UNIVERSITETET I OSLO

Det matematisk-naturvitenskapelige fakultet

Exam: FYS4130 statistical mechanics.

Day: Monday, June 8, 2009.

Time: 14:30 - 17:30

Problem set consists of: 2 pages.

Attachments: None.

Approved aids: Personal lecture notes, compendium, approved mathe-

matical tables and electronic calculator.

Check that the problem set is complete before you start answering the questions.

Problem 1

A gas of free bosons in three dimensions is in thermal equilibrium with temperature T. The energy of a particle with momentum \mathbf{p} has the unusual form $E = A|\mathbf{p}|^{1/2}$ where A is a constant.

- a) Calculate the chemical potential of the gas in the classical limit as a function of density and temperature.
- b) What is the internal energy per particle in the gas?
- c) Quantum statistics must be used when the temperature is reduced. Show that the gas will then have a transition to a condensed phase and find the corresponding critical temperature T_c as a function of the density.
- d) What fraction of the total number of particles in the gas has condensed when the temperature is $T = T_c/2$?

Problem 2

Diffusion of a local particle density C(x,t) in one dimension is governed by the equation

$$\frac{\partial C}{\partial t} = D \frac{\partial^2 C}{\partial x^2}$$

where D is the diffusion constant.

a) Show that

$$C(x,t) = \sqrt{\frac{1}{4\pi Dt}}e^{-x^2/4Dt}$$

is a solution of the diffusion equation. What is special with this solution?

- b) At time t=0 the concentration is given as $C_0(x)=Ke^{-x^2/L^2}$ where L is a fixed length. Find the constant K from the requirement that there are in total N diffusing particles.
- c) What is the current of particles for x = L at this time?
- d) Calculate the concentration of particles at a later time t > 0.

In the first problem you can make use of the following value of the Riemann zeta-function:

$$\zeta_R(6) = \frac{\pi^6}{945}$$