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Solutions to problem set 2

2.1 Counting and changing states

a) There are two complex parameters, giving 4 real parameters. Normalization reduces this to 3 and
since an arbitrary global phase does not change the state, the number of real parameters is two.

b) The state is still |A〉. The number of photons arriving every second is reduced, but not the state.

c) The state is still |A〉. Changing the phase does not change the state.

d) No, if α 6= β, the states are different.

e) Placing an attenuator in front of one slit and a phase shifter in front of the other, we can adjust both
the relative intensity and relative phase of the two states. If |α| = |β| the intensities are the same
in both slits, and we get maximal interference. If either α or β are zero we get no interference.
Changing the relative amplitude changes the strength of the interference pattern. Changing the
relative phase shifts the interference pattern.

2.2 Measuring spin states

a) Yes. We can measure the spin along the direction where cos θ|0〉 + sin θ|1〉 is an eigenstate with
eigenvalue +hbar

2 . As soon as we get one outcome with spin in the opposite direction we know
that it is not this state. If we always get spin up in this direction, we know that this is the state. But
if φ is small, we may need to measure a large number of electrons to be very certain of the result.

b) No, the two states are not orthogonal, and then they can not be discriminated with certainty.

2.3 Effect of measurement

a) No

b) In most cases yes. If |A〉 is an eigenstate, the state is not changed by the measurement process and
|B〉 = ξ̂|A〉 = α|A〉 represents the same state as |A〉. It fails only if the eigenvalue is zero, since
we get |B〉 = 0 which doeas not represent any state at all.

c) No, the outcomes are not derterministic, but stochastic at each measurement. Only if |A〉 is a
simultaneous eigenstate of both ξ and η will you always get the same result, and it is independent
of the order.
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2.4 Heisenberg’s equation of motion

Starting out with the equation of motion for x̂, this can be done without the explicit expressions
for x̂ and p̂ in the coordinate representation.

d

dt
x̂ =

i

h̄

[
Ĥ, x̂

]
=
i

h̄

[
p̂p̂

2m
+ V (x̂), x̂

]
=
i

h̄



[
p̂p̂

2m
, x̂

]
+ [V (x̂), x̂]︸ ︷︷ ︸

=0


 =

i

h̄

[
p̂p̂

2m
, x̂

]

Using the relation[AB,C] = A [B,C] + [A,C]B, and [x̂, p̂] = ih̄ we get:

d

dt
x̂ =

i

2mh̄
(p̂ [p̂, x̂] + [p̂, x̂] p̂) =

i

2mh̄
(p̂ (−ih̄)− ih̄p̂) =

p̂

m
(1)

On to the equation of motion for p̂:

d

dt
p̂ =

i

h̄

[
Ĥ, x̂

]
=
i

h̄

[
p̂p̂

2m
+ V (x̂), p̂

]
=
i

h̄



[
p̂p̂

2m
, p̂

]

︸ ︷︷ ︸
=0

+ [V (x̂), p̂]


 =

i

h̄
[V (x̂), p̂]

To get further, we choose the coordinate representation and a wavefunction for the commutator to act
on:

i

h̄
[V (x̂), p̂]ψ(x) =

i

h̄

[
V (x),−ih̄ ∂

∂x

]
ψ(x) = V (x)

∂

∂x
ψ(x)− ∂

∂x
[V (x)ψ(x)]

= V (x)
∂ψ

∂x
− ∂V

∂x
ψ(x)− V (x)

∂ψ

∂x
= −∂V

∂x
ψ(x)

Since the wavefunction ψ(x) was arbitrary, we may remove it and get:

d

dt
p̂ = −∂V

∂x
(2)

Combining (1) and (2), we get:

m
d2x̂

dt2
= −∂V

∂x

Which is on exactly the same form as the classical equation of motion for a particle in a potential
V (x).

2.5 Time dependent unitary transform

The states and operators transform under Û as follows:

|ψ(t)〉 → |ψ′(t)〉 = Û(t)|ψ(t)〉 (3)

Â → Â′(t) = Û(t)ÂÛ(t)−1 (4)

We are to show

Ĥ → Ĥ ′(t) = Û(t)ĤÛ(t)−1 + ih̄
dÛ

dt
Û(t)−1
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First off, we write down the Schrödinger equation in both frames:

Ĥ|ψ(t)〉 = ih̄
d

dt
|ψ(t)〉 (5)

Ĥ ′|ψ′(t)〉 = ih̄
d

dt
|ψ′(t)〉 (6)

Here, the total derivative is used as our states are not in the position representation. Starting with the
transformed equation (6), we wish to rewrite the right hand side in terms of |ψ(t)〉 and Ĥ:

Ĥ ′|ψ′(t)〉 = ih̄
d

dt
|ψ′(t)〉 = ih̄

d

dt

(
Û(t)|ψ(t)〉

)
= ih̄

dÛ

dt
|ψ(t)〉+ ih̄Û(t)

d

dt
|ψ(t)〉

(5)
= ih̄

dÛ

dt
|ψ(t)〉+ Û(t)Ĥ|ψ(t)〉

Next, we wish to get rid of the states, we use (3) and rewrite |ψ(t)〉 = Û(t)−1|ψ′(t)〉 such that our
equation becomes:

Ĥ ′|ψ′(t)〉 = ih̄
dÛ

dt
Û(t)−1|ψ′(t)〉+ Û(t)ĤÛ(t)−1|ψ′(t)〉

From where it directly follows that:

Ĥ ′ = Û(t)ĤÛ(t)−1 + ih̄
dÛ

dt
Û(t)−1

Thus, if we assume |ψ(t)〉 are energy eigenstates in the Schrödinger picture, then equation (5) is
turned into: Ĥ|ψ(t)〉 = E|ψ(t)〉, now transforming the state and letting the transformed hamiltonian
act on the state gives:

Ĥ ′ =

(
Û(t)ĤÛ(t)−1 + ih̄

dÛ

dt
Û(t)−1

)
|ψ′(t)〉

= E|ψ′(t)〉+ ih̄
dÛ

dt
|ψ(t)〉

The transformation changed the Hamiltonian such that the transformed energy eigenstates no longer
are eigenstates of this operator and the Hamiltonian doesn’t represent energy anymore. We also see
from the above calculation that if Ĥ ′ = Û(t)ĤÛ(t)−1, it would satisfy Ĥ ′|ψ′(t)〉 = E|ψ′(t)〉.
Thus Û(t)ĤÛ(t)−1 is the energy operator in the transformed picture, while the one calculated above
governs time evolution.

2.6 Oscillations in ammonia molecules (Midterm Exam 2010)



Problem 4.2 (Midtterm exam 2010)
Solutions

a) Assume orthogonality, 〈ψL|ψR〉 = 0. In this basis the Hamiltonian has the matrix form

H =

(
E0 λ
λ E0

)
(1)

The eigenvalues E are found from the equation,
∣∣∣∣
E0 − E λ

λ E0 − E

∣∣∣∣ = 0 ⇒ (E − E0)
2 − λ2 = 0 (2)

Solutions

E±0 = E0 ± λ (3)

Eigenvectors in matrix form

ψ±0 =

(
α±0
β±0

)
, |α±0 |2 + |β±0 |2 = 1 (4)

The coefficients are determined by the eigenvalue equation
(
E0 λ
λ E0

)(
α±0
β±0

)
= E±0

(
α±0
β±0

)

⇒
(E0 − E±=)α±0 = −λβ±0

⇒
α±0 = ±β±0 =

1√
2

(5)

In bra-ket formulation

|ψ±0 〉 =
1√
2

(|ψL〉 ± |ψR〉) (6)

The eigenvectors are the symmetric and antisymmetric combinations of |ψL〉 og |ψR〉. The antisym-
metric superposition is lowest in energy. This can be understood as due to a lower possibility for |ψ−0 〉
than for |ψ+

0 〉, to find the N -atom within the potential barrier, where the potential energy is high.
b) New eigenvalue equation

∣∣∣∣
E0 + ∆− E λ

λ E0 −∆− E

∣∣∣∣ = 0 ⇒ (E − E0)
2 = λ2 + ∆2 (7)

Solutions

E± = E0 ±
√
λ2 + ∆2 (8)

1
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c) Eigenvectors, matrix elements

(E0 + ∆− E±)α± + λβ± = 0 ⇒
(∆∓

√
λ2 + ∆2)α± + λβ± = 0 (9)

Normalized solutions

α± =
1√

2
√
λ2 + ∆2

√√
λ2 + ∆2 ±∆

β± = ± 1√
2
√
λ2 + ∆2

√√
λ2 + ∆2 ∓∆ (10)

The states in the ket form

|ψ±〉 =
1√

2
√
λ2 + ∆2

(

√√
λ2 + ∆2 ±∆ |ψL〉 ±

√√
λ2 + ∆2 ∓∆ |ψR〉) (11)

Overlap

|〈ψL|ψ±〉|2 =
1

2
(1± ∆√

λ2 + ∆2
) (12)
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Avoided crossing: When ∆ increases from negative to positive values, the energy difference be-
tween the levels decreases, but a direct crossing is avoided by an effective repulsion between the two
levels. The minimum energy difference is determined by λ. The eigenvectors are interchanged be-
tween the two levels during the avoided crossing, so that the ground state |ψ−〉 corresponds to |ψL〉
for large negative ∆ and to |ψR〉 for large positive ∆.

d) The Hamiltonian and the states |ψ±0 〉 in the {|ψL〉, |ψR〉} basis,

Ĥ =

(
E0 + ∆ λ

λ E0 −∆

)
, ψ±0 =

1√
2

(
1
±1

)
(13)

Matrix elements of Ĥ in the |ψ±0 〉 basis,

ψ±†0 Ĥψ±0 =
1

2
(1 ± 1)

(
E0 + ∆ λ

λ E0 −∆

)(
1
±1

)
= E0 ± λ

ψ±†0 Ĥψ∓0 =
1

2
(1 ± 1)

(
E0 + ∆ λ

λ E0 −∆

)(
1
∓1

)
= ∆ (14)

In matrix form,

Ĥ =

(
E0 + λ ∆

∆ E0 − λ

)
= E01 + λσz + ∆σx (15)

which in the oscillating electric field, where ∆ = ∆0 cosωt, gives

Ĥ = E01 + λσz + ∆0 cosωtσx (16)

e) In the rotating wave approximation H takes the following form

Ĥ = E01 + λσz +
1

2
∆0(e

iωtσ− + e−iωtσ+)

= E01 + λσz +
1

2
∆0(cosωtσx + sinωtσy) (17)

The form is the same as for the Hamiltonian of a spin-half system in a magnetic field with a constant
z-component and a rotating component in the xy-plane. In the lecture notes the Hamiltonian is

Ĥ =
1

2
ω0~σz +

1

2
ω1~(cosωtσx + sinωtσy) (18)

where ω0 is proportional with the strength of the constant field component, and ω1 is proportional
to the strength of the rotating component. Comparison with these expressions gives the follwing
identifications

λ =
1

2
ω0~ , ∆0 = ω1~ (19)

In the following this identities will be used. The Hamiltonian (17) has in addition a constant term
E01, which is, however, unimportant for the evolution of the system, since it only contributes with
a common phase factor for all states. In the following we therefore disregard this term, by setting
E0 = 0.
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The Hamiltonian is transformed to time independent form by the unitary, time dependent operator

T̂ (t) = e
i
2
ωtσz (20)

The transformed Ĥ is

ĤT̂ = T̂ (t)ĤT̂ (t)† + i~
dT̂

dt
T̂ (t)

=
1

2
~Ω(cos θσz + sin θσx) (21)

with

Ω =
√

(ω − ω0)2 + ω2
1 =

1

~

√
(ω~− 2λ)2 + ∆2

0 (22)

as the Rabi frequency, and with θ determined by the equations

cos θ =
ω0 − ω

Ω
=

2λ−∆0√
(ω~− 2λ)2 + ∆2

0

sin θ =
ω1

Ω
=

∆0√
(ω~− 2λ)2 + ∆2

0

(23)

The resonance frequency is

ω0 = 2λ/~ (24)

The time evolution operator in the transformed picture is

ÛT (t) = cos(
Ω

2
t)1− i sin(

Ω

2
t)(cos θσz + sin θσx) (25)

and in the Schrödinger picture it is

Û(t) = e−
i
2
ωtσz ÛT (t) =

(
A B
C D

)
(26)

with matrix elements

A = (cos(
Ω

2
t)− i cos θ sin(

Ω

2
t))e−

i
2
ωt

D = (cos(
Ω

2
t) + i cos θ sin(

Ω

2
t))e

i
2
ωt

B = −i sin θ sin(
Ω

2
t))e−

i
2
ωt

C = −i sin θ sin(
Ω

2
t))e

i
2
ωt (27)

(For details about the derivation we refer to the lecture notes.)
f) We use the relations

|ψL〉 =
1√
2

(|ψ+
0 〉+ |ψ−0 〉) , |ψR〉 =

1√
2

(|ψ+
0 〉 − |ψ−0 〉) (28)
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which in matrix form are

ψL =
1√
2

(
1
1

)
, ψR =

1√
2

(
1
−1

)
(29)

This gives

〈ψR|ψ(t)〉 = 〈ψR| Û(t)|ψL〉

=
1

2
(1 − 1)

(
A B
C D

)(
1
1

)

=
1

2
((A−D) + (B − C)) (30)

Inserted for A,B,C,D,

〈ψR|ψ(t)〉 = −[sin θ sin(
Ω

2
t) sin(

ω

2
t) + i{cos(

Ω

2
t) sin(

ω

2
t) + cos θ sin(

Ω

2
t) cos(

ω

2
t)}] (31)
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g) Absolute squared

|〈ψR|ψ(t)〉|2 = [sin θ sin(
Ω

2
t) sin(

ω

2
t)]2 + [cos(

Ω

2
t) sin(

ω

2
t) + cos θ sin(

Ω

2
t) cos(

ω

2
t)}]2

=
1

2
[1− cosωt+ cos2 θ(1− cos Ωt) cosωt+ cos θ sin Ωt sinωt] (32)
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Plots of |〈ψR|ψ(t)〉|2 with τ = 2πλt as time coordinate:
The two figures correspond to ω = ω0 = 2λ/~ and ω = ω0/10 = λ/5~. In both cases we have
ω1 = ∆0/~ = 2λ/~ = ω0.

Commentary:
At resonance the oscillations are harmonic, with angular frequency ω0. This is similar to the case
with the periodic field component turned off. In this case the frequency ω of the rotating field only
influences the complex phase of 〈ψR|ψ(t)〉.

With ω = ω0/10 the oscillations are modulated by slower oscillations, with frequency close to ω.
The more rapid oscillations in this case are to some extent modified by ω.

The expression (32) shows that more generally the function |〈ψR|ψ(t)〉|2 is a linear combination
of three periodic functions, with frequencies ω, Ω− ω and Ω + ω.
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