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Solutions to problem set 5

5.1 Pure and mixed states

a)

b)

c)

d)

A pure state is the most accurate description possible of a quantum system. It is represented
by a state vector |¢)) in Hilbert space. A mixed state is used when we do not know the exact
quantum state, but only the probabilities p; for a set of possible states |1);). It is represented by a
density matrix p = Y. p;|1;)(;|. Mixed states also occur for composite systems in pure states.
The reduced density matrix of one component is then a mixed state when there is entanglement
between this component and the rest of the system.

We measure the spin in the z-direction. | —) is an eigenstate of o, with eigenvalue +1, which
means that we will measure spin up in x for all particles in ensamble A. For ensamble B we will
measure spin up and spin down randomly with equal probabilities.

We prove that the density matrices are the same:
1 1
pp =3I D+ 51 DL

po = g )= |+ 5] )
= LUD T+ D+ 7D ~ 1D (= (D)
= S+ 51 L

Since the density matrices are the same will we get the same statistics for al possible measurements,
and we can distinguish the ensembles.

The state is |¢)) = % (| 1) = | I1)). Ttis clear that if we measure the first particle along the z-
axis we have equal probabilities of measuring up or down, and the second particle will collapse to
the opposite state, generating ensemble B. Ensemble C is generated by measuring the first particle
in the z-direction. to see this we rewrite [¢/) in terms of the states | —) and | <—). We have

|T>=\}§(|—>>+I<—>)
|¢>=\}§(|—>>—IH)
which we use to get
Iw>=2\1@(|%>+l%>)(|%>—le>)—f(|%>—|%>)(%>+\%>)
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e) Consider the case where person 1 measures spin along the z-axis and therefore prepares ensemble
B. If person 2 also measures along the z-axis, the outcomes of the two measurements will always be
perfectly anticorrelated. If instead person 1 measures z-spin and prepares ensemble C while person
2 still measures z-spin, teh results will be uncorrelated. Nothing changes if person 1 measures after
person 2.

5.2 Entanglement
a)
1
=—(+++—--
¥) 7 (I++H+1=--)
This stateis a pure state, and thus has the density matrix:
. 1
o= GUHHNE+ = =N = [+ [+ )= =+ = =)+ ]
1
=5 > )l
n,me{+,—}

The entropy is then given by:

Sa=5Sp="Try(palogpa) (= Trg(pplogpr))

where p4 = Trg (p). The trace of a matrix in the product space is:

pa = T (o S | | =5 Tes (jon) imm)
n,me{+,—} nme{+,—}
:% S s ((In)a @ n)s) ((mla® (mls))
n,me{+,—}
= 5 X Twmm e (n)m))
n,me{+,—}
= 5 X (mmb e Tr(m)ml)g)
n,me{+,—}
= 3 X (s ® )
n,me{+,—}

Due to the trace only sums the diagonal elements ( Tr (|n)(m|) = (m|n) = dpmp. Since o,y is a
number, the tensor product reduces down to simple multiplication:

pa=3 Y Gunln)m)

n7m€{+1_}

Thus,
1

pa= 5 () {+ + =)=
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1
This is a matrix with both eigenvalues 5 thus we find the entropy:

1.1 1. 1

Thus, they are maximally entangeled.

b) The operation U Bp=1® U B, and U 0= U 4 ® 1, thus, applying both yields:
Ualp = (Oae1) (10 05) = Ua e Us
Applying this as a transformation, we get:
) = [¢) = Ua @ Uplp)
p—p = (UA ® UB) p (UA ®UB)t
Then:

~m | e ls) | ;_}qmm|n>B><<m|A®<mrB> (a0 05)’
— Tep ; x ([Oalnya) @ [Oslnys] ) ([omlalh] @ [(mls0F])

= gt | 3 ([anatmlat] o [Gutmatotnt])

_ n,mg,_} ([0alm) atmla08] @ Te [Oslm) sml 505

From problem set 1, we showed that Tr <U AU T) = Tr(A) by
Tr (UAUT> =Tr <U {AﬁTD =Tr ([AUT] U) =Tr(A)
We arrive at

Pao= 5| D UamdmlUhdmn| = | D0 Ualm(nlU}| = Uapall
n,me{—l—,—} TLE{-F,—}

The entropy is then given as:
Sy = —Tr (/3 log (7))

Since p/y = U PA UI‘, they have the same eigenvalues, and therefore the entropy is the same.
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¢) After the measurement, part A of the system is projected on one of the eigenstates of the operator
being measured (it does not matter which operator this is). It is then in a well defined pure state
and not entangled with part B any more. The entropy of entanglement after the measurement is 0.

5.3 Matrix representation of tensor products

a) We have
C1 a1b1
el fab2]  [aib
¢= cs | |agbi ] (a2b> @
Cq4 CLQbQ

For the basis vectors, we can assume

ba=(g). 2a=(3)

And similarily in the B space. We can use the result (2), to have:
i) =liva s e = (1)
2)

Then:
|11) = . 12) =

;21 = o 22) =

o O O
O O = O
O = O O
— o O O

b) We have

A11B1y AnnBia AeBin ApBro

Cc_ A11Ba1 A11Boy A19B31 A12B2 :<A11]3 A12B>
Ao1B1y ABia AxaBir AxDBio AyB  Ax»B
Ao1Ba1 A91Boy ABo1 AzxBa
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We show three examples

0 0 0 —i
0 0 i 0 0 o9
Ul@"?(o —i 0 0 <02 0)
i 0 0 0
0 0 1 0
oo |00 0 =] _ (0 o
=3 1 0 0 0 o3 0
0 -1 0 0
0 0 —i 0
U®U:OO 0 ¢« (0 —iog
293 i 0 0 0 iocs 0
0 —i 0 0

d) We have

Cc — AllB A12B Cle . Allale+A12a2Bb
- A1B Ax»B asb - As1a1Bb + AssasBb

We use that A ® Bla) ® |b) = A|a) ® B|b) and that the matrix representing A|a) is

Aa— <A11a1 + A12a2>
Agra1 + Agzaz
Then the matrix representing A @ Bla) ® |b) is

((A11a1 + A12a2)Bb)
(A21a1 + Az2a2)Bb

which is the same as Cc

5.4 Schmidt decomposition 1

We have a system consisting of two spin—% particles. For each of the following states, study the
reduced density matrix of of one of the particles and determine if the state is entangled or not. For the
states which are not entangled, find a factorization of the state as a tensor product of one state for each

particle. For the entagled states, find the Schmidt decomposition of the state.

) = 3 (11 = [ 1)+ 4) = | 1))
) = 3 (1) 4 1) 1) — | 44))
) = el 1) + - 1) +a| 1)+ al 1)

[SEEEES]

M) +ag[ M) +ar [ D) +a[ 1)

|14)



FYS 4110 Modern Quantum Mechanics, Fall Semester 2023 6

where
IRZES!
4

a+

1) = (1) — [ 1)+ [ 4D — | L))

The density matrix

p1 = |1) (] = %(I =T+ D) = TH) [T = M+ AT =D

o= Tep pr = uwwwwwunwwuwuu>=§<ii>

The eigenvalues are 0 and 1, which shows that 1) is not entangled. To find the factorization of
the state we need the eigenvectors of the reduced density matrix plA. The one with eigenvalue 1 is
1)a = %ﬂ 1) + | 1)), while the one with eigenvalue 0 is |0) 4 = %ﬂ 1) — | 1)) (since this has
eigenvalue 0 it will not appear in the factorization). We can now express the state |¢1) in terms of
these eigenvectors and find that

N | —

dh = 1ha® (1) - 4)

5

[W2) = 5 (| 1)+ 1) +[41) — [ 10):

The density matrix

D+ 1T+ = THD) AT T+ M+ AT =D

=

p2 = |2) (o] =

=T =5 (001 +100D =3 (¢ 1 )

This is not a pure state, so |t2) is entangled. The eigenvalues are both % and all vectors are eigenvec-
tors. Because of that we can choose which basis to use for part A, and the Schmidt decomposition is
not unique. Let us take the basis to be | 1) and | |) for simplicity, and we find

1 1
|tha) = ﬁ' & ﬁﬂ N +14)

[3) = ay| 1) +a-[ 1) +a- | I1) +ai[ )

The density matrix

p3 = [¥3) (Y3 = (as [ 1) +a—| 1) +a- [ 1) + ar[ W) (e (M [+ a- (M [+ a- (T [+ ay (WL ])

)

Diagonalizing we find the eigenvalues p™ = % with eigenvector | 1,) and p~ = % with eigenvector
| 12). This is not a pure state, so |¢3) is entangled. Expressing the state in terms of the eigenvectors

we find
V3
2

1 1
+5|¢>®ﬁ(w>—|¢>)

NSNS

ps =Trp ps = (a5 +a)| (1 [+2aya_ | D [+2aa_| L)1 |[+(ad+a)| (L | = (

9) = 21 eta) + 5 Lal)
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[tha) = a_[ 1) + ar[ 1) +ar [ I1) +a-| L):

The density matrix

pa = [Pa) (sl = (a- | 11) + ar[ T1) + as[I1) +a| L)) (a- (M [+ ap (T [+ ap (U [+ a- (L ])

)

which is the same as we found for pg‘. Thus we get the same eigenvalues and eigenvectors and we

find
V3
2

=0 =
DO = [ =

P = Trp pa = (a2 +a2)| DT [+2asa-| (b |+2ara | D)1 [+ (a2 +a2)] DL | = (

1

5.5 Schmidt decomposition 2

a) The Schmidt decomposition rewrites a general state in the product space, as a sum of states ex-
pressed in an orthonormal basis for each Hilbert space:

U(z) = c1x101(2) + cax202(x) 3)

Thus, the spinors and wavefunctions must satisfy the orthonormality conditions
Xix; = / dzgidj = bij
b) The normalization factor is given by (¥|¥) = 1.

) = [ e P

B /Oo dx | 1 (z) |2 +/OO dx | a(z) [*

= |NJ? </°° e~ 2\@=20)® g0 4 /00 62/\(x+x0)2d1‘>

Substituting y = x + x in the first and second integral respectively yields :

o0
(|r) = 2|Ny2/ e 2
—00
= 2|N[2,JE
[N/ 5

A
=N = Py when choosing N € R
T
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Then it follows:

_ N2 /OO e—)\(x—a:o)2e—)\(x+x0)2dx

—00

— N2 / e—2>\(x2+1‘g)d$

[eS)

_ 2 _ 2

— N2€ 2)\230/ dze 2z
—0o0

- N2p20d [T
¢ 2
A = 1672)@3
2

¢) To find the Schmidt decompostion, we have to find the eigenstates of the reduced density matrix
for at least one of the subsystems (spin or position). It is simplest to work with spin, since it has
the smallest Hilbert space. Therefore we will trace over the position

_ N PN AN
oo = [artatmyma) = [ () 01 vg) = far (G0 000) = (3

The eigenvalues of this are

N[ = D
N————

N |

1
p=y (1+e298)  po=

with the corresponding eigenvectors

v ) em g

The coefficients in the Schmidt decomposition are the square roots of the eigenvectors, ¢; = /p;
and we get from Eq (3) that

1 1
= —0c + —c
(1 7 101 7 202
1 1
= —c — —c
o 7 101 7 2¢2
which we can solve to find
_ 1 _ N —Az—1z0)? —\(z+z0)?
d)l N \/icl (wl * wQ) N V1 + 6—2)\.73% (e Te )
o 1 _ N —)\(x—mo)Q —)\(x+m0)2
¢2 o ﬂCQ (d}l 7,[}2) o 1— 6—2)\13 (6 € )
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5.6 Coupled two-level systems

o €
H=730:01+180.)+ (01 ®0-+0-®0y)
1 .
or = Q(Uz:twy)

a)
1 0 1+1\ (0 1
7+ = 2u-1 0o )7\ o0
o - 00
B 10
10 1 0
R I CI R . o 5
=3 1o\ |7
0 —3<0 1> 0
[ 00 0 0
+A 0 1<1 O> + 1 0 1 0
| \O 0 0 0
2¢ 0 0 0
- 0 €€ A 0
B 0 AN — O
0 0 0 —2¢
The eigenvalue equation becomes:
| H — 1e|
2¢—e 0 0 0
0 e—e A 0
0 A —€e—e 0
0 0 0 —2—e
€E—e A 0
(2e—e)| A —e—ce 0
0 0 —2c—e

(2¢—e) (—2e—¢€) [(e—€) (—e—¢€) — )\2]
From here, we immidiately see the value of the first two eigenvalues,
_ ( 2 _ 62) )2

e

0

++/€2 + \2

“)

&)

0

the rest is determined by:
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The eigenvalues are thus:

e1 =26 e3=—2¢ e3=VeZ+A, es=—\Ve2+ N2

We see that e; and es are independent of A\, and from the hamiltonian (5), it is easy to to see that
the eigenvectors are:

O O =

e =

— o O O

0

Then setting € = 1 cos @ and A = psin 0, we get:
e1 =2ucos, ey = —2ucosf, e3=p, e4=—p

The hamiltonian takes the form:

2p cos 6 0 0 0
i— 0 pecosf  psind 0
0 usinf  —pcosf 0

0 0 0 —2pcosf

For the remaining subspace, the eigenvector equation is:

pwecosh  psinf a\ a
<,usin€ —,ucos&) <b> =+n <b>

Then:
acosf +bsinf = =a
acosf —bsinf = =+b
Staring with the first equation:
+1 —cosf
acos@ +bsind =+a=0>0= a&
sin 0
Then, if @ = sin 0, we get the following eigenvectors:
0 0
o sin 6 o sin 6
37 1 1—cosf | 4 | —1—cosh
0 0

I marked them as to say that they are not the final eigenvectors, they need to be normalized first:

e;-ef = \/sin29+(1—0050)2 = \/sin29+1—20089+00802 =2 —2cosf

e e = \/sir126—|—(1—i—cos@)2 = V/sin20+ 1+ 2cosf + cos? 6 = V2 + 2 cosf




FYS 4110 Modern Quantum Mechanics, Fall Semester 2023 11

Then:
0 0 0 0
o 1 sin 6 _ cosg o — 1 sin _ sing
37 /2 _2cos0 | 1—cosO | — sin% T Bt 2cos0 | —1—cosd | —cosg
0 0 0 0

Just to summarize, the eigenvectors are:

0 0 0
0 cosg sin%
e = €y = ol e3 = g1, €= 0
1

o O O

The energies are:

Ey =2ucosf, FEy= —2ucosf, FE3=pu Ei=—p

b) The two interesting eigenstates are e3 and e4

0 0 0 0
by = egel = 0 cos? g cos g sin g 0
3 0 cos g sin % sin? g 0
0 0 0 0
0 0 0 0
by = egel = 0 Sin2% —cosgsmg 0
4 0 —cos g sin g cos? g 0
0 0 0 0

Before considering the partial traces, let’s look at how this works out in the matrix representation.
A general 4x4 matrix can be written as a sum over tensor products between 2x2 matrices (also
called “Kronecker product”):

C = ZCiin@Bj
ij

Al Bi1 Bio A Bi1 Bio
ZC“ U\ By Ba i 12\ Ba1  Ba i
- Z] . .
r Ai <311 312) A, (Bll BlQ)
] J

Ba1 Bao ;

Zc“<cn 012>
Y\ Co1 Ca i

ij

Then the partial traces become:

TraC = Z ¢ij (C11 + C22),;
]
. - TI'CH TI‘Clg
TrBC = ZCU (TI'CQl TI'CQQ) .

v
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And since Tr (A + B) = TrA + TrB, we see that in our case:

082

SIS
)

py =Tipps =

o O
w0
—
=
[\

n

1n

[
SIS
@)

py =Tipps =

<c
N N S
py =Traps = (
(s

o
SIS

o

o
o 9,

[11SaY

(es)
ol
Q
&
o
ST
N— " — 7

2
N A~ COS
P =Traps = ( )

c) We see that all the reduced density matrices have the same eigenvalues, and the von Neuman
entropy is thus the same and given by:

0 0 0 0
S = —cos? = Incos® = — sin® = Insin? =
2 2 2 2
The entropy is maximal when cos? g = sin? g = % which means

9:g+n7r, nez



