue problem for this 2x2 matrix Hamiltonian and find the energy eigen-
values and the eigenvectors in matrix form. To simplify expressions it may be convenient to write
the matrix elements in terms of new parameters Ω and θ defined by

∆ = Ωcos θ , g = Ωsin θ , (9)

c) In matrix form a general time dependent state can be written as

ψ(t) =
(
c1(t)
c2(t)

)
(10)
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Find the time dependent coefficients c1(t) and c2(t) expressed in terms of Ω and θ for the
initial condition c1 = 0, c2 = 1 at time t = 0. Show that |c1(t)|2 = sin2 θ sin2 Ωt

2
.

d) Give a qualitative description of the result for the excitation of the atom, and make a
comparison with the result of Sect. 1.3.2 of the lecture notes. How does the field strength B1 in
the lecture notes relate to the photon number n in the present case?

The system consisting of the atom and the photons can be considered as a composite quan-
tum system, where the atom is subsystem A and the electromagnetic field (the photons) defines
subsystem B. The Hilbert space of the full system is then a tensor product H = HA ⊗HB. The
eigenstates of Ĥ0 referred to above are special cases of tensor product states,

|1〉 = |1, n− 1〉 = |+ 1〉A ⊗ |n− 1〉B
|2〉 = | − 1, n〉 = | − 1〉A ⊗ |n〉B (11)

e) Write the time dependent state (10) as a ”ket” vector expanded in the above product states,
and give the expression for the corresponding density operator in the bra-ket form. (Write the
expressions in terms of c1(t) and c2(t) without using the solutions for these.)

f) Show that the reduced density matrix of the atom (subsystem A) can be written as a 2x2
matrix that depends only on |c1|2 and |c2|2. Find the corresponding von Neumann entropy ex-
pressed in terms of θ and Ω and plot this as a time dependent function for several different values
of sin θ with Ω fixed. What do these plots show about variations in the entanglement between
the atom and the electromagnetic field?
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————————————————————————-

PROBLEMS

1 Spin splitting in positronium
Positronium is a bound system of an electron and a positron. The two particles have the

same mass m and charges of opposite signs ±e, with e denoting the electron charge. The energy
spectrum of the bound system is similar to that of a hydrogen atom, but the energy scale is dif-
ferent since the reduced mass of the two-particle system has about half the value in positronium
compared to hydrogen. Positronium has a finite life time since the electron and the positron will
eventually annihilate.

The ground state of positronium is degenerate due to the spin degrees of freedom of the two
particles. We distinguish between para-positronium, which is a spin singlet state with total spin
S = 0, and ortho-positronium which is a triplet state with total spin S = 1. Para-positronium has
a life time of 125 picoseconds while the life time of ortho-positronium is about 140 nanoseconds.

The interaction between the magnetic moments of the two particles give rise to a (hyperfine)
splitting of the ground state energy, so that the singlet state has a slightly lower energy than the
triplet state. In the following we make the simplifying assumption that this effect can be studied
in the four-dimensional spin space of the two particles. This means that we assume no coupling
between the spin and orbital coordinates of the particles so that the wave function of the orbital
motion is the same for all the spin states and can therefore be neglected.

We denote in the following the spin up state vector of the z-component of the spin for any
of the two particles as |+〉 and the spin down state by |−〉. The four dimensional space of spin
states has the tensor product form H = He ⊗ Hp, with He as the two-dimensional spin space
of the electron and Hp as the spin space of the positron. The full space is spanned by the four
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product states

|++〉 = |+〉 ⊗ |+〉 , |+−〉 = |+〉 ⊗ |−〉 ,
| −+〉 = |−〉 ⊗ |+〉 , | − −〉 = |−〉 ⊗ |−〉 , (1)

where we assume the first factor in the tensor product to describe the electron spin. In the four-
dimensional spin space the spin operators of the electron and the positron have the following
forms,

Ŝe =
h̄

2
σe ⊗ 1p ≡

h̄

2
Σe

Ŝp =
h̄

2
1e ⊗ σp ≡

h̄

2
Σp (2)

with 1e as the identity operator in the two-dimensional spin space of the electron,1p as the iden-
tity operator in the spin space of the positron, and σe and σp as the Pauli matrices acting in the
two-dimensional spin spaces of the electron and the positron respectively.

a) Show that in the product basis we have

〈ij|Σe ·Σp|kl〉 = 〈i|σe|k〉 · 〈j|σp|l〉 (3)

b) Find the operator product Ŝe · Ŝp expressed as a 4× 4 matrix in the product basis. (In the
matrix representation list the basis vectors in the order |++〉, |+−〉, | −+〉, | − −〉.)

We now introduce another basis, the spin basis with the four vectors

|0, 0〉 =
1√
2
(|+−〉 − | −+〉) (4)

and

|1, 1〉 = |++〉
|1, 0〉 =

1√
2
(|+−〉+ | −+〉)

|1,−1〉 = | − −〉 (5)

c) Show that Ŝe · Ŝp is a diagonal matrix in the new basis.
The total (intrinsic) spin of the two particles is Ŝ = Ŝe+ Ŝp. Show that the new basis vectors

are eigenstates of Ŝ2 and Ŝz and find the eigenvalues. Check that the result for the eigenvalues is
consistent with (4) being the singlet state and (5) being the triplet state.

The Hamiltonian in the spin space can be written in the form

H0 = E01+ κŜe · Ŝp (6)

where E0 is the ground state energy with spin effects excluded, 1 is the identity operator in the
four-dimensional spin space and κ is a positive constant determined by the magnetic moments of
the particles.
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A magnetic field B is turned on in the z direction. This leads to a splitting of the spin energy
states, referred to as the Zeeman effect. The form of the modified Hamiltonian is

Ĥ = E01+ κŜe · Ŝp + λh̄(Ŝe z − Ŝp z) (7)

with λ as a parameter proportional to B.
d) Write the Hamilton H as a 4× 4 matrix in the spin basis.
e) Solve the eigenvalue problem for the Hamiltonian (7) and find the energies expressed in

terms of the parameters E0, κ and λ. Plot the energies as functions of x ≡ λ/κ for fixed E0 and
κ.

Two of the energy eigenstates are mixtures of |0, 0〉 and |1, 0〉. We write these two states as

|A〉 = a |+−〉+ b | −+〉
|B〉 = −b∗ |+−〉+ a∗ | −+〉 (8)

where a and b are functions of x, with |a|2 + |b|2 = 1.
f) Give the expressions for the corresponding density operators ρ̂A and ρ̂B, and for the re-

duced density operators ρ̂Ae, ρ̂Ap and ρ̂Be, ρ̂Bp of the electron and positron subsystems. The
degree of entanglement in the system is given by the von Neumann entropy of the reduced den-
sity operators. Show that the degree of entanglement is the same for |A〉 and |B〉 and can be
expressed as a function of |a|2.

g) Determine the function |a(x)|2 from the eigenvalue problem in e) and use this to make a
plot of the degree of entanglement in the system as a function of x for the two states |A〉 and |B〉.
Are these maximum entanglement states for any value of x?

2 Driven harmonic oscillator
The Hamiltonian of a one-dimensional harmonic oscillator is given by the expression

Ĥ =
1

2m
(p̂2 +m2ω2

0x̂
2) = h̄ω0(â

†â+
1

2
) (9)

with the raising and lowering operators defined by

â =
1√

2mh̄ω0

(mω0x̂+ ip̂) , â† =
1√

2mh̄ω0

(mω0x̂− ip̂) (10)

The time evolution operator is

Û0(t) = e−
i
h̄
tĤ0 (11)

The coherent states of the oscillator are defined as eigenvectors of the lowering operator

â|z〉 = z|z〉 (12)

The general coherent state |z〉 is related to the ground state of the oscillator |0〉 by

|z〉 = D̂(z)|0〉 = e−z∗zezâ
†|0〉 (13)
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where the unitary shift operator is given by

D̂(z) = ezâ
†−z∗â (14)

a) Show that for a general operator Â we have the relation

ÛeÂ Û−1 = eÛÂ Û−1

(15)

and use that to calculate the operator Û0(t)D̂(z)Û0(t)
†. Make use of the result to determine the

time dependent state vector |ψ(t)〉, when this initially is a coherent state |ψ(0)〉 = |z0〉. Show
that |ψ(t)〉 at later times t is also a coherent state.

We next assume the harmonic oscillator to be under influence of a time dependent external
potential, so that the hamiltonian now is

Ĥ = Ĥ0 + Ŵ (x, t) (16)

In the following we assume the external potential to have the specific form

Ŵ (x, t) = Ax̂ sinωt (17)

with A as a constant and ω as the oscillation frequency of the external potential.
b) Find the Heisenberg equation of motion for x̂ and p̂ and show that they correspond to the

equation of motion of a driven harmonic oscillator, that is subject to the periodic force f(t) =
−A sinωt.

c) Give the definition of the time evolution operator ÛI(t) in the interaction picture and show
that it satisfies an equation of the form

ih̄
d

dt
ÛI(t) = ĤI(t)ÛI(t) (18)

Assume Ŵ is treated as the interaction. Show that ĤI(t) then is a linear function of â and â†,

ĤI(t) = θ(t)∗ â+ θ(t) â† (19)

and determine the function θ(t).
d) Show that the equation (18) has a solution of the form

ÛI(t) = eξ(t)â
†−ξ∗(t)â eiφ(t) (20)

with ξ(t) as a complex and φ(t) as a real function of time. What are the equations that these two
functions should satisfy?

e) Use the expressions for Û0(t) and ÛI(t) to find the time dependent state vector |ψ(t)〉 in
the Schrödinger picture, with the same initial condition as in a). Show that also in this case it
describes a time dependent coherent state, of the form |ψ(t)〉 = eiγ(t)|z(t)〉. Find z(t) expressed
in terms of z0, ξ(t) and ω0.

f) Determine the function ξ(t) and find an explicit expression for z(t). The corresponding
real coordinate is x(t) =

√
2h̄/mω0 Re z(t). Does this coordinate satisfy the classical equation

of motion of the driven harmonic oscillator?
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OPPGAVER

1 Harmonic oscillator coupled to spin
We consider the motion of an electron in a one dimensional harmonic oscillator potential,

with the electron spin being under the influence of a space-dependent magnetic field. The Hamil-
tonian has the form

Ĥ =
1

2m
(p̂2 +m2ω2x̂2)− e

m
B · S (1)

where B is an x-dependent magnetic field

B(x) = B0 k +B1
x

d
i (2)

with B0 and B1 as constants, d as a parameter with dimension of length, k as a unit vector
orthogonal to the direction of motion and i as a unit vector in the direction of motion.

We introduce the raising operator â† and the lowering operator â of the harmonic oscillator,
and further the raising and lowering operators of the z-component of the spin , σ± = 1

2
(σx±iσy).

The Hamiltonian can then be split in two parts

Ĥ = Ĥ0 + Ĥ1 (3)

with

Ĥ0 = ~ω(â†â+
1

2
) +

1

2
~ω0 σz (4)

and

Ĥ1 =
1

2
~λ (âσ+ + â†σ− + âσ− + â†σ+) (5)
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where ω0 = −eB0/m and λ = −(eB1/md)
√
~/(2mω).

We shall further make the assumption that the ω ≈ ω0, so that |ω− ω0| << ω + ω0 and shall
also assume that the spin energy contribution from Ĥ1 is smaller than the spin energy of Ĥ0, in
the sense λ . ω. This allows us to introduce a simplification, by neglecting the âσ− and the
â†σ+ terms in H1, so it takes the form

Ĥ1 =
1

2
~λ (âσ+ + â†σ−) (6)

In the following we shall use this simplified form for Ĥ1.
a) We write the eigenvalue equation of Ĥ0 as

Ĥ0|n,m〉 = E0
nm|n,m〉 (7)

with n = 0, 1, 2, ... as the energy quantum number of the harmonic oscillator and m = ±1/2 as
the quantum number of Ŝz. What is the expression for the energies E0

n,m? Can you give a reason
(qualitative) why the terms left out in Ĥ1 (Eq.(6)) may be considered as less important than the
ones that are kept?

b) Show that Ĥ1 couple the states |n,m〉 only in pairs, and show in particular that it gives a
coupling between |0,+1

2
〉 and |1,−1

2
〉, but with no coupling to other states |n,m〉. Write the full

energy eigenvector equation as a matrix equation for these two states and determine the energies,
expressed in terms of ω, ω0 and λ.

A simplification of expressions, here and in the following, may be suggested by introducing
the abbreviations ∆ω = ω − ω0 and Ω =

√
∆ω2 + λ2.

c) The two energy eigenstates |ψ±〉, in the subspace spanned by |0,+1
2
〉 and |1,−1

2
〉, can be

written as

|ψ+〉 = cos β |0,+1

2
〉 − sin β |1,−1

2
〉 , |ψ−〉 = sin β |0,+1

2
〉+ cos β |1,−1

2
〉 (8)

Find the coefficients cos β and sin β expressed in terms of the parameters ω, ω0 and λ (or ∆ω
and Ω) of the Hamiltonian.

d) Consider next the time evolution of a state

|ψ(t)〉 = c1(t)|0,+
1

2
〉+ c2(t)|1,−

1

2
〉 (9)

with initial condition c1(0) = 1 and c2(0) = 0. Determine the time-dependent coefficients c1(t)
and c2(t).

e) Find and expression for |c2(t)|2 = 1 − |c1(t)|2 and show that it changes periodically
with t. What is the period? Determine the maximum value as a function of the parameters of
the Hamiltonian and plot it as a function of ω0 with ω and λ fixed. What is the condition for
resonance, where |c2(t)|2 has its largest maximum value?

f) The density operator can be written as

ρ̂(t) = |ψ(t)〉〈ψ(t)| (10)
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Give the expression for ρ̂(t) in terms of the basis vectors |n,m〉. Find the corresponding expres-
sion for the reduced density operators ρ̂s(t), which involves only the spin degrees of freedom,
and ρ̂p(t) which involves only the position degrees of freedom.

g) For the time dependent state |ψ(t)〉 determine the expectation values

〈σ(t)〉 = 〈ψ(t)|σ |ψ(t)〉
〈x(t)〉 = 〈ψ(t)| x̂ |ψ(t)〉
〈xσ(t)〉 = 〈ψ(t)| x̂σ |ψ(t)〉 (11)

Give a qualitative explanation of the results based on the classical understanding of motion of
the particle in the harmonic oscillator potential and of the electron spin in the magnetic field.

2 Squeezed coherent states
Coherent states, as defined in the lecture notes, play an important role in quantum optics,

in particular in the description of laser light. There are some related states, called squeezed
states that are also important. They are closely related to the coherent states and are like these
minimal uncertainty states. They are referred to as squeezed states, since the uncertainty in one
direction in phase space is (at a given time) reduced relative to that of the coherent state, while
the uncertainty in the conjugate direction is increased. These uncertainties will then typically
oscillate in time.

In this problem we study some of the properties of squeezed states for a one-dimensional
harmonic oscillator, with Hamiltonian of the standard form

Ĥ =
1

2m
(p̂2 +m2ω2x̂2) = ~ω(â†â+

1

2
) (12)

The squeeze operator is introduced by the following expression

Sλ = e
1
2
[λ∗â2−λ â† 2] (13)

with λ as a complex squeezing parameter. We define the squeezed coherent states as

|z, λ〉 = Sλ|z〉 (14)

with |z〉 as a coherent state, and introduce squeezed raising and lowering operators in the follow-
ing way

b̂λ = SλâS
†
λ , b̂†λ = Sâ†S†

(15)

a) Show that Sλ is a unitary operator, demonstrate that the following expressions are correct

b̂λ = cosh |λ| â+
λ

|λ| sinh |λ| â† (16)

b̂†λ = cosh |λ| â† +
λ∗

|λ| sinh |λ| â (17)
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and show that b̂λ and b̂†λ satisfy the same commutation relations as â and â†.
b) Show that the squeezed coherent states |z, λ〉 are eigenvectors of b̂λ. What are the eigen-

values?
c) Show that if the squeezing parameter λ is real the squeezing operator scales the the position

and momentum operators in resiprocal ways,

Sλ x̂ S
†
λ = d x̂ , Ŝλ p̂ S

†
λ =

1

d
p̂ (18)

and determine the scale factor d. Show that the squeezed states |z, λ〉 (with λ real) satisfy the
same minimal uncertainty relation as the coherent states |z〉.

d) A squeezed ground state (with z = 0) can be expanded in the energy eigenstates as

|0, λ〉 =
∞∑

n=0

cn|2n〉 (19)

Explain, based on the definition of |z, λ〉, why only eigenstates corresponding to even values 2n
appear in the expansion. By use of the results of a) and b) show that the coefficients cn satisfy a
recursion relation and use this to determine the coefficients.

e) For three different values λ = 0.5, 1.0 and 1.5, plot the coefficient |cn|2 as function of the
discrete variable n. Give a comment on how the distribution over energy levels changes with λ.

f) Assume that the harmonic oscillator is initially, for t = 0, in the squeezed coherent state
|ψ(0)〉 = |z0, λ0〉. Show that during the time evolution it will remain a squeezed state of the form
|ψ(t)〉 = eiα(t)|z(t), λ(t)〉, with α(t) as an unspecified complex phase. Determine z(t) and λ(t).

g) In the case z0 = 0 evaluate for λ0 real and positive, the following time dependent mean
values, 〈x̂〉, 〈p̂〉, and variances ∆x2, ∆p2. Make a plot of the time dependence of ∆x2 and ∆p2

for two values λ0 = 0.1 and λ0 = 0.5. Give a qualitative description of the results shown by the
plot.

Språklig kommentar
Sqeezed state kan gjerne på norsk oversettes med sammenpresset eller presset tilstand.

4



FYS 4110: Ikke-relativistisk kvantemekanikk

Midttermineksamen, høsten 2010

Oppgavesettet er tilgjengelig fra fredag 15. oktober. Settet består av 2 oppgaver på 4 sider.
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OPPGAVER

1 Oscillations in ammonia molecules
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R
|2

The ammonia molecule has the chemical formula NH3, which means that it is composed of
three hydrogen and one nitrogen atoms. The left part of the figure shows the spatial structure of the
molecule, where the hydrogen atoms define a planar, equilateral triangle (in the yz-plane) and the
nitrogen atom is located on the orthogonal symmetry axis (x-axis) at some distance from the plane of
the hydrogen atoms.

With the plane of the hydrogen atoms being fixed, there are, however, two possible positions of the
nitrogen atom that are equally favored with respect to potential energy. They are located symmetrically
about the plane, as indicated in the figure.
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In the quantum description we associate two different state vectors |ψR〉 and |ψL〉 with these two
positions of the nitrogen atom. In the right part of the figure the situation is pictured with the potential
energy and the two wave functions shown as functions of the position of the nitrogen atom along
the symmetry axis. The potential has the form of a double well with two degenerate ground state
positions. With Ĥ as the Hamiltonian we write this degeneracy as

〈ψL|Ĥ|ψL〉 = 〈ψR|Ĥ|ψR〉 ≡ E0 (1)

There is however a correction to this picture. Even though there is potential barrier between the
two equilibrium positions, there is a small probability for quantum tunneling from one position to the
other. This is represented by a non-vanishing matrix element

〈ψL|Ĥ|ψR〉 ≡ λ (2)

were we may assume λ to be real and positive. The value of this matrix element is very small, which
means that the corresponding transition time from one minimum of the potential to the other is very
long, but the result is that if the nitrogen atom initially is in one of the wells it will oscillate back and
forth between the two minima at a low frequency (compared to other atomic frequencies).

The true ground state is however a stationary state, which to a good approximation is a superpo-
sition of the states |ψL〉 and |ψR〉 associated with the two minima. In the following we restrict the
description to the two-dimensional Hilbert space spanned by these two vectors.

a) Write the Hamiltonian as a 2 × 2 matrix and find the energy eigenvalues E±
0 and eigenstates

|ψ±
0 〉, when the λ terms are included. Express the ground state |ψ−

0 〉 and the excited state |ψ+
0 〉 as

linear combinations of |ψL〉 and |ψR〉 and describe briefly with words the characteristics of the two
energy eigenstates.

The ammonia molecule has an electric dipole moment which arises from the tendency of the
nitrogen atom to attract an electron from the hydrogen atoms. The dipole moment is directed along
the symmetry axis in the opposite direction of the nitrogen atom. We assume now that the ammonia
molecule is located in a constant electric field E directed along the x-axis. The field introduces a new
term Ĥd in the Hamiltonian with matrix elements

〈ψL|Ĥd|ψL〉 = −〈ψR|Ĥd|ψR〉 ≡ ∆

〈ψL|Ĥd|ψR〉 = 〈ψR|Ĥd|ψL〉 = 0 (3)

with ∆ = E d, and with d as the electric dipole moment of the molecule.

b) Determine the new energy eigenvalues E± with this additional term in the Hamiltonian, and
make a plot that shows how the two energy levels change with variable ∆ from a large negative to a
large positive value (from ∆ << −λ to ∆ >> λ). Choose E±/λ and ∆/λ as variables.

c) Determine eigenvectors |ψ±〉 expressed in terms of |ψL〉 and |ψR〉 and plot, as functions of ∆,
the overlaps |〈ψL|ψ±〉|2 between the energy eigenvectors and |ψL〉.

The situation we have here is sometimes referred to as an avoided crossing between the two energy
levels. Give a brief qualitative description of the crossing based on the plotted curves.

We next assume the electric field to vary periodically with time, E = E0 cosωt, and correspond-
ingly, ∆ = ∆0 cosωt, with ∆0 as a positive constant.

d) Show that in the {|ψ±
0 〉} basis the Hamilton can be expressed as

Ĥ = E01 + λσz + ∆0 cosωtσx (4)
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with σx and σz as standard Pauli matrices.

The last term in (6) can be written as

∆0 cosωtσx =
1

2
∆0(e

iωtσ− + e−iωtσ+) +
1

2
∆0(e

−iωtσ− + e+iωtσ+) (5)

where σ± = 1
2(σx ± iσy) can be viewed as raising and lowering operators in the spectrum of the

two-level Hamiltonian. Assuming ω to be positive the first term will usually give the most important
contribution to the Hamiltonian. This motivates the so-called rotating wave approximation, where the
last term in (5) is ommitted. In the following apply this approximation with the Hamiltonian given by

Ĥ = E01 + λσz +
1

2
∆0(e

iωtσ− + e−iωtσ+) (6)

e) Show that this has the same form as the spin Hamiltonian in a rotating magnetic field, discussed
in Sect.1.3.2 of the lecture notes. Outline the method used to find the time evolution operator and give
the expressions for the Rabi frequency Ω and resonance frequency ω0 in terms of the parameters λ and
∆0. It may be convenient here to re-define the zero-point of the energy so that E0 = 0. Comment on
why the value of E0 is not important. It is sufficient to refer to results from the lecture notes without
a detailed derivation.

f) Initially, at time t = 0, the system is in the left shifted state |ψL〉. Determine the time depen-
dence of the overlap of the time evolved state |ψ(t)〉 with the right shifted state, 〈ψR|ψ(t)〉.

g) Assuming that the strength of the oscillating field is given by ∆0 = 2λ, examine numerically
the time dependent function |〈ψR|ψ(t)〉|2 by making a plot over several periods of this function, for
two different values of the frequency, 1) at resonance, ω = ω0 and 2) off resonance with ω = ω0/10.
Use the dimensional variable τ = 2πλt as time coordinate. Make a (qualitative) discussion of what
the curves show and compare with the related curve in the case when the electric field is turned off,
∆0 = 0.

2 Two coupled spin-half systems
Two particles have spins that are decoupled from the motion of the particles, with a spin Hamilto-

nian of the form

H = ω(Ŝ1z + Ŝ2z) + 2
α

~
Ŝ1 · Ŝ2 (7)

The first term is due to an external magnetic field, which acts on the magnetic moments of the two
spins, and the second term is due to a spin-spin interaction between the two particles. Both particles
have spin half, and expressed in terms of the Pauli matrices of the two spin systems, the total spin
operators have the tensor product form

Ŝ1 =
~
2
σ ⊗ 1 , Ŝ2 =

~
2
1⊗ σ (8)

We make use of the following notation for the eigenvectors of the Pauli matrix σz ,

σz|±〉 = ±|±〉 (9)

and remind you about the form of the eigenvectors |s,m〉 of Ŝ
2

(with quantum number s) and Ŝz
(with quantum number m), where Ŝ = Ŝ1 + Ŝ2 is the total spin,
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|1, 1〉 = |+ +〉
|1, 0〉 =

1√
2

(|+−〉+ | −+〉)

|1,−1〉 = | − −〉
|0, 0〉 =

1√
2

(|+−〉 − | −+〉) (10)

with |+ +〉 = |+〉 ⊗ |+〉 etc.
a) Show that the spin states in (10) are eigenstates of the Hamiltonian and find the corresponding

eigenvalues.
b) At the initial time t = 0 the spin system is in the state

|ψ(0)〉 =
1√
2

(|+ +〉+ |+−〉) (11)

Find the corresponding expression for the density operator ρ̂(0). Characterize the state as being pure
or mixed and being uncorrelated, separable or entangled. The reduced density operators of the two
spin systems can be written as

ρ̂1(0) =
1

2
(1 + r1(0) · σ) , ρ̂2(0) =

1

2
(1 + r2(0) · σ) (12)

Find the vectors r1(0) and r2(0).
c) Determine the time-dependent state |ψ(t)〉 and the corresponding density operator ρ̂(t) ex-

panded in the product basis of the spin states |±〉.
d) Find the reduced density operator ρ̂1(t) of the first spin, and the corresponding time dependent

vector r1(t). Give a qualitative description of the time evolution of this vector when ω >> α.
e) Show that the entanglement entropy S of the composite spin system can be expressed as a

function of r1 = |r1| and use the expression to make a plot of S as a function of αt. What is the
maximal value of S during the time evolution? Compare with the maximally allowed value for S in
this system. (Specify whether you use base-2 logarithm or natural logarithm.)

f) The sum r(t) = r1(t) + r2(t) satisfies a simple equation of motion. Find this equation and
characterize the motion.
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FYS 4110: Non-relativistic quantum mechanics

Midterm Exam, Fall Semester 2011

The problem set is available from Friday October 14. The set consists of 2 problems written on 4
pages.

Deadline for returning solutions
Friday October 21. Written/printed solutions should be returned to Ekspedisjonskontoret in the
Physics Building before closing time.

Questions concerning the problems
Please ask the lecturer, Jon Magne Leinaas (Office: room Ø471) or the assistant Marianne Rypestøl
(Office: Ø457).

Language
Solutions may be written in Norwegian or English, depending on your preference.

————————————————————————-

PROBLEMS

1 Entanglement and Bell inequalities
We consider an experimental situation, similar to the one discussed in the lecture notes, where

pairs of spin 1/2 particles are initially prepared in a correlated spin state, and then are separated in
space while keeping the spin state unchanged. When far apart spin measurements are performed on
the particles in each pair, and the results are registered and compared. The situation is illustrated
in the figure, where a series of entangled pairs are created in a source K, and where measurements
of the z-components of the spin are performed on both particles (A and B). When the spins in the
z-directions are strictly anticorrelated, the result spin up (spin down) for particle A is always followed
by the result spin up (spin down) for particle B.

K

A B
entangled

S
ZS

Z

spin measurement

We consider the situation where three different sets of measurements are performed, with different
spin states,

I : ρ̂1 = |ψa〉〈ψa|, |ψa〉 =
1√
2

(|+−〉 − | −+〉)

II : ρ̂2 = |ψs〉〈ψs|, |ψs〉 =
1√
2

(|+−〉+ | −+〉)

III : ρ̂3 =
1

2
(ρ̂1 + ρ̂2) (1)
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The notation is |+−〉 = |+〉 ⊗ |−〉, where |±〉 are spin states of a single particle, with Sz quantized.
The first factor in the tensor product refers to particle A and the second one to particle B. Note that all
three states are strictly anticorrelated with respect to the z-component of the spin of the two particles.
The purpose of the (hypothetical) experiment is to examine correlation functions that are relevant for
the Bell inequalities, as already discussed for case I in the lecture notes, to see if the three states show
different behavior. This involves performing the spin measurements also for rotated directions of the
spin axes.

a) Of the three density operators only ρ̂1 is rotationally invariant. Demonstrate this by calculating
the expectation value of S2 for the three cases, where S = (h̄/2)(σ ⊗ 1 + 1 ⊗ σ) is the spin vector
of the full system, and comment on the results.

b) What are the reduced density operators ρ̂A and ρ̂B in the three cases? Determine the von
Neumann entropy S of the full system, as well as the entropies SA and SB of the subsystems. Check
if the classical restriction on the entropies S ≥ max{SA, SB} is satisfied in any of the cases. In each
of the cases examine if the states are entangled or separable, and give, if possible, a numerical measure
of the degree of entanglement.

We assume the direction of the two measurement devices can be rotated so they measure spin
components of the form

Sθ = cos θSz + sin θSx (2)

where the angle θ can be chosen independently for A and B. The state |θ〉 = cos θ2 |+〉+sin θ
2 |−〉 is the

spin up vector in the rotated direction and the operator P̂ (θ) = |θ〉〈θ| projects on the corresponding
spin vector.

c) Show that the given expression for |θ〉, as claimed above, is the spin up state of Sθ. Determine
the expectation value PA(θ) =

〈
P̂ (θ)

〉
A

, for particle A, in the three cases I, II and III. Comment on
the result.

d) Determine, for the three cases, the joint probability distribution P (θ, θ′) =
〈
P̂ (θ)⊗ P̂ (θ′)

〉
,

with the two angles θ and θ′ as independent variables.
The Bell inequality, according to the hidden variable analysis described in the lecture notes, gives

a constraint on the possible classical correlations of the two spins. In the present case the inequality
can be written as

F (θ, θ′) ≡ P (0, θ′)− |P (θ, 0)− P (θ, θ′)| ≥ 0 (3)

where one of the angles is set to 0 since we, for the states we consider, will only have strict anticorre-
lation for spin measurements along the z-axis. (For details see the derivation in the lecture notes.)

e) Make plots of the function F (θ, 0.5 θ) for the three cases I, II and III, with θ varying in the
interval 0 < θ < 2π. Check in all cases whether the inequality (3) is satisfied or broken, and compare
the results with what is known from point b) concerning entanglement between the two particles.

In addition to these plots, examine the functions for other choices θ′ = λ θ with λ 6= 0.5 to see
if the results are not changed. Alternatively make a 3D plot of the two-variable function F (θ, θ′) and
check whether the conclusion concerning the Bell inequality holds in the full parameter space. State
the conclusions, but it is not needed to include the additional plots in the written/ printed solutions.

f) Assume an experimental series is performed, with the two angles fixed. The number of pairs
registered with spin up (in the chosen direction) for both spins A and B is n++, and the number with
spin down for both spins is n−−. Similarly n+− is the number of pairs registered with spin up for A
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and spin down for B, n−+ is the number of pairs registered with spin down for A and spin up for B.
The total number of pairs in the series is N .

We refer to the experimental results corresponding to PA(θ), PB(θ′), and P (θ, θ′) as PAexp(θ),
PBexp(θ

′), and Pexp(θ, θ′). What are these quantities expressed in terms of the numbers {nij , i, j = ±}
and N?

2 Rabi oscillations in a composite quantum system
An atom interacts with the electromagnetic field within a small reflecting cavity. Only one of the

cavity modes of the field has a frequency that matches energy differences between the lowest energy
levels of the atom. The interaction can therefore be described by a simplified model, where only two
atomic levels are included, denoted |g〉 (ground state) and |e〉 (excited state), and only one field mode,
with energy levels |n〉, where n is the photon number of this mode. The model Hamiltonian is

Ĥ =
1

2
h̄ω0σz + h̄ωâ†â+ ih̄λ(â†σ− − âσ+) ≡ Ĥ0 + Ĥ1 (4)

where the Ĥ0 includes the two first terms, which describe the non-interacting atom and photons, and
Ĥ1 the third term, which describes interactions between the atoms and the photons. h̄ω0 is then the
energy difference between the two atomic levels, h̄ω is the photon energy, and λh̄ is an interaction
energy. The model is known as the Jaynes-Cummings model, and it has precisely the form of a two-
level system interacting with a harmonic oscillator. The Pauli matrices act between the two atomic
levels, with σz as the standard diagonal matrix, and with σ± = (1/2)(σx± iσy) as matrices that raise
or lower the atomic energy. The raising and lowering operators of the harmonic oscillator, â and â†,
have the physical interpretation as photon creation and destruction operators. The model is based on
the rotating wave approximation, where terms of the form â†σ+ and âσ− are suppressed since they
are unimportant close to resonance, where ω0 ≈ ω. An unimportant constant energy contribution to
Ĥ has also been subtracted.

a) Show that the interaction Hamiltonian Ĥ1 couples the unperturbed levels only in pairs that differ
by one photon. We define such a pair of states as |n1〉 ≡ |g〉⊗|n〉 = |g, n〉 and |n2〉 ≡ |e〉⊗|n−1〉 =
|e, n− 1〉 for n ≥ 1. Show that the Hamiltonian in the subspace spanned by this pair of states can be
written as a 2x2 matrix of the form

Hn =
1

2
h̄

(
∆ iωn
−iωn −∆

)
+ εn1 (5)

with 1 as the 2 × 2 identity matrix, and find the expressions for ∆, ωn and εn. Assume |n1〉 to
correspond to the upper matrix elements of Hn and |n2〉 to the lower ones, with the corresponding
matrix elements of a state vector referred to as cn1 and cn2.

The state |g, 0〉 = |g〉 ⊗ |0〉 seems not to have any partner. What happens to this state under time
evolution?

In the following we assume the resonance condition ω = ω0 to be satisfied.
b) Solve the eigenvalue problem for this 2x2 matrix Hamiltonian, and find the two energy eigen-

values E±n and the corresponding eigenvectors φ±n in matrix form. For a general, time dependent state
ψn(t) find the coefficients cn1(t) and cn2(t) expressed in terms of the coefficients cn1(0) and cn2(0)
at the initial time t = 0.

c) A general state, with all n-components included, can be written as

|ψ〉 =
∞∑

n=0

2∑

i=1

cni|ni〉 (6)
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What are the corresponding expressions for the matrix elements of the density matrix, ρni,n′j , Find the
expressions also for the reduced matrix elements ρij of the atom. What is the physical interpretation
of the diagonal terms ρ11 and ρ22?

Consider two different initial conditions for a state vector at t = 0:

I |ψ(0)〉 = |e〉 ⊗ |m− 1〉, where m is a specific, but at this point unspecified photon number.

II |ψ(0)〉 = |e〉 ⊗ |α〉 with |α〉 a coherent state, defined by

|α〉 =
∞∑

n=0

αn√
n!
e−|α|

2/2|n〉 (7)

where α is a complex number. Write in both cases the expressions for the reduced density matrix
elements ρij(0) of the atom.

d) Find the matrix elements of the time dependent, reduced density matrix of the atom ρij(t), for
both initial conditions I and II.

e) Make plots of ρ11(t) as function of t, for both cases I and II. Make the following choice for
the parameters, α = 4 and m = 16. Use λt as time variable on the horizontal axis. Make a short
time plot, 0 < λt < 5, of both cases in the same diagram. Make also a long time plot for case II,
for example with 0 < λt < 100. Comment on the results and compare with the case discussed in the
lecture notes, where the (electro)magnetic field is treated classically.
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FYS 4110: Non-relativistic quantum mechanics

Midterm Exam, Fall Semester 2012

The problem set is available from Friday October 19.

Deadline for returning solutions
Friday October 26. Written/printed solutions should be returned to Ekspedisjonskontoret in the
Physics Building before closing time.

Questions concerning the problems
Please ask the lecturer, Jon Magne Leinaas (Office: room Ø471) or the assistant Marianne
Rypestøl (Office: Ø457).

Language
Solutions may be written in Norwegian or English, depending on your preference.

The problem set consists of 2 problems written on 4 pages.
————————————————————————-

PROBLEMS

1 A three-spin problem
We consider a system consisting of three electrons. They all sit at fixed positions, with their

spins as free variables. A constant magnetic field is pointing in the z-direction and there is a
spin-spin interaction between the particles, so that the Hamiltonian takes the form

H = a(Ŝ1 · Ŝ2 + Ŝ2 · Ŝ3 + Ŝ3 · Ŝ1) + b(Ŝ1z + Ŝ2z + Ŝ3z) (1)

with a and b as positive constants, and with the subscripts 1, 2, and 3, referring to each of the
three particles. (Note that in these expressions the tensor product form of the operators are not
specified explicitly.)

Figure 1: The three-spin-half system. Each of the straight lines shows a division of the full
system into two parts, where one part contains a single spin and the othe part contains two
spins.

a) The total spin we denote as Ŝ = Ŝ1 + Ŝ2 + Ŝ3. Show that the Hamiltonian can be
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expressed in terms of Ŝ2 and Ŝz , and give the expression. Use the rule for composition of
quantum spins to show that the (spin) Hilbert space consists of three orthogonal subspaces,
characterized by spins 1/2, 1/2 and 3/2 respectively.

b) For certain values of a and b the ground state of the system is doubly degenerate, with
the states of this subspace having spin quantum numbers s = 1/2 (for Ŝ2) and m = −1/2 (for
Ŝz). What is the restriction on a and b when this is the case? We assume in the following this
condition to be satisfied.

c) Show that the following three states all lie in the two-dimensional, degenerate subspace
of the ground state,

|ψa〉 =
1√
2

(| −+−〉 − | − −+〉)

|ψb〉 =
1√
2

(| − −+〉 − |+−−〉)

|ψc〉 =
1√
2

(|+−−〉 − | −+−〉) (2)

where | − +−〉 = |−〉1 ⊗ |+〉2 ⊗ |−〉3, with the first factor of the tensor product is the spin
down state of particle 1, the second factor is a spin up state of particle 2 and the third factor is
a spin down state of particle 3, all with spins quantized in the z-direction. (Similar expressions
are valid for all the other three-particle states in the above expressions.)

d) The three-particle system can be considered as a bipartite system, with particle 1 defining
one subsystem and particles 2 and 3 defining the other part. We write this partition of the
system symbolically as 123 = 1 + (23). Two other partitions of this type are possible, namely
123 = 2 + (13) and 3 + (12) (see figure). Determine the reduced density operators of the
two subsystems, for all three partitions, in the case of state |ψa〉. Determine the entanglement
entropy in the three cases and show that the state is maximally entangled with respect to two
of the divisions of the system, but is unentangled with respect to the last one. Comment on
the situation for the two other states |ψb〉 and |ψc〉. In what sense is the entanglement in these
states a two-particle entanglement?

e) We seek new states, in the same subspace, where the entanglement is distributed evenly
between all the three particles. For this purpose consider the following two state vectors,

|ψI〉 =
1√
3

((|+−−〉+ e2πi/3| −+−〉+ e−2πi/3| − −+〉)

|ψII〉 =
1√
3

((|+−−〉+ e−2πi/3| −+−〉+ e2πi/3| − −+〉) (3)

Show that these vectors are orthogonal and span the two-dimensional subspace of the degener-
ate ground state.

f) Show that the entanglement entropy of the states I and II is the same for all three
partitions of the systems in two parts, as described above, and determine the value. Is the
entanglement entropy larger, smaller or equal to the average entanglement entropy of the states
(2), when this is averaged over the three partitions of the system.
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g) A measurement of the observable Ŝ1z is made on particle 1, with the system in the
|ψI〉state. Determine in both cases, when the result is spin up and when it is spin down, what
the entanglement of the subsystem (23) is.

2 Charged particle in a strong magnetic field.
We study in this problem the motion of electrons in a strong, homogenous magnetic field

B, with the electrons constrained to a plane orthogonal to the magnetic field. We choose a
coordinate system, with B pointing along the z-axis, and the electrons thus moving in the x,y-
plane. The electrons are assumed to be fully spin polarized along the magnetic field, and we
can therefore ommit the spin variable in the description.

The magnetic field is described by the following vector potential , Â = −(1/2)r̂×B. The
relation between velocity and (canonical) momentum is v̂ = (p̂−eÂ)/m, and the Hamiltonian
has the standard form Ĥ = (1/2m)(p̂− eÂ)2. With B = Bk assume in the following eB to
be positive.

a) Show that the angular momentum, written as

L̂ = (r̂× p̂)z (4)

is a conserved quantity. (The label z means the z-component of the vector product.)
b) It is convenient to introduce combinations of the position and velocity in the following

way,

R̂ = r̂ + η̂ , η̂ = (1/ω)v̂ × k (5)

with ω as the cyclotron frequency, ω = eB/m. We refer to the components of the vector R̂ as
X̂ and Ŷ , and the components of η̂ as η̂x and η̂y, and introduce the dimensionless operators

â =
1√
2 lB

(X̂ − iŶ ) , b̂ =
1√
2 lB

(η̂x + iη̂y) (6)

where lB is the so-called magnetic length, lB =
√
h̄/eB. Show that the set of operators

{â, â†, b̂, b̂†} satisfies the same commutation algebra as that of two independent harmonic os-
cillators.

c) Find the form of the Hamiltonian Ĥ and the angular momentum L̂ expressed in terms
of {â, â†, b̂, b̂†}. Show that the energy levels, commonly known as Landau levels, are equally
spaced and that the vectors of the lowest level are defined by b̂|ψ〉 = 0. Further show that the
corresponding subspace is spanned by angular momentum states |n〉, n = 0, 1, 2, ..., defined
by â|0〉 = 0, â†|n〉 =

√
n+ 1|n+ 1〉. What is the angular momentum of these states?

In the following we restrict the Hilbert space to the lowest Landau level. A coherent state
in the lowest Landau level is defined by the equation,

â|z〉 = z|z〉 (7)

and we remind you about the scalar products, derived in the lecture notes,

〈z|z′〉 = e−
1
2
(|z|2+|z′|2)+z′z∗ , 〈n|z〉 =

zn√
n!
e−

1
2
|z|2 (8)

3



Assume two electrons, which we label by 1 and 2, are present in the system. Since the
electrons are fermions, all states are antisymmetric with respect to permuation of the electron
labels. In particular a two-particle coherent state, with the particles being located symmetrically
about the origin, gets the following form after antisymmetrization,

|Z,−Z〉a = N(Z)(|Z,−Z〉 − | − Z,Z〉) (9)

with |Z1, Z2〉 = |Z1〉 ⊗ |Z2〉 and N(Z) as a normalization factor. (We use here capital letters
in the definition of the state in order to avoid confusion whith the complex coordinates used
below.) Similarly the observables are all symmetric in the particle labels, and the lowering
operators of the two electrons, â1 and â2, for the same reason, do not separately represent
observables, but the symmetric combinations of them do.

d) Show that the antisymmetrized two-particle coherent state (9) is an eigenstate of the
two symmetric operators â1 + â2 and â1â2. Determine the normalization factor N(Z), and
find expressions for the density operator ρ̂ of the two-particle state and of the reduced density
operators ρ̂1 and ρ̂2.

e) Determine the reduced density matrix of particle 1 in the coherent state representation,
ρ1(z, z

′), and plot the one-particle density, defined as ρ(z) = 2ρ1(z, z), for three different
(real) values of particle coordinate Z, Z = 2.0, 1, 0 and 0.1. Make a 3D plot, or alternatively,
a contour plot, with the real and imaginary parts of the coordinate z as variables. Comment on
the results.

f) Show that ρ̂1 has the two states | ± Z〉 as eigenstates and determine the correspond-
ing eigenvalues. Use this to determine the entanglement of the two particles. What is this
entanglement due to.

g) Assume N electrons occupy the lowest angular momentum states n = 0, 1, 2, ..., (N−1).
Show that the reduced density operator of particle 1 then gets the form

ρ̂1 =
1

N

N−1∑

n=0

|n〉〈n| (10)

Find the corresponding expression for the one-particle density, ρ(z) = Nρ1(z, z), and make a
3D plot (or contour plot) of this as a function of the variable z, for N = 10. In what sense is
this the most densely populated N -particle state, localized around the origin?

h) Make also a plot of the one-particle density for N = 2 and compare with the density
plot of the antsymmetrized two-particle coherent state for Z = 0.1. Show that the state (9) in
fact coincides with the N = 2 state (10) in the limit Z → 0.
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————————————————————————-

OPPGAVER

1 Density operators of a composite system
A density operator of a two-level system can be represented by a 2× 2 matrix in the form

ρ̂ =
1

2
(1 + r · σ) , |r| ≤ 1 (1)

where 1 is the 2 × 2 identity matrix, r is a vector in three dimensions and σ is a vector operator
with the Pauli matrices as the Cartesian components. We consider in the following two such systems,
denoted A and B, which together form a composite system with a four-dimensional Hilbert space
H = HA ⊗HB .

A density matrix of the composite system can generally be written as

ρ̂ =
1

4
(1⊗ 1 + a · σ ⊗ 1 + 1⊗ b · σ +

∑

ij

cijσi ⊗ σj) (2)

where the vector components ai, bj of a and b, and the coefficients cij , are all real-valued. The first
factor in the tensor products corresponds to subsystem A and the second factor to B.

a) Find an expression for ρ̂2 of the same form as (2). Find also the reduced density matrices
ρ̂A and ρ̂B , and ρ̂2A and ρ̂2B . (As a reminder, the Pauli matrices satisfy the product rule, σiσj =
δij + i

∑
k εijkσk.)

b) A necessary condition for ρ̂ to be a density matrix is Tr ρ̂2 ≤ 1, with equality when ρ̂ is a pure
state. Show this from the general conditions satisfied by density matrices, and find the corresponding
inequalities for the a, b and c coefficients.

c) What relation should the coefficients a, b and c satisfy if the state of the composite system
should be a tensor product state? Show that the condition for ρ̂ being pure and maximally entangled
is that a and b vanish, and that the coefficients cij satisfy the two conditions

∑

ij

c2ij = 3 ,
1

2

∑

klmn

εkmiεlnjcklcmn = −cij (3)
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d) Two Bell states are defined by

|B1〉 =
1√
2

(|+ +〉+ | − −〉) , |B2〉 =
1√
2

(|+ +〉 − | − −〉) (4)

with | + +〉 = |+〉 ⊗ |+〉 as the tensor product of two state vectors, both with quantized spins along
the positive z-axis, and | − −〉 similarly with both spins quantized along the negative z-axis.

Write the corresponding density matrices ρ̂B1 and ρ̂B2 in the form (2) and check that the condi-
tions found in c), for pure states with maximal entanglement, are satisfied.

e) Consider a time dependent state vector

|ψ1(t)〉 = cosωt |B1〉+ sinωt |B2〉 (5)

Find the time dependent density operator ρ̂1(t) corresponding to |ψ1(t)〉, written in the form (2).
Determine the entanglement entropy of the two-spin system and plot it as a function of ωt.

f) Consider another time dependent state, described by the density operator

ρ̂2(t) = cos2 ωt ρ̂B1 + sin2 ωt ρ̂B2 (6)

with ρ̂B1 and ρ̂B2 as the density operators corresponding to the two Bell states. Determine and plot
the (von Neumann) entropy of the full system. What is in this case the entropy of the subsystems?
(Note that ρ̂2(t) has |B1〉 and |B2〉 as eigenstates).

g) For ωt = π/4 both states ρ̂1 and ρ̂2 are a separable states. Show this and give the expressions
for the density operators.

2 Atom-photon interactions
An atom is trapped inside a small reflecting cavity. The energy difference between the ground

state and the first excited state is ∆E = ~ω, with ω matching the frequency of one of the modes of
the electromagnetic field in the cavity. This gives a strong coupling between the atomic states and this
field mode, while the couplings to the other cavity modes are weak and can be neglected.

The composite system, the atom plus the resonant cavity mode, is described by the following
effective Hamiltonian

Ĥ =
1

2
~ωσz + ~ωâ†â+

1

2
~λ(â†σ− + âσ+)− iγ~a†a (7)

where the Pauli matrices act between the two atomic levels, with σz being diagonal in the energy basis,
and σ± = (1/2)(σx ± iσy) being matrices that raise or lower the atomic energy. â† and â are the
photon creation and destruction operators, λ is an interaction parameter and γ is a decay parameter.
The decay is due to the process where the photon escapes through the cavity walls. Both λ and γ are
real-valued parameters, and we assume ω > λ > γ.

We characterize the relevant states of the composite system as |g, 0〉, |g, 1〉 and |e, 0〉, where g
refers to the atomic ground state, e to the excited state, and 0 and 1 refers to the absence or presence
of a photon in the cavity mode.

a) Show that in the two-dimensional subspace spanned by the vectors |g, 1〉 and |e, 0〉 the Hamil-
tonian takes the form

H =
1

2
~(ω − iγ)1 +

1

2
~
(
iγ λ
λ −iγ

)
(8)
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where |e, 0〉 corresponds to the upper row of the matrix and |g, 1〉 to the lower one, and 1 is the identity
matrix.

We define the time evolution operator in the usual way as

Û(t) = e−
i
~ Ĥt (9)

with the expression being valid for t ≥ 0. The Hamiltonian (8) is non-hermitian due to the decay of
the cavity field, and therefore the time evolution operator is non-unitary. However, we shall below see
how to compensate for this.

b) Show that the time evolution operator can be written as

Û(t) = e−
i
2
(ω−iγ)t(cos(Ωt)1− i sin(Ωt)

Ω

Ω
· σ) (10)

where Ω is a complex vector, with Ω2 ≡ Ω2 being real and positive. Determine Ω and Ω. (Note
that Ω2 contains no complex conjugation, and should therefore not be confused with |Ω|2.) The Pauli
matrix σ in (10) refers to the 2× 2 matrix formulation (8) of Ĥ .

c) Assume the system initially to be in the state |ψ(0)〉 = |e, 0〉. Determine the time evolution of
the state vector, |ψ(t)〉.

There is one important defect with the description of the time evolution discussed so far. Since
the time evolution operator is non-unitary, the norm of of the state vector |ψ(t)〉 is not preserved, but
decays with time. Something seems thus to be missing in the description, and we shall now correct
for that. Let us for this purpose add a contribution to the density operator ρ̂(t) = |ψ(t)〉〈ψ(t)|, to give
the full density operator of the atom-photon system in the cavity as

ρ̂cav(t) = ρ̂(t) + f(t)|g, 0〉〈g, 0| (11)

with the function f(t) defined so that the norm of ρ̂cav(t) is conserved with value 1.

d) Determine function f(t), and comment on in what sense the addition of the last term in (11) is
reasonable, when considering the physical process described by the Hamiltonian (8).

e) Determine and plot, in a common diagram, the time dependent occupation probabilities of the
two atomic levels, as well as the probability for one photon to be present in the cavity. Use in the plot
τ = λt as dimensionless time parameter, γ/λ = 0.1 as numerical value for the dimensionless decay
parameter, and make the plot for a the interval 0 < τ < 50.

The transmission of the photon through the walls implies that the atom-photon system in the
cavity, which we now consider as one subsystem, is coupled to the electromagnetic field outside the
cavity, which we consider as a second subsystem. We make the assumption that the total system,
consisting of the two subsystems, is all the time in a pure, but entangled, quantum state.

f) Show that the density operator ρ̂cav(t) of the atom-photon system has two non-vanishing eigen-
values, given by f(t) and 1 − f(t), and use this to determine the entanglement entropy of the two
subsystems. Make a plot of the time-dependent entanglement entropy in the same time interval as the
first plot.
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ORDLISTE

engelsk norsk

density operator tetthetsoperator
pure state ren tilstand

mixed state blandet tilstand
entanglement sammenfiltring

subsystem delsystem
field mode feltmode
interaction vekselvirkning

cavity kavitet, hulrom
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FYS 4110 Non-relativistic quantum mechanics

Midterm Exam, Fall Semester 2014

The problem set is available from Monday morning, October 13.

Deadline for returning solutions
Monday October 20, at 10:00. Written/printed solutions should be returned to Ekspedisjonskontoret
in the Physics Building.

Questions concerning the problems
Please ask the lecturer, Jon Magne Leinaas (Office: room 471Ø), or the assistant Ola Liabøtrø (room
469Ø).

Language
Solutions may be written in Norwegian or English, depending on your preference.
A short English-Norwegian dictionary is included on the last page.

The problem set consists of 2 problems written on 5 pages.
————————————————————————-

PROBLEMS

1 Spin splitting in positronium
Positronium is a bound system of an electron and a positron. The two particles have the same

mass m and charges of opposite signs ±e, with e denoting the electron charge. The energy spectrum
of the bound system is similar to that of a hydrogen atom, but the energy scale is different since the re-
duced mass of the two-particle system has about half the value in positronium compared to hydrogen.
Positronium has a finite life time since the electron and the positron will eventually annihilate.

The ground state of positronium is degenerate due to the spin degrees of freedom of the two
particles. We distinguish between para-positronium, which is a spin singlet state with total spin
S = 0, and ortho-positronium which is a triplet state with total spin S = 1. Para-positronium has a
life time of 125 picoseconds while the life time of ortho-positronium is about 140 nanoseconds.

The interaction between the magnetic moments of the two particles give rise to a (hyperfine)
splitting of the ground state energy, so that the singlet state has a slightly lower energy than the triplet
state. In the following we make the simplifying assumption that this effect can be studied in the four-
dimensional spin space of the two particles. This means that we assume no coupling between the spin
and orbital coordinates of the particles so that the wave function of the orbital motion is the same for
all the spin states and can therefore be neglected.

We denote in the following the spin up state vector of the z-component of the spin for any of the
two particles as |+〉 and the spin down state by |−〉. The four dimensional space of spin states has the
tensor product form H = He ⊗ Hp, with He as the two-dimensional spin space of the electron and
Hp as the spin space of the positron. The full space is spanned by the four product states

|+ +〉 = |+〉 ⊗ |+〉 , |+−〉 = |+〉 ⊗ |−〉 ,
| −+〉 = |−〉 ⊗ |+〉 , | − −〉 = |−〉 ⊗ |−〉 , (1)
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where we assume the first factor in the tensor product to describe the electron spin. In the four-
dimensional spin space the spin operators of the electron and the positron have the following forms,

Ŝe =
~
2
σe ⊗ 1p ≡

~
2
Σe

Ŝp =
~
2
1e ⊗ σp ≡

~
2
Σp (2)

with 1e as the identity operator in the two-dimensional spin space of the electron,1p as the identity
operator in the spin space of the positron, and σe and σp as the Pauli matrices acting in the two-
dimensional spin spaces of the electron and the positron respectively.

a) Show that in the product basis we have

〈ij|Σe ·Σp|kl〉 = 〈i|σe|k〉 · 〈j|σp|l〉 (3)

b) Find the operator product Ŝe · Ŝp expressed as a 4×4 matrix in the product basis. (In the matrix
representation list the basis vectors in the order |+ +〉, |+−〉, | −+〉, | − −〉.)

We now introduce another basis, the spin basis with the four vectors

|0, 0〉 =
1√
2

(|+−〉 − | −+〉) (4)

and

|1, 1〉 = |+ +〉
|1, 0〉 =

1√
2

(|+−〉+ | −+〉)

|1,−1〉 = | − −〉 (5)

c) Show that Ŝe · Ŝp is a diagonal matrix in the new basis.
The total (intrinsic) spin of the two particles is Ŝ = Ŝe + Ŝp. Show that the new basis vectors

are eigenstates of Ŝ2 and Ŝz and find the eigenvalues. Check that the result for the eigenvalues is
consistent with (4) being the singlet state and (5) being the triplet state.

The Hamiltonian in the spin space can be written in the form

H0 = E01 + κŜe · Ŝp (6)

where E0 is the ground state energy with spin effects excluded, 1 is the identity operator in the
four-dimensional spin space and κ is a positive constant determined by the magnetic moments of the
particles.

A magnetic field B is turned on in the z direction. This leads to a splitting of the spin energy
states, referred to as the Zeeman effect. The form of the modified Hamiltonian is

Ĥ = E01 + κŜe · Ŝp + λ~(Ŝe z − Ŝp z) (7)

with λ as a parameter proportional to B.
d) Write the Hamilton H as a 4× 4 matrix in the spin basis.
e) Find the energy eigenvalues of the Hamiltonian (7) expressed in terms of the parameters E0, κ

and λ. Plot the energies as functions of x ≡ λ/κ for fixed E0 and κ.

2



Two of the energy eigenstates are mixtures of |0, 0〉 and |1, 0〉. We write these two states as

|a〉 = α |+−〉+ β | −+〉
|b〉 = −β∗ |+−〉+ α∗ | −+〉 (8)

where α and β are functions of x, with |α|2 + |β|2 = 1.
f) Give the expressions for the corresponding density operators ρ̂a and ρ̂b, and for the reduced

density operators ρ̂ae, ρ̂ap and ρ̂be, ρ̂bp of the electron and positron subsystems. The degree of entan-
glement in the system is given by the von Neumann entropy of the reduced density operators. Show
that the entanglement entropy is the same for |a〉 and |b〉 and can be expressed as a function of |α|2.

g) Determine the function |α(x)|2 from the eigenvalue problem in e) and use this to make a plot
of the degree of entanglement in the system as a function of x for the two states |a〉 and |b〉. Are these
maximum entanglement states for any value of x?

2 Spin coherent states
We consider a quantum spin Ĵ which acts in a 2j + 1 dimensional vector space. In the standard

way we introduce a set of basis vectors |j,m〉, where j is the quantum number of the total spin, so that
Ĵ2 = j(j + 1)~21 and m is the quantum number of the z-component, Ĵz|j,m〉 = m~|j,m〉. Thus, m
runs from −j to j and identifies the basis vectors, while j is a fixed number which characterizes the
size of the total spin.

We remind you about the following relations,

Ĵz|j,m〉 = m ~ |j,m〉
Ĵ−|j,m〉 =

√
(j +m)(j −m+ 1) ~ |j,m− 1〉

Ĵ+|j,m〉 =
√

(j −m)(j +m+ 1) ~ |j,m+ 1〉 (9)

where Ĵ− = Ĵx − iĴy and Ĵ+ = Ĵx + iĴy.
The spin system has a certain similarity with a harmonic oscillator, in the sense that Ĵ+ and Ĵ− are

raising and lowering operators like â† and â, and Ĵz like the harmonic oscillator Hamiltonian Ĥho has
a spectrum with constant separation between the levels, where these raising and lowering operators
act. There are differences, in particular since the spectrum of Ĵz has a finite number of levels, whereas
the number of levels of the harmonic oscillator is infinite. In spite of these differences, coherent states
for the spin system can be introduced in an analogous way to that of the harmonic oscillator, but not
precisely in the same way. In particular the coherent states cannot generally be defined as eigenstates
of the lowering operator Ĵ−.

a) Since them quantum number has an upper limit, m ≤ j, the lowering operator Ĵ− has only one
eigenvector, which is the lowest state |j,−j〉. Similarly Ĵ+ has |j, j〉 as the only eigenvector. Show
this.

Instead of defining the general coherent states as eigenvectors of the lowering operator, we intro-
duce them directly as minimum uncertainty states for the three components of the spin variable. To be
more precise, such a state should minimize

(∆J)2 =
〈
Ĵ2

〉
−
〈
Ĵ
〉2

(10)

b) Show that |j,−j〉 and |j, j〉 are minimum uncertainty states, and that such states more general
satisfy the eigenvalue equation

n · Ĵ |j,n〉 = j~|j,n〉 (11)
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with n as a unit vector, and with the eigenvectors labeled by n. What is the value of (∆J)2 for these
states?

c) Show that for j = 1/2 the condition of minimum uncertainty is trivially satisfied, so that any
(pure) quantum state can be considered as a coherent state.

The spin coherent states can thus be associated with points on a sphere, identified by the unit
vector n. Only for the lowest value j = 1/2 this set of states is identical to the full set of quantum
states, while for larger j they form a subset. However, for all j the spin coherent states define a
complete set of states, which can be used to define a coherent state representation for the spin Hilbert
space.

In order to bring the notation closer to that of the coherent states of the harmonic oscillator we
represent the unit vector n by a complex number z in the following way

z = e−iφ cot
θ

2
(12)

with φ and θ as the polar angles of n. (This mapping from the unit sphere to the complex plane is
referred to as a stereographic projection.) We further introduce the notation |z〉 ≡ |n〉. With this
definition the spin-down state m = −j corresponds to z = 0, while the spin up state (m = j) is
mapped to z =∞.

For simplicity we restrict the discussion in the following to j = 1/2. In this case we have

σn|z〉 = |z〉 , σn = σ · n (13)

with n and z related by (12).

d) With |m〉, m = ±1/2 as the spin states along the z-axis, show that the transition function
between these basis states and the coherent states |z〉 can be written as

〈m|z〉 =
zm+1/2

√
1 + |z|2

, m = ±1/2 (14)

(This corresponds to a particular choice of the complex phase of the coherent state. In the following
we will make use of this choice of phase.)

We now introduce a coherent state representation by using the coherent states as basis vectors. For
a general state |ψ〉 the wave function in the z-representation is then defined as

ψ(z) = 〈z|ψ〉 (15)

e) Determine for |ψ〉 = |z0〉 the square modulus of the wave function,

|ψz0(z)|2 ≡ |〈z|z0〉|2 (16)

and make plot of this as a function of r = |z| for the case z0 = 0. Compare with a similar plot for the
harmonic oscillator coherent states.

f) Show that the spin coherent states satisfy a completeness relation of the form
∫
d2z

π

2

(1 + |z|2)2 |z〉〈z| = 1 (17)
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where d2z denotes the standard area element in the two-dimensional plane, and demonstrate how this
completeness relation can be used to reconstruct the abstract vector |ψ〉 of any spin state from the
corresponding wave function ψ(z).

g) Assume the Hamiltonian to have the form

Ĥ =
1

2
~ωσz (18)

with Û(t) as the corresponding time evolution operator. Show that the time evolution of a coherent
state has the form

Û(t)|z0〉 = eiα(t)|z(t)〉 (19)

and determine the time dependent variable z(t) and the complex phase α(t).

ORDLISTE

engelsk norsk

density operator tetthetsoperator
entanglement sammenfiltring

interaction vekselvirkning
minimum uncertainty state minimalusikkerhets-tilstand

orbital motion banebevegelse
spin coherent state spinn-koherent tilstand

subsystem delsystem
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FYS 4110/9110 Modern Quantum Mechanics

Midterm Exam, Fall Semester 2015

Return of solutions
The problem set is available from Monday morning, October 19.
Written/printed solutions should be returned to Ekspedisjonskontoret in the Physics Building before
Monday October 26, at 12:00.
Use candidate numbers rather than full names.
Language
Note: The problem set is available also in Norwegian.
Solutions may be written in Norwegian or English depending on your preference.
Questions concerning the problems
Please ask the lecturer, Jon Magne Leinaas (Office: room 471Ø), or the assistant Ola Liabøtrø (room
469Ø).

The problem set consists of 2 problems written on 4 pages.
————————————————————————-

PROBLEMS

1 A three-spin problem
We consider a system consisting of three electrons. They all sit at fixed positions, with their spins

as free variables.

Figure 1: The three-spin-half system. Each of the straight lines shows a division of the full system
into two parts, where one part contains a single spin and the othe part contains two spins.

a) The total spin we write as Ŝ = Ŝ1+ Ŝ2+ Ŝ3 . Use the rule for composition of quantum spins to
show that the (spin) Hilbert space consists of three orthogonal subspaces, characterized by spin values
s = 1/2, 1/2 and 3/2 respectively, with Ŝ2 = s(s+ 1)~2.

b) We consider the following three states of the spin system

|ψn〉 =
1√
3
((|udd〉+ e2πin/3|dud〉+ e−2πin/3|ddu〉) , n = 0,±1 (1)

where |u〉 is a spin up state along the z-axis and |v〉 is a spin down state along the same axis. We use
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the notation |udd〉 = |u〉 ⊗ |d〉 ⊗ |d〉, with the first factor in the tensor product referring to particle 1,
the second one to particle 2, and the last one to particle 3. Show that the vectors (1) are orthogonal
and have well defined values for the the total spin operators S2 and Sz . Determine these values.

c) The three-particle system can be considered as a bipartite system, with particle 1 defining
one subsystem and particles 2 and 3 defining the other part. We write this partition of the system
symbolically as 123 = 1 + (23). With this partition what is the corresponding entanglement entropy
of the system in the three cases n = 0,±1? Compare with the maximum possible entanglement
entropy in the bipartite system. With the two other partitions, 123 = 2 + (13) and 123 = 3 + (12), is
there any difference in the entanglement?

d) A measurement of the observable Ŝ1z is made on particle 1, with the system in one of the
states |ψn〉. If the result is spin up, what is the entanglement of 2 and 3 in subsystem (23), after the
measurement? If the result instead is spin down, what is then the entanglement?

e) Consider next the state

|φ〉 = 1√
2
(|uuu〉 − |ddd〉) (2)

Determine the entanglement entropy of this state with respect to any of the partitions defined in c),
and compare with the result found for the states |ψn〉.

We introduce state vectors for spin up and down in the x-direction by

|f〉 = 1√
2
(|u〉+ |d〉) , |b〉 = 1√

2
(|u〉 − |d〉) (3)

and for up and down in the y-direction by

|r〉 = 1√
2
(|u〉+ i|d〉) , |l〉 = 1√

2
(|u〉 − i|d〉) (4)

f) Rewrite the state vector (2) in two different ways, first by using the spin basis (3) for all three
spins and next by using spin basis (4) for spin 1 and 2 and basis (3) for spin 3. Use the expressions to
show that all spin components of particle 1, S1x, S1y and S1z , can be determined by performing spin
measurements on particles 2 and 3, while not making any measurement on particle 1. Specify in each
case which measurement that should be performed on particle 2 and 3.

2 Entanglement and Bell inequalities
We consider an experimental situation, similar to the one discussed in the lecture notes, where

pairs of spin 1/2 particles are initially prepared in a correlated spin state, and then are separated in
space while keeping the spin state unchanged. When far apart spin measurements are performed on
the particles in each pair, and the results are registered and compared.

The situation is illustrated in the figure, where a series of entangled pairs are created in a source
K, and where measurements of the z-components of the spin are performed on both particles (A and
B). When the spins in the z-directions are strictly anticorrelated, the result spin up (spin down) for
particle A is always followed by the result spin down (spin up) for particle B.
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Figure 2: EPR experiment with correlated spins

We consider the situation where three different sets of measurements are performed, with different
spin states,

I : ρ̂1 = |ψa〉〈ψa|, |ψa〉 =
1√
2
(|+−〉 − | −+〉)

II : ρ̂2 = |ψs〉〈ψs|, |ψs〉 =
1√
2
(|+−〉+ | −+〉)

III : ρ̂3 =
1

2
(ρ̂1 + ρ̂2) (5)

The notation is |+−〉 = |+〉 ⊗ |−〉, where |±〉 are spin states of a single particle, with Sz quantized.
The first factor in the tensor product refers to particleA and the second one to particleB. Note that all
three states are strictly anticorrelated with respect to the z-component of the spin of the two particles.
The purpose of the (hypothetical) experiment is to examine correlation functions that are relevant for
the Bell inequalities, as already discussed for case I in the lecture notes, to see if the three states show
different behavior. This involves performing the spin measurements also for rotated directions of the
spin axes.

a) Of the three density operators only ρ̂1 is rotationally invariant. Demonstrate this by calculating
the expectation value of S2 for the three cases, where S = (~/2)(σ ⊗ 1 + 1 ⊗ σ) is the spin vector
of the full system, and comment on the results.

b) What are the reduced density operators ρ̂A and ρ̂B in the three cases? Determine the von
Neumann entropy S of the full system, as well as the entropies SA and SB of the subsystems. Check
if the classical restriction on the entropies S ≥ max{SA, SB} is satisfied in any of the cases. In each
of the cases examine if the states are entangled or separable, and give, if possible, a numerical measure
of the degree of entanglement.

We assume the direction of the two measurement devices can be rotated so they measure spin
components of the form

Sθ = cos θSz + sin θSx (6)

where the angle θ can be chosen independently forA andB. The state |θ〉 = cos θ2 |+〉+sin θ
2 |−〉 is the

spin up vector in the rotated direction and the operator P̂ (θ) = |θ〉〈θ| projects on the corresponding
spin vector.

c) Show that the given expression for |θ〉, as claimed above, is the spin up state of Sθ. Determine
the expectation value PA(θ) =

〈
P̂ (θ)

〉
A

, for particle A, in the three cases I, II and III. Comment on
the result.
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d) Determine, for the three cases, the joint probability distribution P (θ, θ′) =
〈
P̂ (θ)⊗ P̂ (θ′)

〉
,

with the two angles θ and θ′ as independent variables.
The Bell inequality, according to the hidden variable analysis described in the lecture notes, gives

a constraint on the possible classical correlations of the two spins. In the present case the inequality
can be written as

F (θ, θ′) ≡ P (0, θ′)− |P (θ, 0)− P (θ, θ′)| ≥ 0 (7)

where one of the angles is set to 0 since we, for the states we consider, will only have strict anticorre-
lation for spin measurements along the z-axis. (For details see the derivation in the lecture notes.)

e) Make plots of the function F (θ, 0.5 θ) for the three cases I, II and III, with θ varying in the
interval 0 < θ < 2π. Check in all cases whether the inequality (7) is satisfied or broken, and compare
the results with what is known from point b) concerning entanglement between the two particles.

In addition to these plots, examine the functions for other choices θ′ = λ θ with λ 6= 0.5 to see
if the results are not changed. Alternatively make a 3D plot of the two-variable function F (θ, θ′) and
check whether the conclusion concerning the Bell inequality holds in the full parameter space.

f) Assume an experimental series is performed, with the two angles fixed. The number of pairs
registered with spin up (in the chosen directions) for both spins A and B is n++, and the number with
spin down for both spins is n−−. Similarly n+− is the number of pairs registered with spin up for A
and spin down for B, n−+ is the number of pairs registered with spin down for A and spin up for B.
The total number of pairs in the series is N .

We refer to the experimental results corresponding to PA(θ), PB(θ′), and P (θ, θ′) as PAexp(θ),
PBexp(θ

′), and Pexp(θ, θ′). What are these quantities expressed in terms of the numbers {nij , i, j = ±}
and N?
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PROBLEMS
1 Entangled photons
In this problem correlations between pairs of entangled photons are studied. The interesting degree
of freedom is the photon polarization. For a single photon the polarization corresponds to a quantum
state vector in a two-dimensional Hilbert space spanned by the vectors |H〉 and |V 〉. These vectors
correspond to linear polarization in the horizontal and vertical direction, respectively. A general po-
larization state is a linear combination of these two. As special cases we consider linearly polarized
photons in rotated directions,

|θ〉 = cos θ|H〉+ sin θ|V 〉 (1)

The two-photon states, when only polarization is taken into account, are vectors in the tensor product
space spanned by the four vectors,

|HH〉 = |H〉 ⊗ |H〉 , |HV 〉 = |H〉 ⊗ |V 〉 ,
|V H〉 = |V 〉 ⊗ |H〉 , |V V 〉 = |V 〉 ⊗ |V 〉 , (2)

(Note that even if the photons are bosons there is no symmetry constraint on the two-photon states,
since we assume that the two photons can be distinguished by their different direction of propagation.)

As a specific way to produce entangled photon pairs we consider the method of parametric down
conversion, as outline below and sketched in Figs. 2 and 3. As illustrated in Fig. 2a a beam of photons
enters a crystal, where single photons, due to the non-linear interaction with the crystal, are split into
pairs of photons, which carry half the energy of the incoming photon. The transverse momentum of the
emerging photons is fixed so that their direction of propagation is limited to a cone, as indicated in the
figure. The photons appear with constant probability around the cone. However, due to conservation
of total transverse momentum, the two photons in each a pair are correlated so that they always are
emitted at opposite sides of the cone.

There is furthermore a polarization effect, since photons with horizontal and vertical polarization
(relative to the crystal planes) do not propagate in exactly the same way. As a consequence the
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Fig. 2a Fig. 2b

cones corresponding to these two polarizations are slightly shifted. This is shown in the head-on
view of Fig. 2b, where the cone corresponding to polarization H is slightly lifted relative to the cone
corresponding to polarization V.

Two photons in a correlated pair will be located on opposite points of the central point O, like the
pair of points 1 and 2 and the pair 3 and 4, and they always appear with orthogonal polarization. As
shown by the figure this means that for most directions of the emitted photons the polarization of each
photon is uniquely determined by its direction of propagation. For such a pair the two-photon state is
a product state of the form |HV 〉 = |H〉 ⊗ |V 〉. As an illustration, the pair 3, 4 of directions of the
cone, as shown in Fig.2b, will be of this type.

However two directions are unique since they lie on both cones. This is illustrated by the points 1
and 2 in Fig. 2b. A photon at one of these positions will be in a superposition of |H〉 and |V 〉. Due
to correlations between the photons a pair located at these positions will be described by an entangled
two-photon state of the form

|ψ〉 =
1√
2

(|HV 〉+ eiχ|V H〉) (3)

where the complex phase χ can be regulated in the experimental set up.

crystal

photon

photon 1

photon 2

polarization 

filter 1

polarization 

filter 2

detector 2

detector 1

Fig. 3

The experimental set up is schematically shown in Fig. 3. It is assumed that only pairs of entangled
photons are filtered out in the beams that reach the two detectors. To analyze correlations between
the two photons, polarization filters are applied to photons in both directions, as shown in the figure.
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Those that pass the polarization filters are registered in the detectors and the registrations are paired
by use of coincidence counters. We assume idealized conditions, by disregarding experimental errors.

The polarization filters may be represented by operators that project on linearly polarized states
along rotated directions

P̂ (θ) = |θ〉〈θ| , |θ〉 = cos θ|H〉+ sin θ|V 〉 (4)

In the following we examine the expected results of the polarization measurements by calculating
the following expectation values

P1(θ1) ≡
〈
P̂1(θ1)

〉
photon 1

P2(θ2) ≡
〈
P̂2(θ2)

〉
photon 2

P12(θ1, θ2) ≡
〈
P̂1(θ1)⊗ P̂2(θ2)

〉
photon 1 and photon 2 (5)

a) Assume that the photon beam produces N entangled photon pairs in a given time interval.
In this time interval n1 photons are registered in detector 1, n2 photons are registered in detector 2
and and n12 are registered at coincidence in the two detectors. What are the relations between the
frequences n1/N , etc. and the the expectation values P1, P2 and P12?

b) For the general two-photon state of the form (3) find the density operator of the two-photon
pair, and the corresponding reduced density operators for photon 1 and photon 2. Characterize the
degree of entanglement of the two photons.

We consider now three different situations where the the entangled photon pairs are produced in
the states (3) with I: χ = π, II: χ = 0 and III: χ = π/2.

c) For all the three cases I, II and III, determine P1(θ1), P2(θ2), and P12(θ1, θ2).

d) Show that there exists a separable state, in the form of a probabilistic mixture of |HV 〉 and
|V H〉, which has identical expectation values to those in case III.

e) The Bell inequality, which is based on an assumed set of ”hidden variables” as a source of the
statistical distributions, can be written as a constraint on the function P12 in the following way (see
Sect. 2.3.2 of the lecture notes),

F (θ1, θ2, θ3) ≡ P12(θ2, θ3)− |P12(θ1, θ2)− P12(θ1, θ3)| ≥ 0 (6)

Examine the Bell inequality in the cases I, II and III for the special choice of angles θ1 = 0, θ2 = θ
and θ3 = 2θ by plotting F (0, θ, 2θ) as a function of θ. Based on the plots comment on whether the
Bell inequality is satisfied or not and show in particular that in case III Bell’s inequality is not broken.
Is there a relation between this conclusion for case III and the results in d)?

For entangled photons one would expect that one will be able to detect breaking of Bell’s inequal-
ity. However, in case III, this seems not to bee the case. A possible explanation may be that this is due
to the restriction of the two analyzers to linear polarization. To investigate this one of the analyzer is
changed with the new polarization states and projection operators

P̂ (θφ) = |θφ〉〈θφ| , |θφ〉 =
1√
2

(eiφ cos θ|H〉+ e−iφ sin θ|V 〉) (7)

where we restrict φ to the two cases φ = π/4 and φ = −π/4, which correspond to circular polariza-
tion, either left-handed or right-handed.
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f) Consider a similar experimental set up as before, with detector 1 having an unchanged filter, which
projects on states of the form (4), while detector 2 now is projecting on the new states (7). We
distinguish between the two cases A: φ = π/4 and B: φ = −π/4. Determine also in these two
cases the joint probability P12(θ1, θ2) and show that in these cases Bell’s inequality is broken. Make
a comparison with the earlier cases I-III.

2 Atom-photon interactions in a microcavity
An atom is trapped inside a small reflecting cavity. The energy difference between the ground

state and the first excited state is ∆E = ~ω, with ω matching the frequency of one of the modes of
the electromagnetic field in the cavity. This gives a strong coupling between the atomic states and this
field mode, while the couplings to the other cavity modes are weak and can be neglected.

The composite system, the atom plus the resonant cavity mode, is described by the following
effective Hamiltonian

Ĥ =
1

2
~ωσz + ~ωâ†â+

1

2
~λ(â†σ− + âσ+)− iγ~a†a (8)

where the Pauli matrices act between the two atomic levels, with σz being diagonal in the energy basis,
and σ± = (1/2)(σx ± iσy) being matrices that raise or lower the atomic energy. â† and â are the
photon creation and destruction operators, λ is an interaction parameter and γ is a decay parameter.
The decay is due to the process where the photon escapes through the cavity walls. Both λ and γ are
real-valued parameters, and we assume ω > λ > γ.

We characterize the relevant states of the composite system as |g, 0〉, |g, 1〉 and |e, 0〉, where g
refers to the atomic ground state, e to the excited state, and 0 and 1 refers to the absence or presence
of a photon in the cavity mode.

a) Show that in the two-dimensional subspace spanned by the vectors |g, 1〉 and |e, 0〉 the Hamil-
tonian takes the form

H =
1

2
~(ω − iγ)1 +

1

2
~
(
iγ λ
λ −iγ

)
(9)

where |e, 0〉 corresponds to the upper row of the matrix and |g, 1〉 to the lower one, and 1 is the identity
matrix.

We define the time evolution operator in the usual way as

Û(t) = e−
i
~ Ĥt (10)

with the expression being valid for t ≥ 0. The Hamiltonian (9) is non-hermitian due to the decay of
the cavity field, and therefore the time evolution operator is non-unitary. However, we shall below see
how to compensate for this.

b) Show that the time evolution operator can be written as

Û(t) = e−
i
2
(ω−iγ)t(cos(Ωt)1− i sin(Ωt)

Ω

Ω
· σ) (11)

where Ω is a complex vector, with Ω2 ≡ Ω2 being real and positive. Determine Ω and Ω. (Note
that Ω2 contains no complex conjugation, and should therefore not be confused with |Ω|2.) The Pauli
matrix σ in (11) refers to the 2× 2 matrix formulation (9) of Ĥ .
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c) Assume the system initially to be in the state |ψ(0)〉 = |e, 0〉. Determine the time evolution of
the state vector, |ψ(t)〉.

There is one important defect with the description of the time evolution discussed so far. Since
the time evolution operator is non-unitary, the norm of of the state vector |ψ(t)〉 is not preserved, but
decays with time. Something seems thus to be missing in the description, and we shall now correct
for that. Let us for this purpose add a contribution to the density operator ρ̂(t) = |ψ(t)〉〈ψ(t)|, to give
the full density operator of the atom-photon system in the cavity as

ρ̂cav(t) = ρ̂(t) + f(t)|g, 0〉〈g, 0| (12)

with the function f(t) defined so that the norm of ρ̂cav(t) is conserved with value 1.

d) Determine function f(t), and comment on in what sense the addition of the last term in (12) is
reasonable, when considering the physical process described by the Hamiltonian (9).

e) Determine and plot, in a common diagram, the time dependent occupation probabilities of the
two atomic levels, as well as the probability for one photon to be present in the cavity. Use in the plot
τ = λt as dimensionless time parameter, γ/λ = 0.1 as numerical value for the dimensionless decay
parameter, and make the plot for a the interval 0 < τ < 50.

The transmission of the photon through the walls implies that the atom-photon system in the
cavity, which we now consider as one subsystem, is coupled to the electromagnetic field outside the
cavity, which we consider as a second subsystem. We make the assumption that the total system,
consisting of the two subsystems, is all the time in a pure, but entangled, quantum state.

f) Show that the density operator ρ̂cav(t) of the atom-photon system has two non-vanishing eigen-
values, given by f(t) and 1 − f(t), and use this to determine the entanglement entropy of the two
subsystems. Make a plot of the time-dependent entanglement entropy in the same time interval as the
first plot.
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The problem set consists of 2 problems written on 5 pages.

Problem 1: Entanglement in the Jaynes Cummings model

We have in the lectures discussed Rabi oscillations of a Two Level System (TLS) driven by an
external oscillating field. In this case the field is treated as a classical quantity with a given time
dependence which is not affected by the dynamics of the TLS. We have also studied the Jaynes-
Cummings model which is an extension of the Rabi problem to a quantized field (in a cavity, so that
emitted photons are not lost, but return and can be reabsorbed). The two models gave to some extent
similar results, and in this problem you are going to extend the comparison between the two models
beyond what was discussed in the lecture notes or the lectures.

a) We begin by recalling the main features that we have derived. Describe the solution of Rabi
problem. Sketch the derivation of these results. You do not have to repeat the full calculations,
but give sufficient information so that a person familiar with the concepts will recall the arguments
even if considerable time has passed since she studied it.

b) Do the same for the Jaynes-Cummings model. In particular, if we assume that the TLS is initially
in the ground state and that there are n+ 1 photons in the cavity, what is the probability to find the
TLS in the excited state as a function of time? Show that by a suitable mapping of the parameters,
one can identify this with the solution of the Rabi problem.

c) If we study the situation in more detail, we will see that there are differences between the two
models. Assume that the initial state of the TLS is the ground state and that there are n + 1
photons in the cavity. Find the reduced density matrix of the TLS as a function of time. Find
the entanglement entropy as a function of time. What is the maximal entanglement for given
parameters and when is the state maximally entangled?

d) Find the Bloch vector for the state both for the Rabi problem and the Jaynes-Cummings mode.
Draw the motion of the Bloch vector in the Bloch sphere and compare the two. Describe the
differences between the two models.
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e) We usually think that quantum physics should approach classical in the limit where the energy of
the system is much larger than the level spacing, which in this case means in the limit n → ∞
where the number of photons is large. Consider you results in this limit, and discuss to what extent
we have a reasonable classical limit in this case. Do you have any ideas for what could be changed
to make the behaviour more classical-like in certain limit? No calculations are expected to answer
this point.

Problem 2: Manipulation and readout of a superconducting qubit in a cavity

In this problem we are going to study a superconducting qubit placed inside a microwave cavity.

The cavity is a 1D transmission line resonator, which consists of a full-wave section of superconduct-
ing coplanar waveguide. A Cooper-pair box qubit is placed between the superconducting lines and is
capacitively coupled to the center trace at a maximum of the voltage standing wave, yielding a strong
electric dipole interaction between the qubit and a single photon in the cavity. Further details can be
found in A. Blais et al., Phys. Rev. A 69, 062320 (2004).

The system is described by the usual Jaynes-Cummings model.

H = h̄ωr(a
†a+

1

2
) +

h̄Ω

2
σz + h̄g(a†σ− + aσ+)

where ωr is the frequency of the cavity mode, h̄Ω is the energy splitting of the qubit and g is the
interaction strength. Let | ↑〉 and | ↓〉 represent the qubit ground and excited states, and |n〉 be the
state of the cavity with n photons. In the noninteracting case, the eigenstates of the system are then of
the form | ↑, n〉 and | ↓, n〉.

a) Find the energy eigenvales and the eigenstates of the Hamiltonian.

b) Consider in particular the case when the detuning ∆ = Ω−ωr � g and show that to second order
in g, the level separation is independent of n, but depends on the state of the qubit. Find the level
separation for the two qubit states | ↑〉 and | ↓〉.

c) Photons can be added to the cavity by sending external microwaves in at the end of the cavity.
They will interact with the mode in the cavity by capacitive coupling through the two gaps in the
central conductor in the figure. If the frequency of the external microwaves is resonant with a
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transition between eigenstates of the system, the coupling will be efficient, and this will result in
transmission of microwaves through the system. Otherwise, most of the microwave photons will
be reflected, and transmission will be small. Explain how this can be used to read out the qubit
state, and specify which frequency you would use to have good discrimination between the qubit
states.

d) We can obtain the same result for the state-dependent energy shift of the cavity states by a different
method which will be useful in the following. Consider the unitary transform

U = e
g
∆

(aσ+−a†σ−) (1)

Show that to second order in g, the transformed Hamiltonian is (here we have omitted some con-
stant terms, which can be removed by a shift in the zero of energy).

UHU † ≈ h̄
(
ωr +

g2

∆
σz
)
a†a+

h̄

2

(
Ω +

g2

∆

)
σz (2)

Compare with the result in b) and confirm that the resulting frequency shift is the same.

e) We can also use microwaves to manipulate the qubit. This is described by adding a term

Hµw = h̄ε(t)
(
a†e−iωµwt + aeiωµwt

)

where ωµw is the microwave frequency and ε(t) is the amplitude. It is time dependent to indicate
that the microwaves will be turned on and off, and with possibly varying amplitude to achieve the
desired manipulation of the qubit state. Show that to first order in g the transformed Hamiltonian
is

UHµwU
† ≈ h̄ε(t)

(
a†e−iωµwt + aeiωµwt

)
+
h̄gε(t)

∆

(
σ+e−iωµwt + σ−eiωµwt

)
(3)

We do not include second order terms, as they are of the form g2

∆2 ε(t) which are small compared
to the second order terms in (2) provided ε(t)� ∆.

f) To simplify the analysis, it is useful to apply a time dependent unitary transformation T (t) to
the system so that the Hamiltonian in the transformed representation is time-independent. This is
achieved by going to a rotating reference frame both in the qubit and cavity mode. Determine the
proper form of T (t) and show that the resulting Hamiltonian (including both the qubit and cavity
mode part (2) and the microwave driving (3)) takes the form

H1q =
h̄

2

[
Ω + 2

g2

∆

(
a†a+

1

2

)
− ωµw

]
σz + h̄

gε

∆
σx + h̄(ωr − ωµw)a†a+ h̄ε(a† + a)

g) Show that if we choose the microwave frequency ωµw = Ω + (2n + 1)g
2

∆ − 2gε∆ (where n is the
number of photons in the cavity) and t = π∆

2
√

2gε
the action of the microwave pulse is to perform a

Hadamard gate (up to a phase) on the qubit.

h) Determine ωµw and t so that a rotation around the x-axis with angle θ is performed.
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i) We can also put two qubits inside the same cavity and the cavity can then be used to make a two-
qubit gate which will entangle the two qubits. If the two qubits have the same frequency Ω, which
is not resonant with the cavity frequency ωr the Hamiltonian will be of the form

H = h̄ωr(a
†a+

1

2
) +

h̄Ω

2
(σz1 + σz2) + h̄g[a†(σ−1 + σ−2 ) + a(σ+

1 + σ+
2 )]

Generalize the transformation (1) to the case of two qubits and show that it generates a two qubit
interaction (again dropping constant terms):

UHU † ≈ h̄
[
ωr +

g2

∆
(σz1 + σz2)

]
a†a+

h̄

2

(
Ω +

g2

∆

)
(σz1 + σz2) +

h̄g2

∆
(σ−1 σ

+
2 + σ−2 σ

+
1 )

j) Show that in a reference frame rotating at the qubit frequency Ω in the qubit space and ωr in the
cavity mode space, the Hamiltonian takes the form

H2q =
h̄g2

∆
(σz1 + σz2)(a†a+

1

2
) +

h̄g2

∆
(σ−1 σ

+
2 + σ−2 σ

+
1 )

k) Show that this gives the time evolution

U2q(t) = e−
i
h̄
H2qt = e−i

g2

∆
(σz1+σz2)(a†a+ 1

2
)M(t)⊗ 1r

where 1r is the unit operator in the cavity mode space and

M(t) =




1 0 0 0

0 cos g
2t
∆ −i sin g2t

∆ 0

0 −i sin g2t
∆ cos g

2t
∆ 0

0 0 0 1




l) Since the matrix M(t) is the only place where interactions between the two qubits enter, this is
the only place where entanglement is created. To show that our system can perform universal
quantum computation we need to show that it can perform the CNOT gate (which we know is
universal together with one-qubit operations) using the entangling operation M(t) and operations
on individual qubits. Confirm that the following quantum circuit will generate the CNOT gate.

⊕
=

H S−1 ×

S−1 ×
M(3π∆

2g2 )

H

Where the SWAP gate

×

×
=




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1



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exchanges the two qubit states. It can be implemented by physically exchanging the two qubits,

or by known operations with the operation M(t). Here S−1 =

(
1 0
0 −i

)
is the inverse of the

phase gate and H = 1√
2

(
1 1
1 −1

)
is the Hadamard gate.
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Problem 1: Sqeezed states for enhancing the sensitivity of gravitaional wave detectors

We have in the lectures studied coherent states of the harmonic oscillator as examples of minimal
uncertainty states. Here we will consider a related class of minimal uncertainty states called squeezed
states. We will first study their general properties, and then see how they can be used to enhance the
sensitivity of interferometers used in gravitational wave detectors.

We define the squeeze operator

S(ζ) = e
1
2

(ζ∗â2−ζâ†2)

where ζ is a complex number and â and â† are the usual annihilation and creation operators of the
harmonic oscillator. The squeezed vacuum state is defined as

|sqζ〉 = S(ζ)|0〉

a) Show that the action of the squeeze operator on â and â† is given by

S†(ζ)âS(ζ) = â cosh r − eiθâ† sinh r

S†(ζ)â†S(ζ) = â† cosh r − e−iθâ sinh r

where ζ = reiθ.

b) In the state |sqζ〉, find the variance of the position and momentum operators

x̂ =

√
h̄

2mω

(
â† + â

)
and p̂ = i

√
h̄mω

2

(
â† − â

)
.

That is, calculate
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∆x2 = 〈sqζ |x̂2|sqζ〉 − 〈sqζ |x̂|sqζ〉2

∆p2 = 〈sqζ |p̂2|sqζ〉 − 〈sqζ |p̂|sqζ〉2

c) The Heisenberg uncertainty relation tells us that ∆x∆p ≥ h̄
2 with equality only for minimal un-

certainty states. Calculate the product ∆x∆p for the states |sqζ〉 and show that for certain θ they
are minimal uncertainty states. For those θ which gives minimal uncertainty, compare ∆x and ∆p
with the corresponding values in vacuum and describe what happens to the uncertainties.

d) Find the expectation value of the number operator â†â in the state |sqζ〉. Later we will apply the
theory of squeezed states to a mode of the electromagnetic field, which we know is equivalent to a
harmonic oscillator. This expectation value is then interpreted as the mean number of photons in
the mode.

The squeezed vacuum state can be displaced to create the squeezed coherent states

|α, sqζ〉 = D(α)S(ζ)|0〉.
We will now study some properties of these states.

e) Show that these states are still minimal uncertainty states, and that their uncertainties are the same
as for the squeezed state |sqζ〉. Find the expectation values of position and momentum in terms of
α and ζ.

f) We have defined the sqeezed coherent states as |α, sqζ〉 = D(α)S(ζ)|0〉. That is, we first sqeeze
the vacuum, and then displace. The operators = D(α) and S(ζ) do not commute. Investigate
the states |sqζ , α〉 = S(ζ)D(α)|0〉. That is, we first displace and then squeeze. You may find
information on this in the literature, and you should include references to all sources that you use.

The use of squeezed states to reduce the noise in gravitational wave interferometers was first proposed
by C. Caves, Phys. Rev. D 23, 1693 (1981). A recent overview is provided by R. Schnabel et al.,
Nat. Commun. 1, 121 (2010) and demonstration of the practical use is shown in J. Asai et al., Nat.
Photonics 7, 613 (2013).

To detect gravitational waves, one can use a Michelson interferometer as shown:
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Detector

Laser
In 1

Out 1

In 2 Out 2
l

l

z1

z2

Light is aimed at a semitransparent mirror (beam splitter), which splits it into two perpendicular
beams. These are reflected back from distant mirrors, and recombined at the beam splitter. Inter-
ference beween the two beams will give rise to interference fringes with alternating constructive and
destructive interference depending on the exact path length difference. The interferometer is normally
operating with the detector at a dark point in the interference pattern, so that in the absence of a sig-
nal, there are (ideally) no photons reaching the detector. The end mirrors, where the light is reflected
back to the beamspliter, are mounted on large suspended masses (with mass m), which ideally do not
move. When a gravitational wave passes through the interferometer, the lengths of the arms change,
the fringes move, and the light intensity (photon counting rate) oscillates.

g) In the LIGO-detector (which was the first to detect a real gravitational wave), the distance from
the beam splitter to the mirrors is l = 4 km. The strain amplitude (ratio of length change to initial
length) of a realistic gravitational wave of cosmic origin (inspiraling of two black holes) is 10−21.
How small displacement differences z = z2−z1 of the interferometer mirrors do we have to detect
to see the gravitational wave signal? Compare your answer to some relevant physical dimension.

There are several sources of noise that will reduce the sensitivity of the interferometer. In this problem
we will focus on two fundamental quantum mechanical noise limits, and ignore any practical problems
(which are not trivial in practice). The first effect is called photon-counting error (or shot noise) and
is a consequence of the fact that the laser light used is not in a number eigenstate, but rather close
to a coherent state. This means that the photon number is not a sharply defined quantity, and it will
fluctuate in time as a result of quantum uncertainty. The second effect is called radiation-pressure
error, and is a result of the fluctuating motion of the mirrors because of the fluctuating radiation
pressure in the laser beams. This is again because the photon number is not well-defined, and is
therefore also a fundamental quantum restriction.

Normally, one would input coherent light (from a powerful laser) in the input port 1, and arrange
the interferometer so that in the absense of any gravitational wave signal all the light would exit back
in the same direction, while there will be complete destructive interference in the output port 2. Port
2 would be used only for output, with no (that is, the vacuum state) input. Surprisingly, the noise
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can be modified by the input of a squeezed vacuum state in port 2, instead of the normal vacuum. To
investigate this effect, we need to understand how to find the combined state of the field from the two
sources. One has to add the electric fields from each source, and it can be shown that this leads to
relations between the creation and anihilation operators for the modes.

h) For the radiation pressure noise we need to consider the relation between the field before and after
passing the beamsplitter. Let â†1 and â1 be the creation and annihilation operators for photons in
input mode 1 (moving horizontally in the figure), while â†2 and â2 are the corresponding operators
for mode 2 (moving vertically). The operators for the horizontal mode after the beamsplitter is
b̂†1 and b̂1, and those for the vertical mode are b̂†2 and b̂2. The relation between the operators are
similar to those we have used to relate states passing beamsplitters:

b̂1 =
1√
2

(â1 + iâ2)

b̂2 =
1√
2

(â2 + iâ1)

The momentum of a photon is p = E/c = h̄ω/c. The momentum transfer to the mirror is twice
the momentum of a single photon times the number of photons. The change in the interferometer
output depends only on the difference in the change in path length, and therefore only on the
difference in the transferred momenta to the two end mirrors. The difference in the transferred
momentum is then

P =
2h̄ω

c
(b̂†2b̂2 − b̂†1b̂1)

Find the expectation values of P and P 2 if the input state is

|ψ〉 = S2(ζ)D1(α)|0〉

where S2(ζ) = e
1
2

(ζ∗â22−ζâ
†2
2 ) is the squeezing operator in incoming mode 2 andD1(α) = eαâ

†
1−α∗â1

is the displacement operator in incoming mode 1. That is, we have a coherent state (with typically
large intensity) in mode 1 and a squeezed vacuum state in mode 2. You need only consider the
case where both α and ζ = r are real.

i) The effect of the radiation pressure fluctutaions builds up over time as the momentum transferred
to the end mirrors leads to displacement. If we define the variance of P as (∆P )2 = 〈ψ|P 2|ψ〉 −
〈ψ|P |ψ〉2, argue that the variance in path difference after a time τ is ∆zrp = τ

2m∆P and show
that it is given by

∆zrp =
h̄ωτ

mc

√
α2e2r + sinh2 r.

In what way does ∆zrp depend on the power of the laser beam in input 1? On the mass of the end
mirrors? How can we reduce ∆zrp?

j) For the photon counting error we need to consider the output modes, after the light has passed
through the beamsplitter, reflected from the mirrors and passed the beamsplitter the second time.
We let ĉ†1,ĉ1 and ĉ†2,ĉ2 denote the creation and annihilation operators of the two output modes.
Show that

4



ĉ1 = ieiΦ [−â1 sinφ+ â2 cosφ]

ĉ2 = ieiΦ [â1 cosφ+ â2 sinφ]

Find the expressions for Φ and φ and explain their physical meaning.

k) Show that the expectation value of the number operator N̂2 = ĉ†2ĉ2 in output port 2 is (for real α
and ζ)

〈ψ|N̂2|ψ〉 = α2 cos2 φ+ sinh2 r sin2 φ

and that the variance is

(∆N2)2 = 〈ψ|N̂2
2 |ψ〉−〈ψ|N̂2|ψ〉2 = α2 cos4 φ+2 sinh2 r cosh2 r sin4 φ+(α2e−2r+sinh2 r) cos2 φ sin2 φ.

l) As for the radiation pressure noise we can convert this into an uncertainty in the difference in the
displacements z = z2 − z1 of the two mirrors. Show that a change of z by ∆z gives a change
in φ by ∆φ = ω

c∆z. Show that when |α cosφ| � | sinh r sinφ| this gives the noise in position
difference due to photon counting noise

∆zpc =
c

2ω

√
cot2 φ

α2
+

2 tan2 φ sinh2 r cosh2 r

α4
+
e−2r

α2
+

sinh2 r

α4
.

We can reduce the photon counting noise by choosing the proper phase difference in the absence of a
signal. Working near a dark point in the interference pattern we have cosφ ≈ 0 the first term in the
above expression is small. If α is sufficiently large, the second term can also be small provided we
are not exactly on the dark point so that tanφ is not too large. The last term can also be neglected
compared to the third, and we are left with the approximate expression

∆zpc =
c

2ω

e−r

α
.

Similarly we have for the radiation pressure noise approximately

∆zrp =
h̄ωτ

mc
αer.

If we assume that the noise sources are independent (which probably is not true), we get that the total
noise is

∆z =
√

∆z2
pc + ∆z2

rp.

m) Discuss the dependence of the two noise sources on the laser power and the squezzing parameter r.
The power is proportional to the number of photons, which has an average value of α2. Minimize
the total noise as a function of α2 and determine how the optimal power and the minimal noise
depend on r.

Here is a figure [Figure 6c of R. Schnabel et al., Nat. Commun. 1, 121 (2010)] showing the simulated
change in the signal from the detector without (left) and with (right) input of sqeezed light.
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As we see, the signal is virtually invisible without squeezing, and is clearly seen with squeezing.

n) Create a plot similar to the one shown above. You are at this point allowed to use any simplifying
assumptions you need and any method that you find useful. But you should carefully describe your
procedure and any assuptions made, discussing how realistic they are.
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FYS 4110/9110 Modern Quantum Mechanics
Midterm Exam, Fall Semester 2019

Return of solutions:
The problem set is available from Monday morning, 14 October.
You may submit handwritten solutions, but they have to be scanned and included in one single file,
which is submitted in Inspera before Monday, 21 October, at 12:00.

Language:
Solutions may be written in Norwegian or English depending on your preference.
Questions concerning the problems:
Please ask Joakim Bergli (room V405).

The problem set consists of 3 problems written on 4 pages.

All the problems in this exam are related to the same model of two coupled harmonic oscillators.

Problem 1: Entanglement in the evolution starting from a number state

Two harmonic oscillators, A and B, are coupled with a Hamiltonian

H = h̄ωaâ
†â+ h̄ωbb̂

†b̂+ h̄
λ

2
(â†b̂+ b̂†â). (1)

Here â† and â are creation and annihilation operators for oscillator A and b̂† and b̂ corresponding
operators for oscillator B.

a) Show that the Hamiltonian can be expressed in diagonal form as

H = h̄ωcĉ
†ĉ+ h̄ωdd̂

†d̂ (2)

where ĉ and d̂ are linear combinations of â and b̂

ĉ = µâ+ νb̂, d̂ = νâ− µb̂ (3)

where µ and ν are positive real constants satisfying µ2 + ν2 = 1. Determine the constants µ, ν,
ωc and ωd in terms of ωa, ωb and λ. Check that the operators ĉ and d̂ satisfy the usual harmonic
oscillator commutation relations, and that the oscillators C and D are independent of each other
(all operators for different oscillators commute).

b) Assume that the initial state of the system is the first excited state of oscillator A. That is, the state
|1A0B〉 = â†|0〉where |0〉 is the ground state. Find the state of the coupled oscillators as a function
of time.
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c) We define the number operators for the original oscillators as NA = â†â and NB = b̂†b̂. With the
initial state of the system still â†|0〉, find the expectation values 〈NA〉 and 〈NB〉 as functions of
time. Describe the result and discuss the cases were the oscillators are identical (ωa = ωb) or very
different.

d) Calculate the entanglement entropy between oscillators A and B as a function of time. What is the
maximal value of the entanglement entropy for different ∆ = ωa − ωb?

e) Assume now that oscillator A initially is in the state |n〉 while B is in its ground state. Find the
state of the oscillators as function of time. Find also 〈NA〉 and 〈NB〉 and compare to the result of
question c). This question is a bit technical, and no further question depends on solving this first,
so you may skip it and return to it later if you have time.

Problem 2: Evolution starting from a coherent state

a) Let the initial state |ψ(0)〉 of the composite system be a coherent state when expressed in terms of
the new variables,

ĉ|ψ(0)〉 = zc0|ψ(0)〉, d̂|ψ(0)〉 = zd0|ψ(0)〉,
Also at a later time the state |ψ(t)〉 will be a coherent state for both ĉ and d̂ with eigenvalues

zc(t) = e−iωctzc0, zd(t) = e−iωdtzd0.

Show this for zc(t) (The expression for zd(t) then follows from symmetry).

b) Show that the state |ψ(t)〉 from the previous question is also coherent with respect to the operators
â and b̂ and find the eigenvalues za(t) and zb(t) expressed in terms of za0 and zb0.

c) The state |za(t)〉 ⊗ |zb(t)〉 is clearly coherent with respect to the operators â and b̂ and with the
eigenvalues za(t) and zb(t). But is is not so obvious that this is the only state with this property.
Show that this is indeed the case, so that we have |ψ(t)〉 = |za(t)〉⊗ |zb(t)〉. What does this imply
for the entanglement of the two oscillators if we start from a coherent state |za0〉 ⊗ |zb0〉?

d) To show that the result of question c) is not trivial, we consider the following situation. We have
a system that is composed of two parts, A and B, and a state |ψ〉 for the full system. We are also
given two operators A and B acting on the corresponding subsystems, such that

A⊗ 1|ψ〉 = za|ψ〉, 1⊗B|ψ〉 = zb|ψ〉. (4)

If A|ψA〉 = za|ψA〉 and B|ψB〉 = zb|ψB〉 it is clear that the product state |ψ〉 = |ψA〉 ⊗ |ψB〉
satisfies Eq. (4). Give an example were this is not the unique solution, and show that there can be
entangled states |ψ〉 satisfying Eq. (4).

e) Find 〈NA〉 and 〈NB〉 for the state |ψ(t)〉 if the initial state is |ψ(0)〉 = |za0〉A ⊗ |0〉B .
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Problem 3: Evolution when the system is coupled to an environment

If the two oscillators are not isolated from the surroundings, the state will evolve from a pure to a
mixed state. To describe this, we will use the Lindblad equation

ρ̇ = − i
h̄

[H, ρ]− γ

2

(
â†âρ+ ρâ†â− 2âρâ†

)
− γ

2

(
b̂†b̂ρ+ ρb̂†b̂− 2b̂ρb̂†

)

where H is given by (1).

a) What have we assumed about the temperature of the environment when we have writen the Lind-
blad equation in this form?

b) We denote the matrix elements of ρ in the basis of the eigenstates for the A and B oscillators by

ρmn,m′n′ = 〈mAnB|ρ|m′An′B〉

Show that if we start from the state |1A0B〉, the equations for all nonzero elements of the density
matrix are:

ρ̇10,10 = −γρ10,10 − i
λ

2
(ρ01,10 − ρ10,01)

ρ̇01,10 = (i∆− γ)ρ01,10 − i
λ

2
(ρ10,10 − ρ01,01)

ρ̇10,01 = (−i∆− γ)ρ10,01 + i
λ

2
(ρ10,10 − ρ01,01)

ρ̇01,01 = −γρ01,01 + i
λ

2
(ρ01,10 − ρ10,01)

ρ̇00,00 = γ(ρ10,10 + ρ01,01)

c) Show that the solution to these equations is

ρ10,10 =

[
cos2

λ̄t

2
+ ε2 sin2 λ̄t

2

]
e−γt

ρ01,10 =

[
−iδ cos

λ̄t

2
sin

λ̄t

2
+ εδ sin2 λ̄t

2

]
e−γt

ρ10,01 =

[
iδ cos

λ̄t

2
sin

λ̄t

2
+ εδ sin2 λ̄t

2

]
e−γt

ρ01,01 = δ2 sin2 λ̄t

2
e−γt

ρ00,00 = 1− e−γt

(5)

where
λ̄ =

√
∆2 + λ2, δ =

λ

λ̄
, ε =

∆

λ̄
.

d) The case γ = 0 is identical to that which we studied in Problem 1b). Check that the solution that
you obtained there gives the same density matrix as Eq. (5) in this case.
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e) We would like to quantify the entanglement beween the two oscillators as function of time, and
see how it depends on the damping rate γ. For a pure state of the combined system, we use the
entanglement entropy as a measure of entanglement. Check that our system is in a pure state if and
only if γ = 0.

f) For γ > 0 we have a mixed state for the combined system, since it is coupled to the environment.
The entanglement entropy will then not be a sensible measure of entanglement. Give an example
of a mixed state that is not entangled but still has a large entanglement entropy.

g) For mixed states, no simple test that determines if a state is entangled or not is known in general.
For two coupled two-level systems it has been shown that the positive partial transpose criterion
is sufficient. Search for information on this and explain how it is computed. Describe what you
learn for a general system if the partial transpose is positive, and what is special for the case of two
coupled two-level systems. Cite your sources.

h) Explain why we can apply the results for coupled two-level systems to the state (5). Calculate the
positive partial transpose of this state and show that it is entangled.

i) One possible measure of the entanglement for mixed states is the concurrence. Search for infor-
mation on this and explain how it is computed for the case of two coupled two-level systems. Cite
your sources.

j) Calculate the concurrence for the state (5).

k) Another measure of entanglement is the entropy of formation, EF . In the case of two coupled
two-level systems it is related to the concurrence C by the formula

EF = −x lnx− (1− x) ln(1− x)

where
x =

1

2
(1 +

√
1− C2).

One nice feature of this as opposed to the concurrence is that it agrees with the entropy of entan-
glement for pure states. Calculate the entropy of formation for the state (5). Show that when γ = 0
it is equal to the entropy of entanglement as found in Problem 1d).

l) Plot EF as a function of time for some parameter values that you find give interesting results and
discuss what you learn.
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FYS 4110/9110 Modern Quantum Mechanics
Midterm Exam, Fall Semester 2020

Return of solutions:
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Please ask Joakim Bergli (room V405).

The problem set consists of 2 problems written on 5 pages.

Problem 1: Bloch sphere for three-level system

For a two-level system with density matrix ρ we have defined the Bloch vector m by the equation

ρ =
1

2
(1+miσi)

where σi are the Pauli matrices, and we are summing over the repeated index i. We want to generalize
this to arbitrary n-level systems, and in particular study the three-level case. The density matrix is in
general a Hermitian matrix with Tr(ρ) = 1, which means that we can write

ρ =
1

n
(1+ αmiλi)

where α is a numerical constant that will depend on n, and λi are traceless Hermitian matrices.

a) How many matrices λi do we need for an n-level system? This will also be the number of compo-
nents of the Bloch vector. That is, the number of dimensions of the space where the Bloch vector
is.

One can always choose the matrices λi to satisfy the relation

Tr(λiλj) = 2δij

(see e. g. G. Kimura, Physics Letters A 314, 339 (2003) for an explicit form).

b) Find the value of α so that pure states have |m| = 1.

c) What is the dimension of the space of pure states for n-level systems?

d) Explain why the pure states are on the surface of the Bloch sphere, but do not cover it.
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We will now specialize to the case of a 3-level system. In this case the matrices λi are known as the
Gell-Mann matrices (for the form of all these and more on the present problem, see S. Goyal et al. J.
Phys. A: Math. Theor. 49, 165203 (2016)). In question d) you showed that the pure states do not cover
the entire surface of the Bloch sphere. We will now see what happens for mixed states. In addition to
being Hermitian and having trace 1, the density matrix should not have negative eigenvalues. We will
restrict the Bloch vector to lie in the plane spanned by the two Gell-Mann matrices

λ1 =




0 1 0
1 0 0
0 0 0


 and λ8 =

1√
3




1 0 0
0 1 0
0 0 −2




so that the density matrix is of the form

ρ =
1

3

[
1+
√
3(m1λ1 +m8λ8)

]
.

e) Find the eigenvalues of density matrices ρ of this form.

f) Plot the cross section of the Bloch sphere spanned by the Gell-Mann matrices λ1 and λ8 and
mark the area where the density matrix has only positive eigenvalues. These are the only density
matrices allowed as physical states.

g) Plot the von Neumann entropy for states in this plane, and determine if the entropy depends only
on the length of the Bloch vector, as for a two-level system, or is also a function of the direction of
the Bloch vector.

Problem 2: Entanglement transformations using local operations and classical commu-
nication

We consider a bipartite system, with subsystems A and B. If we have two pure states, generally
both entangled, we can wonder if the entanglement is in some sense equivalent in the two states. By
“equivalent” we do not mean quantitatively equal (that is, with the same entanglement entropy), but
rather qualitatively equal (but maybe to different degree, so that the entanglement entropy could be
different). One way to approach this is to study if one state can be converted to the other if we only
apply local operations to each subsystem A and B. Local operations means a unitary operator that
acts only on one of the subsystems, or a measurement that measures an observable on one of the
subsystems. Most often, one also allows the observers at A and B to exchange classical information
in addition to local operations. The combination is referred to as Local Operations and Classical
Communication (LOCC).

A pure state for the system can then be Schmidt decomposed as |ψ〉 = ∑
i

√
αi|iA〉⊗ |iB〉, which

we will write for short |ψ〉 = ∑
i

√
αi|ii〉. We use the convention that the Schmidt coefficients αi are

ordered, so that α1 ≥ α2 ≥ · · · . Similarly, we write the second state as |φ〉 = ∑
i

√
βi|i′i′〉. A vector

β = (β1, . . . , βn) is said to majorize another vector α = (α1, . . . , αn) if

k∑

i=1

αi ≤
k∑

i=1

βi (1)

for all k. This is written as α ≺ β.
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If we write the fact that |ψ〉 can be transformed to |φ〉 using LOCC as |ψ〉 → |φ〉, the following
theorem (M. Nielsen, Phys. Rev. Lett., 83, 436 (1999)) gives the necessary and sufficient conditions
for one state to be converted to another using LOCC:

|ψ〉 → |φ〉 if and only if α ≺ β. (2)

a) Show that if both A and B are 2-level systems, then either |ψ〉 → |φ〉 or |φ〉 → |ψ〉, or both. That
is, one of the states can always be converted to the other. This means that the entanglement is in
some sense of the same type in all the states.

b) Show that if both A and B are 2-level systems there exist states that can be converted to any other
state using LOCC, and find one example of such a state.

c) What local operations should you apply to transform

1√
2
(|01〉 − |10〉)→ 1√

2
(|01〉+ |10〉)?

How much classical information do you need to transfer?

In general, the local operations that are needed include measurement on one side, with the result of
the measurement transmitted as classical information to the other side. We know that if we make
a standard projective measurement on one of the particles in an entangled pair, we will end in an
eigenstate of the corresponding operator, and entanglement disappears. So if we want to reduce
entanglement without eliminating it entirely, we need to make a type of measurement that is affecting
the state less (and necessarily giving us less precise information at the same time). One way to achieve
this is to let the particle interact and get entangled with another particle, and then measuring on this
particle. Consider a 2-level system (we call it system 1) in the state

|ψ〉1 = cosφ|0〉+ sinφ|1〉.
We want to make a non-projective measurement of the state by entangling it with a second 2-level
system (system 2), which initially is in the state

|χ〉2 =
1√
2
(|0〉+ |1〉).

The entangling operation is given by the unitary transformation which in the tensor product basis
|i〉1 ⊗ |j〉2 is given by the matrix

Uθ =




cos θ 0 sin θ 0
0 cos θ 0 − sin θ

− sin θ 0 cos θ 0
0 sin θ 0 cos θ


 (3)

That is, we evolve the system to the final state Uθ|ψ〉1 ⊗ |χ〉2 and measure the second 2-level system.

d) What is the final state of the first particle for each measurement outcome on the second?

e) Give an interpretation of your answer to the previous question. Explain in words what happens
physically (Hint: What interaction between the two particles would generate the given unitary
transformation Uθ?).
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f) We have the following quantum circuit.

3 |0〉 H

2 |0〉 ei
π
2
σy Vi

1 |0〉 H Wi

⊕
Uθ

i

Here Uθ is the unitary transformation given in Eq. (3) with the lower line corresponding to the

first qubit. indicates that the qubit is measured in the {|0〉, |1〉}-basis, and the rightmost
part of the circuit means that the operations Vi and Wi are dependent on the outcome i of the
measurement. We choose the operations V0 = W0 = 1. What operations must V1 and W1 be,
so that the final state of the system consisting of qubits 1 and 2 is the same, independent of the
measurement outcome? What will the final state be?

g) What are the probabilities for each of the measurement outcomes?

h) Describe with words what the different gates in the circuit do and how we can claim that it is
realizing the transformation of one state to another using LOCC. Which state is the initial state of
the LOCC transformation?

i) Prove that the entropy of entanglement can never be increased using LOCC. If you find a proof, or
helpful fact, in the literature, cite your sources.

The following are states of two 3-level systems

|ψ〉 =
√

1

2
|11〉+

√
2

5
|22〉+

√
1

10
|33〉

|φ〉 =
√

3

5
|11〉+

√
1

5
|22〉+

√
1

5
|33〉

j) Show that neither |ψ〉 → |φ〉 nor |φ〉 → |ψ〉. This means that the entanglement in the two states is
qualitatively different (in the sense of non-conversion using LOCC).

k) The suggested classification of entanglement based om LOCC is not ideal, as it suffers from at
least one serious drawback. Search in the literature and find criticism of this classification. Cite
you sources.

One consequence of the theorem (2) is the so-called entanglement catalysis. Local transformations
on a composite quantum system can be enhanced in the presence of certain entangled states. These
extra states act much like catalysts in a chemical reaction: they allow otherwise impossible local
transformations to be realized, without being consumed in any way.

The following are states of two 4-level systems

|ψ1〉 =
√
0.4|11〉+

√
0.4|22〉+

√
0.1|33〉+

√
0.1|44〉

|ψ2〉 =
√
0.5|11〉+

√
0.25|22〉+

√
0.25|33〉
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l) Show that neither |ψ1〉 → |ψ2〉 nor |ψ2〉 → |ψ1〉.

m) We assume now that the two parties, in addition to the above 4-level systems also share a pair of
entangled 2-level systems in the state

|φ〉 =
√
0, 6|55〉+

√
0.4|66〉

Show that
|ψ1〉|φ〉 → |ψ2〉|φ〉

This means that the presence of the state |φ〉 enables the transformation from |ψ1〉 to |ψ2〉 without
being changed in the process.
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The problem set consists of 1 problem written on 4 pages.

Problem 1: Superradiance

In this problem we will study the phenomenon of superradiance. This is the modifiaction of the
emission form an atom in the presence of other identical atoms. To aid you in solving the problems,
you may consult any material that you can find on the topic, but as always you should cite the sources
you use.

As introduction, we will first consider the emission from a single atom. The interaction beteen the
atom and the electromagnetic field is given by the Hamiltonian

Hint = −
e

m
A(r) · p.

In the following, we will only consider transitions between two atomic states, the ground state |0〉 and
one excited state |1〉.

a) Show that in the subspace spanned by the atomic states {|0〉, |1〉} and for the purpose of calculating
transition rates of spontaneous emission, we can replace the interaction Hamiltonian by

Hint =
∑

ka

gka(âkaσ
+ + â†kaσ

−)

and determine the coupling constants gka. Here, σ± = 1
2(σx ± iσy).

b) Find the rate of spontaneous emission w1 from the state |1〉 to the state |0〉, summing over all
possible final photon states.

We will next study the curious way in which the emission of a photon from an excited atom is modified
by the presence of other identical atoms at nearby points in space. If the distance between the atoms
is much less than the wavelenght of the emitted light, there is no way to determine which atom the
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light is emitted from, and we can consider the coupling of each atom to the radiation field to be the
same. The interaction Hamiltonian is then

Hint =
∑

ka

gka(âkaD
+ + â†kaD

−)

with D± =
∑

i σ
±
i where the sum is over all the atoms and σ±i is the σ± acting on atom i.

c) Consider first two atoms in the initial state |10〉 where one atom is excited and the other in the
ground state. Initially, one would expect the presence of the second atom not to affect the first,
but this is not correct. Show that the state |10〉 will not always decay to the ground state |00〉, but
sometimes only to the state 1√

2
(|10〉 − |01〉).

Hint: write the inital state as

|10〉 = 1√
2

[
1√
2
(|10〉+ |01〉) + 1√

2
(|10〉 − |01〉)

]

and show that only one of the components decay, while the other is not changed by the interaction.

d) On average, how many photons are emitted every time the experiment is repeated?

We consider now a large number N of atoms (we omly consider even N ), all so close in space that
the interaction with the field is the same. We study the evolution from the initial state |11 · · · 1〉
where all the atoms are excited. The permutation symmetry of the inial state as well as the interaction
Hamiltonian means that only states symmetric under permutation of the atoms will be populated.
These take the form

|JM〉 =
√

(J +M)!

N !(J −M)!
(D−)J−M |11 · · · 1〉

with J = N/2 and −J ≤M ≤ J (M is an integer for even N and half integer for odd N ).

e) Show that these states are orthogonal and normalized.

f) Show that the decay rate from the state |JM〉 is

wJM = (J +M)(J −M + 1)w1

where w1 is the decay rate of a single atom that we studied in question b).

g) For a given N , which M will give the largest decay rate (and consequently the largest photon
emission rate)? Show that in some cases the rate of photon emission is much larger than what you
would expect from N independent atoms, hence the term superradiance.

The fact that the collection of N atoms radiates at a rate much larger than N independent atoms
indicates that there are correlations between the atoms. We will study these correlations using two
different approaches.

First, we consider the correlation of operators on pairs of atoms. The decay rate wJM that you
calculated in question f) is proportional to the matrix element squared,

|〈J,M − 1|D−|JM〉|2
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h) Show that this is equal to the expectation value

〈JM |D+D−|JM〉

i) Show that
〈JM |

∑

i

σ+i σ
−
i |JM〉 = J +M.

j) The permutation symmetry of the state implies that the expectation value 〈JM |σ+i σ−j |JM〉 (for
i 6= j) is independent of i and j. Show that

〈JM |σ+i σ−j |JM〉 =
J2 −M2

N(N − 1)
.

k) The physical interpretation of this correlation is not so easy to see. To make it more concrete, we
can ask what is the probability of measuring some property of atom j given that we know the result
of some measurement on atom i. Imagine that we measure σx on atom i (if it was a real spin, we
know how to do that. Never mind how to do it on an atom, just assume that it can be done). What is
the probability that we will get the same result if we then measure σx on atom j? Give the answer
as a function of J and M . What is the maximal value for having the same result on measuring
both atoms and for what J and M does it occur?

A second approach to study the correlations between atoms in the state |JM〉 is to study the entan-
glement beween different subsystems. In this part we will limit ourselves to the case N = 4.

l) Find the reduced density matrix for the first atom for all possible values of M . Calculate the
entanglement entropy between the first atom and the rest of the system.

m) For M = 0, find the reduced density matrix of the first two atoms, and the entanglement entropy
with the rest of the system.

The above argument follows closely the original ideas of Dicke (Phys. Rev. 93, 99 (1954)) and is
dependent on the fact that the coupling to the field is perfectly identical for all the atoms, and that
there is no interaction between them. In reality, this may be difficult to achieve. The presence of
interactions between the atoms means that the atomic eigenstates are no longer eigenstates of the
Hamiltonian with interactions included. This implies that we have to take into account the internal
dynamis of the atoms during the emission process. One approach to this is to use the master equation
in the Lindblad form. To get any real benefit from this method requires more work than we have time
for during the exam, so we will limit ourselves to a simple situation without interactions.

We study two identical atoms coupled identically to the electromagnetic field as in question c).
The Hamiltonian is then

H = −1

2
ω0(σ

z
1 + σz2).

The interaction with the field gives rise to a Lindblad equation of the usual form

dρ

dt
= −i[H, ρ]− γ

2
(D+D−ρ+ ρD+D− − 2D−ρD+)

n) Determine all stationary states (states with dρ
dt = 0) of the system.
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o) Use the result of the preceeding question to confirm the result in question c) that the initial state
|10〉 will not decay to the ground state and find the final state at t→∞.

p) The conclusion that not all states will decay to the ground state is a consequence of the identity
of the atomic couplings to the electromagnetic field. This means that it is impossible to determine
which atom has emitted a given photon. A different situation arises if there is a way to discriminate
the photons coming from the two atoms. One way to achieve this is to have independent environ-
ments for each atom. Write the Lindblad equation for two two-level atoms coupled to independent
environments. A full derivation is not needed, only a reasonable justification. Use this equation to
show that any initial state will decay to the ground state.
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FYS 4110/9110 Modern Quantum Mechanics
Midterm Exam, Fall Semester 2022

Return of solutions:
The problem set is available from Friday morning, 30 September.
You may submit handwritten solutions, but they have to be scanned and included in one single file,
which is submitted in Inspera before Friday, 7 October, at 14:00.

Language:
Solutions may be written in Norwegian or English depending on your preference.
Questions concerning the problems:
Please ask Joakim Bergli or Maria Markova.

Problem 1: Supersymmetric quantum mechanics

In this problem we will study a construction that is known as supersymmetric quantum mechanics
(SUSYQM). For the harmonic oscillator, we can construct the operators â and â† that allows us to
find the energy spectrum algabraically without explicitly solving the Schödinger equation. SUSYQM
will allow us a similar construction for certain other potentials.

We study the motion of a particle in a potential V−(x) with the Hamiltonian in the position basis
(we use units where h̄ = 1)

H− =
p2

2m
+ V−(x) = − 1

2m

∂2

∂x2
+ V−(x).

Assume that there exists a function W (x) such that the operators

A =
ip√
2m

+W (x)

A† = − ip√
2m

+W (x)

factorize the Hamiltonian so that H− = A†A. The function W (x) is known as the superpotential.

a) Show that W (x) must satisfy the equation

W 2 − 1√
2m

dW

dx
= V−.

We define the partner Hamiltonian to H− as

H+ = AA† =
p2

2m
+ V+,

1



where V+ is called the partner potential to V−. We now define an extended system with the Hamilto-
nian

H =

(
H− 0
0 H+

)
(1)

and the two operators

Q =

(
0 0
A 0

)
Q† =

(
0 A†

0 0

)
.

b) Show that we have the following supersymmetry algebra (which is identical to Eq. (1.233) in the
lecture notes)

{
Q,Q†

}
= H

[Q,H] =
[
Q†, H

]
= 0

{Q,Q} =
{
Q†, Q†

}
= 0.

For this reason we say that the extended system is supersymmetric.

c) Explain what is the difference between the extended system described by the Hamiltonian (1) and
a system of two particles, one in the potential V− and one on the potential V+.

d) Show that the ground state energy of H is nonnegative. That is, if H|Ψ0〉 = E0|Ψ0〉 then E0 ≥ 0.

If E0 = 0 we say that SUSY is unbroken. If E0 > 0 we have broken SUSY. The spectra of the partner
Hamiltonians are related.

e) Show that we have the intertwinig relations

AH− = H+A, A†H+ = H−A†.

f) Show that this implies that if we have an eigenstate |ψ−n 〉 of H− with eigenvalue E−n then A|ψ−n 〉
is an eigenstate of H+ with the same eigenvalue.

The partner Hamiltonians H− and H+ therefore have the same eigenvalues and are called essentially
isospectral. The only exception to this is the ground state of one of the Hamiltonians for a system with
unbroken SUSY. Let us assume that this is the case for H−, in which case we can choose the ground
state of H on the form

|Ψ0〉 =

(
|ψ−0 〉

0

)

g) Show that if we are to have unbroken SYSY with this ground state we must have A|ψ−0 〉 = 0 so
that there is no corresponding eigenstate of H+.
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h) Show that we have the relation

|ψ+
n 〉 =

A√
E+

n

|ψ−n+1〉

between the eigenstates of H+ and H− with the eigenvalues related by

E+
n−1 = E−n .

i) Show that the ground state wave function is then determined by the equation

ψ−0 (x) = 〈x|ψ−0 〉 = Ne−
√
2m

∫ x
0 W (x′)dx′

.

We will now study the superpotential

W (x) =




∞ x < 0

− b
tanx 0 ≤ x ≤ π
−∞ x > π

(2)

j) Show that for a specific choice of b, the partner potentials take the form

V− = − 1

2m

V+ = − 1

2m
+

1

m sin2 x

on the interval 0 ≤ x ≤ π with both potentials being∞ outside this interval. Specify the value of
b that gives these potentials.

k) The potential V− corresponds to the well known case of a particle in an infinite square well. Either
solve this problem or write down the solution (eigenstates and eigenvalues) from your favorite
textbook.

l) Use the relations between V− and V+ derived above to determine the eigenvalues and eigenstates
of H+.

The above calculation gives an example where we could determine exact analytic expressions for the
eigenstates and eigenvalues of the potential V+ from the fact that we knew the corresponding results
for the simpler potential V−. In some cases we can do even better and determine the full spectrum and
eigenstates directly. Assume that we have a family of partner potentials V±(ao, x) that depends on
some real parameter a0. This family is called shape invariant if there exist real functions a1 = f(a0)
and g(a0) such that

V+(a0, x) + g(a0) = V−(a1, x) + g(a1)

with the corresponding relation

H+(a0, x) + g(a0) = H−(a1, x) + g(a1)

for the Hamiltonians.
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m) Show that for a shape invariant superpotential, the Hamiltonians H+(a0, x) and H−(a1, x) have
the same eigenstates, and that the energy eigenvalues are related by

E+
n (a0) = E−n (a1) + g(a1)− g(a0).

n) Assume that SUSY is unbroken for all an generated recursively from a0 by an+1 = f(an) and
that E−0 (an) = 0. Show that the energy spectrum of H−(a0) is given by

E−n (a0) = g(an)− g(a0). (3)

o) Show that the corrsponding energy eigenstates are

|ψ−n (a0)〉 =
A†(a0)√
E+

n−1(a0)
· · · A†(an−2)√

E+
1 (an−2)

A†(an−1)√
E+

0 (an−1)
|ψ−0 (an)〉 (4)

We now return to the superpotential (2) that we studied above. To simplify the expressions, we will
choose the mass so that

√
2m = 1.

p) Show that we have

V+(b, x) = V−(b+ 1, x) + (b+ 1)2 − b2.
Use this to show that we can generate a family of shape invariant potentials by choosing the initial
parameter value a0 to be any b, and determine the associated functions f(b) and g(b).

q) Choosing the starting value a0 = 1 corresponds to the infinite square well. Using the relation (3),
find the energy eigenvalues of this system. Use (4) to find the wave functions for the two lowest
energy eigenstates. Admittedly, this is a very complicated way to calculate something that we
know in advance how to derive in a simple way.
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