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Solutions to problem set 4

4.1 Density operators

a) We have
1 1 .
<O’z‘> = TI‘pO'i = 5 Tr(]l + T’jO’j)O’l‘ = 57']‘ Tr(ﬂéij + Zejika'k) =T (1)
b)
R R N P2 1
p = p1p1 + p2p2 = 5(]l+r1-a)+5(ﬂ+r2-a) =3 1+ (pir1 + pors) - o]
¢) We know that the pure states are on the surfae of the Bloch sphere. Any mixed state will have a
Bloch vector of the form r = pir| + pary with ry and ro unit vectors. This means that r is on the

line between r; and ro, at a position given by the probabilities, and therefore it is inside the Bloch
sphere.

d) We use the matrix representation:

1/1 —1
(]1+a:ax+yay+zaz):2< +z zy):(Pn plz) ?)

N

(I+r-0)=

N

P= r+iy 11—z P21 P22

e) The density matrix is given by:

(2 (T [+ 1 1) (P |+ 1120 (P2 D) 3)

W =

p=> prltn) (x| =
k

where py = pa = p3 = 1/3, is the (classical) probability of the state being up in x, y or z
respectively. One can do the computation of p in two ways:

e Matrix representation:

1 = (1) =550
1) = %C) =20 =)

1= (y) =00
Then:

r= sl )0 )] =l )6 )+ (o)
114 1-4d\ 1/ 1+L la—y)
- 32(1+z‘ 2 >_2<§(1+3z') 31—§>

Comparing with (2?), we see that r = (3, £, 1)
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e Bra-ket formalism:
We start of by expressing | 1) and | T,) in the |£) basis by solving the eigenvector equations:

0zl o) = [ T2) = (04 +0-) (al+) + b]=)) = a|+) +b]-)
We see that the only terms surviving o |F), our equation becomes:
bl+) +al=) = al+) +0]-)

Then choosing a = b = % gives

[ 12) = == (1) +1=)

1
V2
Next up:

oyl ty) = [ 1y) = i(o— —oy) (al+) +b[=)) = al+) + b]-)

By the same argument as earlier, we arrive at:

at|—) + bil+) = a|+) + b|—)

This gives: ai:b:>§:i:>a T’b \}zand

1) = =5 () +il-)
Inserting this into (??):
b= s () + 1D (o (=) 53 () + =) (GH = =) + 5 521
= 53 (BHDINE (=) )]+ (1 +9) =) (+ + (3 = 1) =)~

= 3 ((1+3) WG+ Fa-D T+ g+l (1-5) )

This can be read of as:

where r = (%, %, %)
The Von Neuman entropy is given by equation 2.24 in the lecture notes, which reads:

S = —%bg [(1 +r)r - r)lfr} + log 2

where r = |r| = %
S (N I (R
= —;log —= - —= og
2 V3 V3
~ 0.744

when choosing log = log,.
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f) The unit vector in the direction of ris n = ﬁ = % (1,1,1). According to Eq (2.22) of the lecture
notes we have that
L 1 1
p= 5(1 + T)‘\I/n><\lln‘ + 5(1 - T)‘\I}—nﬂm—n’

where | U, ) are the eigenstates of 0, = n - 0. If we want the explicit form of these states we can
recall that (Eq (1.136)in the lecture notes)

B cos /2 [ —e®sinf/2
[¥n) = < ' sin 0/2 ) V) = ( cos /2 >

where (0, ¢) are the polar coordinates for n. With n%(l, 1,1) we have cosf = 1/+/3 and
¢ = m/4. Using

1 V3 +1
COSH/Z—E\/l—I-COS = Wi

5 - —cosf = V-1
51n9/2—ﬁ\/1 =1/ Wi

0, = 1 V341 v, = —e /43 -1
" 2v/3 \ e/ V3 -1 - V3+1 '

we get

4.2 Entropy of a thermal state

1 . 2 dz 7 7
p= Ze_BH, Z =Tr (6_5H> , — =-"Tr (e_ﬁHH)

The Von Neumann entropy is given in the lecture notes as:

S=-Tr(plnp) = —%Tr [eiﬁﬁ(—ﬁﬁ—an)} = gTr {eiﬁﬁlﬂ + %anTr {eiﬁﬁ}

_ pBdz B d
= Zd6+1nZ_ ﬂdﬁan—HnZ' 4)

b)

H:Mi<n+;> [n)(nl, En:h“(”+;>

n=0

N(,B)_l — i e_ﬁEn — i e—ﬁhw/2e—,3ﬁwn _ 6_’8M/2 i e—ﬁﬁwn
n=0 n=0 o
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We recognize )~ e~ PR ag a konvergent sum of a geometric series.

o)

1
Z —Bhwn  __
e = —_——
— e Bhw
= 1—e
Thus:
1 — e Phw
N(B) = o Bhwj2
_ 6[37%.1/2 o 6—Bhw+ﬁﬁw/2
_ 65ﬁw/2 . 6—[3ﬁw/2
hw
= 2sinh 5—
2
Inserting this into (??) gives:
d hw hw
S(p) = B% In (2 sinh 62> —1In <2 sinh B2>
d : Bhw
dg (2 sinh T) . . Phw Bhw 2cosh@ .. Bhw
= : ﬁw —In { 2sinh = —Bhe In [ 2sinh —
2 sinh 57 2 2 2sinh =
hw hw hw
= 67 coth 57 —1In (2 sinh 52>
¢) We now write the entropy as a function of x = 2]23T = ﬁim so we get:

1 1 1
S(z) = —coth— —In (2 sinh >
x x x

where loge — Ine = 1. The plot for z € [0, 5] is
2 T - 5
S{x)

LT,

0f 1 2 3 q 5

Evaluating the limit 7" — 0 = x — 0. Defining u = 1/x, we can write the entropy as

: e e u - —2u
S(x) = ucothu—In(2sinhu) = u—————1In (" —e™™) = um—u—ln (1—e).

et —e~
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When taking the limit u — oo, the first two terms cancel and the last term goes to zero, so we have
shown that

lim S(z) =0

z—0t

Onto the limit T — 00 = x — o0

1 1 1 1 1 1
lim S(z) = lim < coth— —1In <2 sinh >> = lim —coth— — lim In <2 sinh )
x x

T—00 r—0o0 \ & €T T—00 I T T—00

Looking at the first limit:

1 1 h
lim —coth— = lim ycothy = lim m
T—00 T T y—0t y—0t sinhy

This is a limit that approaches 0/0, and we may use L'Hopital’s rule:

«h ’ ‘h i h
YCOSY T iy O TISIRY _ iy (1 4y tanhy) = 1

y—0+ sinhy y—0+ cosh y y—0+
Then,
1
lim S(z) =1+ —lim In <281nh ) =00
T—00 T—00 €T
=

So the entropy approaches O for T' — 0, which makes sense since there is only one possible state
the system can be in the limit, and the system is therefore ordered. In the other limit, there is an
infinite number of states available, so the system has an infinite number of states to ”choose” from,
meaning that the entropy approaches infinity.

4.3 Bloch-Siegert shift

This problem was adapted from Y. Yan et al., Bloch-Siegert shift of the Rabi model, Phys. Rev.
A 91, 053834 (2015) where you can read more details and background material.

a) If [¢) is the state of the system in the laboratory frame, the state in the rotating frame is |¢') = T'|v))
with the time-dependent unitary transformation

T = ei%toz
The Hamiltonian in the rotating frame is given by

dT
H' =THT' + %TT

‘We use the relation
e"% — cosd 1 — isin ¢ ;.

to get
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€T ge 1T = cos(wt) o — sin(wt) oy,
eiw?t”ZJye_i%t”z = cos(wt) oy + sin(wt) o,

Combining, we get

h h
H = §(wg —w)o, + §Aax

which is time-independent. The resonance condition is w = wy irrespective of the driving ampli-
tude A. Then we get Rabi oscillations between the ground and excited state.

b) The same transformation gives now the Hamiltonian

h h
H = §(w0 —w)o, + ZAUJC + ZA(COS(th) op — sin(2wt) oy).
We see that we get an additional term which describes a field rotating at the frequency 2w. To
understand this, we can decompose the oscillating field in two counterrotating fields

1 . 1 .
cos(wt) o, = 5 (coswt oy +sinwt oy) + Q(cos wt o, —sinwt o).

The first term is rotating as the field in question a) and is transformed to a constant field. The
second term is rotating in the opposite direction, and when seen in the rotating frame is rotating
twice as fast. We can neglect the rotating term when A is sufficiently small because it changes
rapidly in time and its effect on the state does not have time to build up before the field changes
direction. On the average, it does not have large effect, and the true state will wiggle around the
approximate state that we find using the rotating wave approximation.

¢) Since the operator S(¢) commutes with o, we only need to consider the transformation of o,. We
write A = %5 sin(wt) and get

S e~ AT — cos(24) o, + sin(24) oy.

el O,ZefzS _ eon'zO_

This gives the transformed Hamiltonian

h

H = S0 {cos {f& sin(wt)] o + sin [ﬁfsin(wt}} O'y} + gA(l — &) cos(wt) og.

d) If we choose
A 1 1
Ji | — =_-A1-¢& =4 5
1 <w£> wo =5 (1-¢) 5 )
the Hamiltonian will be (when neglecting the terms from H. é)

h A h
H= §w0J0 <£> o, + §A'(cos(wt) 0z + sin(wt) oy)
w
With this choice of &, the z- and y-components of the field have the same amplitude, and we have
a rotating field similar to the one in question a) but with wg rescaled by the Bessel function. The
resonance condition is therefore
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A
w = wng <wf> . (6)

e) We determine £ to lowest order in A we expand the Bessel function in (??) to get

Ji <A§> wp ~ Aﬁwo.

w 2w

From (??) we then get

W

w4 w’

We insert this in (??) and expand the Bessel function

A A A?
o= () mern (55) ~eo (- aam)

For A — 0, we recover the resonance at w = wy as we had using the rotating wave approximation.
To next order, we must have w = wy+cA?, and we can replace wq +w with 2w in the denominator
to get

AZ
160.)0 '

W =wy —



