Solutions to problem set 6

6.1 SWAP gate

a) We write $|\psi\rangle=a|0\rangle+b|1\rangle$ and $|\phi\rangle=c|0\rangle+d|1\rangle$ and get

$$
\begin{aligned}
|\psi\rangle \otimes|\phi\rangle & =(a|0\rangle+b|1\rangle)(c|0\rangle+d|1\rangle) \\
& \xrightarrow{C N O T} a|0\rangle(c|0\rangle+d|1\rangle)+b|1\rangle(c|1\rangle+d|0\rangle) \\
& \xrightarrow{C N O T} a c|00\rangle+a d|11\rangle+b c|01\rangle+b d|10\rangle \\
& \xrightarrow{C N O T} a c|00\rangle+a d|10\rangle+b c|01\rangle+b d|11\rangle \\
& =(c|0\rangle+d|1\rangle)(a|0\rangle+b|1\rangle)=|\phi\rangle \otimes|\psi\rangle .
\end{aligned}
$$

b) In the basis $\{|00\rangle,|01\rangle,|10\rangle,|11\rangle\}$ the action of SWAP on the basis vectors is

$$
|00\rangle \xrightarrow{S W A P}|00\rangle, \quad|01\rangle \xrightarrow{S W A P}|10\rangle, \quad|10\rangle \xrightarrow{S W A P}|01\rangle, \quad|11\rangle \xrightarrow{S W A P}|11\rangle,
$$

which gives the matrix

$$
S W A P=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

c) We can SWAP multi-qubit registers one qubit at a time

We need $3 n$ CNOT gates.

6.2 Quantum circuit for controlled R_{k}

a) We define $\phi=2 \pi / 2^{k}$ and get

$$
\begin{aligned}
\left|\psi_{1}\right\rangle \otimes\left|\psi_{2}\right\rangle & =\left(a_{0}|0\rangle+a_{1}|1\rangle\right) \otimes\left(b_{0}|0\rangle+b_{1}|1\rangle\right) \\
& \xrightarrow{R_{k+1}}\left(a_{0}|0\rangle+a_{1} e^{i \phi / 2}|1\rangle\right) \otimes\left(b_{0}|0\rangle+b_{1} e^{i \phi / 2}|1\rangle\right) \\
& \xrightarrow{C N O T} a_{0}|0\rangle \otimes\left(b_{0}|0\rangle+b_{1} e^{i \phi / 2}|1\rangle\right)+a_{1} e^{i \phi / 2}|1\rangle \otimes\left(b_{0}|1\rangle+b_{1} e^{i \phi / 2}|0\rangle\right) \\
& \xrightarrow{R_{k+1}^{\dagger}} a_{0}|0\rangle \otimes\left(b_{0}|0\rangle+b_{1}|1\rangle\right)+a_{1} e^{i \phi / 2}|1\rangle \otimes\left(b_{0} e^{-i \phi / 2}|1\rangle+b_{1} e^{i \phi / 2}|0\rangle\right) \\
& \xrightarrow{C N O T} a_{0}|0\rangle \otimes\left(b_{0}|0\rangle+b_{1}|1\rangle\right)+a_{1}|1\rangle \otimes\left(b_{0}|0\rangle+b_{1} e^{i \phi}|1\rangle\right) \\
& =a_{0}|0\rangle \otimes\left|\psi_{2}\right\rangle+a_{1}|1\rangle \otimes R_{k}\left|\psi_{2}\right\rangle
\end{aligned}
$$

This is the controlled R_{k} operation.
b) Let $U|\psi\rangle=e^{i \phi}|\psi\rangle$. The situation is described by this circuit

The evolution of the state is

$$
\begin{gathered}
\frac{1}{\sqrt{2}}\left(|0\rangle+|1\rangle \otimes|\psi\rangle \xrightarrow[\rightarrow]{\text { control }-U} \frac{1}{\sqrt{2}}(|0\rangle \otimes|\psi\rangle+|1\rangle \otimes U|\psi\rangle)\right. \\
=\frac{1}{\sqrt{2}}\left(|0\rangle+e^{i \phi}|1\rangle\right) \otimes \psi .
\end{gathered}
$$

c) Since multiplying by a phase factor does not change a quantum state, U does not really change the state of the target if the initial state is an eigenstate. However, the relative phase between two states does make a physical difference. Therefore, when the control is in a superposition, there is a phase difference between the two states after the control-U operation. Since the state of the target is the same in both cases, it factors out, leaving a product state with the relative phase between the two states of the control qubit.

6.3 Quantum cloning of orthogonal states

a) Assume first that $|\psi\rangle=|0\rangle$ and $|\phi\rangle=|1\rangle$. Then we can check that a single CNOT gate gives the desired result (upper line is the original, lower line is the copy)

Since $|\psi\rangle$ and $|\phi\rangle$ are orthogonal, there exist a unitary transformation U such that

$$
\begin{aligned}
|\psi\rangle & =U|0\rangle \\
|\phi\rangle & =U|1\rangle
\end{aligned}
$$

The inverse of this transforms $|\psi\rangle$ and $|\phi\rangle$ to $|0\rangle$ and $|1\rangle$, and we can then use the CNOT as above and transform the result back, giving the final circuit

b) Here we can use the simple circuit with a single CNOT gate. The input is (qubits are written from top down)

$$
\left|\psi_{0}\right\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|10\rangle)
$$

giving the final state

$$
\left|\psi_{1}\right\rangle=C_{N O T}\left|\psi_{0}\right\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle) \neq \frac{1}{\sqrt{2}}(|0\rangle+|1\rangle) \otimes \frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)
$$

