
FYS 4110/9110 Modern Quantum Mechanics
Midterm Exam, Fall Semester 2023. Solution

Problem 1: Quantum error correction

a) If there is one bit flip we have that 000 is received as 100, 010, or 001. By majority vote we will
correctly change this to 000, correcting the error. If two bit flips would happen, 000 could be
received as 110, which we would erroneously correct to 111. The probability for this to happen is
p2. If p
1 we ahve that p2 � p, so the probability that we get the correct result after correction is much
larger that without error correction.

b) Cloning the state |ψ〉 = α|0〉 + β|1〉 would give the state |ψ〉 ⊗ |ψ〉 ⊗ |ψ〉 6= α|000〉 + β|111〉 .
That the given encoding operation is in fact unitary is proven by the fact that it is the result of the
circuit in the next question.

c) If the initial state |ψ〉1 = α|0〉1 + β|1〉1 is initially stored in the first qubit we have that the action
of the circuit is

|ψ〉1 ⊗ |0〉2 ⊗ |0〉3 = α|000〉+ β|100〉
CNOT12→ α|000〉+ β|110〉
CNOT23→ α|000〉+ β|111〉.

d) We get the following table of eigenvalues of Z1Z2 and Z2Z3 for the possible cases

Initial state Error State Z1Z2 Z2Z3

X1 |100〉 −1 1
|000〉 X2 |010〉 −1 −1

X3 |001〉 1 −1

X1 |011〉 −1 1
|111〉 X2 |101〉 −1 −1

X3 |110〉 1 −1

As we see, all states are eigenstates of both the stabilizers. The measurement of both stabilizers
will then give the corresponding eigenvalues as results. We see that these two eigenvalues uniquely
determine which error has happened, independent of the initial state. This also means that the same
will be true if we start from a superposition of the two logical states. To correct the error, we then
have to apply the corresponding inverse operation (which is the same as the original error since
X2
i = I , the identity). For example, if the measurement of Z1Z2 gives 1 and Z2Z3 gives 1 we

know that the error was X1 and correct it by applying the operation X1 to the first qubit. Note that
the measurement of the stabilizers only gives information about the error, and no information at
all about the initial state. Otherwise we would affect the information stored in the initial state.
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e) Measuring the operators Z1 and Z2 separately will tell us the state of each qubit individually.
This would also reveal information about the initial state and collapse the wavefunction in a way
that perturbs the information. Measuring Z1Z2 will only tell if the two qubits are in the same
state (when the result is 1) or opposite states (when the result is −1). This does not reveal any
information about the initial state.

f) It is sufficient to consider only one of the stabilizers. We therefore analyze the simpler circuit

|ij〉 Z1Z2

|0〉A1 H H

which only involves the first two qubits and the first ancilla. We also only need to consider the
action of the circuit on the basis states |ij〉, and we find that

|ij0〉 H→ 1√
2

(|ij0〉+ |ij1〉)

CZ1Z2→ 1√
2

(|ij0〉+ Z1Z2|ij1〉)

H→ 1

2
(|ij0〉+ |ij1〉+ Z1Z2|ij0〉 − Z1Z2|ij1〉)

=
1

2
(1 + Z1Z2)|ij0〉+

1

2
(1− Z1Z2)|ij1〉

=

{
|ij0〉 if i = j
|ij1〉 if i 6= j

So it means that measuring the ancilla A1 will give 0 if Z1Z2|ij〉 = 1 and 1 if Z1Z2|ij〉 = −1.

g) Consider for example starting from the state |000〉 and having such an error act on the first qubit

|000〉 → U (1)
x (θ) = cos θ|000〉+ i sin θ|100〉.

Measuring Z1Z2 will give +1 with the probability cos2 θ with the state collapsing to |000〉 and−1
with the probability sin2 θ with the state collapsing to |100〉. In either case, there is correspondence
between the outcome of the measurement and the resulting state (as always). In a sense we can
say that the measurement decides if the first bit was unchanged or that the bit flip occured. After
the measurement, we can correct the error as before if it happened, or do nothing if no error was
detected.

h) Consider for definiteness that the error acts on the first qubit and that φ = π/2. If the initial state
is |φ〉 = α|000〉+ β|111〉 the state after the error occurs is

|φ′〉 = U (1)
z (π/2)|φ〉 = α|000〉 − β|111〉.
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We have that
Z1Z2|φ′〉 = Z2Z3|φ′〉 = |φ′〉

which means that the error is not detected.

i) The stabilizers for the correction of bit flips on the individual qubits are Z1Z2, Z2Z3, Z4Z5,
Z5Z6, Z7Z8 and Z8Z9. For the phase flip we have to use the stabilizers on the qbits that are con-
structed of bit-flip corrected triples of qubits. These are Xb

1X
b
2 and Xb

2X
b
3, where Xb

1 = X1X2X3,
Xb

2 = X4X5X6 and Xb
3 = X7X8X9, which means that the stabilizers are X1X2X3X4X5X6 and

X4X5X6X7X8X9.

j) All the ZiZj commute and also [X1X2X3X4X5X6, X4X5X6X7X8X9] = 0. We only have to
check commutators of the type

[Z1Z2, X1X2X3X4X5X6] = [Z1Z2, X1X2]X3X4X5X6

as operators on different qubits commute. We have

[Z1Z2, X1X2] = Z1[Z2, X1X2]+[Z1, X1X2]Z2 = Z1X1[Z2, X2]+[Z1, X1]X2Z2 = iY12iY2+2iY1(−iY2) = 0.

k) Any unitary operation is of the form U = e−iHt for a suitable Hamiltonian H and time t (we use
units where ~ = 1). The Hamiltonian, being Hermitian, can be expanded in the Pauli matrices and
the identity I as H = h0I +

∑
i hiσi = h0I + hσn where the unit vector n = h/|h|, h = |h| and

σn = h · σ. We know that these operators have the property σ2n = I , which means that

U = e−ih0t(coshtI − i sinhtσn = a0I + a1X + a2XZ + a3Z

since we have that Y = −iXZ.

Problem 2: Encoding a qbit in an oscillator

a) We use the BCH formula

eAeB = eA+B+ 1
2
[A,B]+ 1

12
[A,[A,B]]− 1

12
[B,[A,B]]+cdots

where the higher order terms in the exponent on the right involve commutators of [A,B] with other
operators. Defining Eα = αâ† − α∗â we have that the commutator

[Eβ, Eα] = βα∗ − β∗α

is a number, and therefore commutes with all operators and the series terminates. We then get

D̂(β)D̂(α) = eEβeEα = eEβ+Eα+
1
2
[Eβ ,Eα] = eEβ+Eα+

1
2
(βα∗−β∗α) = D̂(α+ β)e

1
2
(βα∗−β∗α).

Similarly we find that
D̂(α)D̂(β) = D̂(α+ β)e−

1
2
(βα∗−β∗α).

This gives
D̂(β)D̂(α) = eβα

∗−β∗α.
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b) We use the expansion

eBAe−B = A+ [B,A] +
1

2
[B, [B,A]] + cdots

to get
D̂(α)†x̂D̂(α) = e−Eα x̂eEα = x̂+ [x̂, Eα] = x̂+ α.

Then we check that D̂(α)|x〉 is an eigenstate of x̂

x̂D̂(α)|x〉 = D̂(α)D̂(α)†x̂D̂(α)|x〉 = D̂(α)(x̂+ α)|x〉 = (x+ α)D̂(α)|x〉

which shows that D̂(α)|x〉 = |x+ α〉.

c)

D̂(α)|0〉L =

∞∑
j=−∞

D̂(α)|2jα〉 =

∞∑
j=−∞

|2jα+ α〉 = |1〉L,

and similarly to show D̂(α)|1〉L = |0〉L.

d) We must have X̄Z̄ = −Z̄X̄ which gives

D̂(α)D̂(β) = −D̂(β)D̂(α) = eβα
∗−β∗αD̂(α)D̂(β).

For this to be true we must have βα∗ − β∗α = iπ. Assuming from now on that α is real and β
purely imaginary we can then write this as β = i π2α and get

D̂(β)|0〉L = ei
π
2α

(â†+â)|0〉L = ei
π
α
x̂|0〉L = ei

π
α
x̂
∞∑

j=−∞
|2jα〉 =

∞∑
j=−∞

ei
π
α
2αj |2jα〉 =

∞∑
j=−∞

ei2πj |2jα〉 = |0〉L

Similarly we get that D̂(β)|1〉L = −|1〉L, so Z̄ = D̂(β) acts in the desired way on the logical
states. Using this we then easily check the commutation relations.

e) In the position representation we have the wavefuction

ψ0(x) = 〈x|0〉L =

∞∑
j=−∞

δ(x− 2αj) =
1

2α

∞∑
j=−∞

e−
iπ
α
jx

In the momentum repersentation we have

ψ̄0(p) =

∫
dxeipxφ0(x) =

1

2α

∞∑
j=−∞

∫
eipxe−

iπ
α
jx =

π

α

∞∑
j=−∞

δ(p− 2|β|j).

For the state |1〉L we get

ψ̄1(p) =
π

α

∞∑
j=−∞

(−1)jδ(p− 2|β|j).
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f) The action of the circuit on an initial state |ψ〉L is

|ψL〉 ⊗ |0〉
H→ 1√

2
|ψL〉 ⊗ (|0〉+ |1〉)

CD̂(± z
2
)

→ 1√
2

[
D̂(

z

2
)|ψL〉 ⊗ |0〉+ D̂(−z

2
)|ψL〉 ⊗ |1〉

]
=

1

2

{[
D̂(

z

2
) + D̂(−z

2
)
]
|ψ〉L ⊗ |+〉+

[
D̂(

z

2
)− D̂(−z

2
)
]
|ψL〉 ⊗ |−〉

}
,

which gives

P± =
1

4
〈ψL|

[
D̂†(

z

2
)± D̂†(−z

2
)
] [
D̂(

z

2
)± D̂(−z

2
)
]
|ψL〉

=
1

4

[
2± 〈ψL|D̂†(z) + D̂(z)|ψL〉

]
=

1

2

[
1± 1

2

(
〈ψL|D̂(z)|ψL〉+ 〈ψL|D̂†(z)|ψL〉

)]
.

g) The circuit does the following

|ψL〉 ⊗ |0〉
H→ 1√

2
|ψL〉 ⊗ (|0〉+ |1〉)

CD̂(± z
2
)

→ 1√
2

[
D̂(

z

2
)|ψL〉 ⊗ |0〉+ D̂(−z

2
)|ψL〉 ⊗ |1〉

]
S→ 1√

2

[
D̂(

z

2
)|ψL〉 ⊗ |0〉+ iD̂(−z

2
)|ψL〉 ⊗ |1〉

]
=

1

2

{[
D̂(

z

2
) + iD̂(−z

2
)
]
|ψ〉L ⊗ |+〉+

[
D̂(

z

2
)− iD̂(−z

2
)
]
|ψL〉 ⊗ |−〉

}
.

This gives

P± =
1

4
〈ψL|

[
D̂†(

z

2
)∓ iD̂†(−z

2
)
] [
D̂(

z

2
)± iD̂(−z

2
)
]
|ψL〉

=
1

2

(
1± Im

(
〈ψL|D̂(z)|ψL〉

))
.

If

D̂(z)|ψL〉 = eiθ|ψL〉

the state after measurement outcome ± is

|ψ′L〉 = D̂(± ε
2

)
[
D̂(

z

2
)± iD̂(−z

2
)
]
|ψL〉.

We check that this is and eigenstate of D̂(z)
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D̂(z)|ψ′L〉 = D̂(z)D̂(± ε
2

)
[
D̂(

z

2
)± iD̂(−z

2
)
]
|ψL〉

= D̂(± ε
2

)D̂(z)e∓
1
2
(zε∗−z∗ε)

[
D̂(

z

2
)± iD̂(−z

2
)
]
|ψL〉

= eiθ∓
1
2
(zε∗−z∗ε)|ψ′L〉

= ei(θ∓|zε|)|ψ′L〉.

We also have that

P± =
1

2
(1± sin θ)

so that if θ > 0 the probability of measuring + is greater thatn 1
2 . In that case, we se that the new

exponent θ∓ |zε| < θ, so the angle θ is on average reduced. On the other hand, if θ < 0 it is more
likely to measure −, and the angle will increase. So the state will approach the state with θ = 0,
that is, the eigenvalue will be 1.
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