Average number of photons

The average number of photons at a given frequency ω (in the lecture notes is Eq. 5.48) can be derived from the probability $P\left(E_{n}\right)$ to have a photon occupying a state with energy $E_{n}=n \hbar \omega$, that is given by

$$
\begin{equation*}
P\left(E_{n}\right)=\frac{e^{-n \beta \hbar \omega}}{Z} \tag{1}
\end{equation*}
$$

where $Z=\sum_{n=0}^{\infty} e^{-n x}=\left(1-e^{-x}\right)^{-1}$ with $x=\beta \hbar \omega$. Thus, the average number of photons follows as

$$
\begin{align*}
\langle n\rangle & =\sum_{n=0}^{\infty} n P\left(E_{n}\right) \\
& =\sum_{n=0}^{\infty} n\left(1-e^{-x}\right) e^{-n x} \\
& =\left(1-e^{-x}\right)\left(-\frac{d}{d x} \sum_{n=0}^{\infty} e^{-n x}\right) \\
& =\left(1-e^{-x}\right) \frac{e^{-x}}{\left(1-e^{-x}\right)^{2}} \\
& =\frac{e^{-\beta \hbar \omega}}{1-e^{-\beta \hbar \omega}}=\frac{1}{e^{\beta \hbar \omega}-1} . \tag{2}
\end{align*}
$$

