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Introduction to statistical methods. Simple
random walks

0.1. Simple calculations with probabilities

Three people shoot the same target, partial probabilities to hit the target being p1, p2, and p3,
respectively.

1. Find the probability that no one will hit the target.

2. Find the probability to find at least one bullet in the target.

3. Find the distribution function Pn to find n bullets in the target and check that ∑n Pn = 1.

4. Find average value of the number of bullets in the target, n̄, and mean square deviation,
(∆n)2 ≡ (n− n̄)2.

5. Find numerical values of Pn, n̄, and (∆n)2 for p1 = 0.8, p2 = 0.9, p3 = 0.7.

Solution 0.1: Independent event are those in which a shooter misses the target. Then the solu-
tions are:

1. P0 = (1− p1)(1− p2)(1− p3).

2. Pn≥1 = 1−P0 = 1− (1− p1)(1− p2)(1− p3).

3. The distribution has the form:

P0 = (1− p1)(1− p2)(1− p3) ,

P1 = p1(1− p2)(1− p3)+ p2(1− p3)(1− p1)+ p3(1− p1)(1− p2) ,

P2 = p1 p2(1− p3)+ p2 p3(1− p1)+ p3 p1(1− p2) ,

P3 = p1 p2 p3 .

4. n̄ = ∑
3
n=1 pn, (∆n)2 = ∑

3
n=1 pn(1− pn).
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5. Numerical values are: P0 = 0.006, P1 = 0.092, P2 = 0.398, P3 = 0.504, n̄ = 2.4, (∆n)2 =
0.46.

The numerical results are obtained with the program Maple 6, see the file.

0.2. One-dimensional random walk. Binomial distribution

Consider a asymmetric random walk with the probability p for a hop to the right and q= 1− p
for a hop to the left. The probability WN(m) for for m hops to the right from total number of hops
N is given by the binomial distribution (??)

WN(m) =
N!

m!(N−m)!
pm(1− p)N−m .

1. Find the probability PN(M) for a total displacement M after N hops.

2. Find this probability for a symmetric case, p = 1/2.

3. Calculate average displacement M̄ after N hops. Hint: it is easier to use the equality
M̄ = 2m̄−N and calculate m̄.

4. For the same situation calculate the dispersion (∆M)2 = (M− M̄)2).

5. Compare ∆∗M ≡
√

(∆M)2 and M̄. What happens for symmetric random walk?

6. Two drunks start out together at the origin, each having equal probability of making a step
to the left or to the right along the x axis. Find the probability that they meet again after
each one makes N steps. It is understood that they make steps simultaneously. Hint: It is
practical to consider their relative motion.

Solution 0.2:

1. Since the total displacement M is the difference of number m of the hops to the right and
N−m hops to the left, we have

m = (N +M)/2 , N−m = (N−M)/2 .

As a result,

PN(M) =
N!

[(N +M)/2]![(N−M)/2]!
p(N+M)/2(1− p)(N−M)/2 . (1)

2. For p = 1/2,

PN(M) =
N!

2N [(N +M)/2]![(N−M)/2]!
. (2)
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3. Let us start with calculation of m̄. We have

m̄ =
N

∑
m=0

mWN(m) =
N

∑
m=0

m
N!

m!(N−m)!
pmqN−m

=
N

∑
m=0

N!
m!(N−m)!

qN−m
[

p
d

d p
pm
]
= p

d
d p

[
N

∑
m=0

N!
m!(N−m)!

pmqN−m

]
= p

d
d p

(p+q)N = pN(p+q)N−1 = pN .

Here we have used that p+q = 1. Then

M̄ = 2m̄−N = (2p−1)N = (p−q)N .

4. Again,

M2 = (2m−N)2 = 4m2−4Nm̄+N2 = 4m2 +(1−4p)N2 ,

M2− M̄2 = 4m2 +(1−4p)N2− (2p−1)2N2 = 4m2−4p2N2 .

Now we can use the same trick as in the previous problem to calculate m2.

m2 =
N

∑
m=0

m2WN(m) =
N

∑
m=0

m2 N!
m!(N−m)!

=
N

∑
m=0

N!
m!(N−m)

!
(

p
d

d p

)2

pmqN−m =

(
p

d
d p

)2

(p+q)N

= p
[
N(p+q)N−1 + p(N(N−1)(p+q)N−2]

= (N p)2 +N p(1− p) .

As a result, we obtain

M2 = 4(N p)2 +4N p(1− p)−4(pN)2 = 4N p(1− p) . (3)

5. We have
∆∗M

M̄
=

√
4N pq

N2(p−q)2 =
1√
N

√
2pq
|p−q|

.

6. The relative motion corresponds to 2N steps, and the total displacement m = 0. Thus, from
Eq. (2) we get

P2N(0) =
(2N)!

(2NN!)2 .
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Basic principles of thermostatics

0.3. Van der Waals gas

The fundamental relation for the Van der Waals gas is given by

s = s0 +R ln[(v−b)/(v0−b)]+(3/2)R lnsinh[c(u+a/v)] , (4)

(all notations in this section are according the the book [?].

(i) Show that the corresponding equation of state is given by

(P+a/v2)(v−b) = R T . (5)

(i) Expand the Van der Walls equation of state (5) in the form of virial expansion and deter-
mine 3 first virial coefficients.

Solution 0.3:

(i) By definition T−1 =
(

∂s
∂u

)
V,N

. Consequently,

T−1 =
3R
2

cosh(u+a/v)
sinh(u+a/v)

(6)

Following the Maxwell relation (
∂S
∂V

)
T
=

(
∂P
∂T

)
V

we get
P
T

=

(
∂s
∂v

)
u,N

=
R

v−b
− 3R

2
cosh(u+a/v)
sinh(u+a/v)

a
v2 =

R
v−b

− 1
T

a
v2 . (7)

As a result, we obtaine the VdW equation (5).
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(ii) Expanding Eq. (5) in powers of v−1 we get

P =
T R

v

[
1+

b−a/R T
v

+
b2

v2 + . . .

]
.

Thus
B(T ) = b−a/R T , C(T ) = b2 .

0.4. Which of the following, offered as fundamental relations, are acceptable and which violate
one or more of fundamental principles of thermostatics? (R, N0,V0 and S0 are constants)

(i) S = NR
{

1+
[
(E/E0)

3/2(V/V0)(N/N0)
−5/2

]}
(ii) S = R(EV/E0V0)

2(N/N0)
−3

(iii) S = tan
[
(E/E0)(V/V0)

2(N/N0)
−3]

(iv) S = R(EV N/E0V0N0)
1/3

(v) S = NRexp
[
(E/E0)

2(V/V0)
−2]

(vi) S = NRcoth
[
(E/E0)

2(V/V0)(N/N0)
]

(vii) S = R(EN/E0N0)
1/2 exp

[
−(V N0/V0N)2]

(viii) S = R(NE/N0E0)
2(V/V0)

1/5.

Solution 0.4: Main principle: the quantities S and V are additive in the particle number. Thus,
the energy can be expressed as E = N f (S/N,V/N), or S/N = f1(E/N,V/N) = f1(u,v). Let us
put S = Ns, E = Nu, V = Nv and rewrite the equations as

(i) s = R
{

1+
[
(u/E0)

3/2(v/V0)N
5/2
0

]}
(ii) s = N3

0 R(uv/E0V0)
2

(iii) s = N−1 tan
[
N3

0 (u/E0)(v/V0)
2]

(iv) s = N−1/3
0 R(uv/E0V0)

1/3

(v) s = Rexp
[
(u/E0)

2(v/V0)
−2]

(vi) s = Rcoth
[
(u/E0)

2(v/V0)(N4/N0)
]

(vii) s = R(u/E0N0)
1/2 exp

[
−(vN0/V0)

2]
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(viii) s = N16/5R(u/N0E0)
2(v/V0)

1/5.

We observe that only Eqs. (i), (ii), (iv) (v) and (vii) meet the requirements. Thus, we are left with

(i) s = R
{

1+
[
(u/E0)

3/2(v/V0)N
5/2
0

]}
(ii) s = N3

0 R(uv/E0V0)
2

(iv) s = N−1/3
0 R(uv/E0V0)

1/3

(v) s = Rexp
[
(u/E0)

2(v/V0)
−2]

(vii) s = R(u/E0N0)
1/2 exp

[
−(vN0/V0)

2]
For all these expression the entropy is an increasing function of the energy that is requires for
the temperature to be positive, remember that T−1 = (∂S/∂E)V,N .

Then, the pressure must also be positive, and the pressure is given by the relation P =
−(∂u/∂v)s,N . Thus, for a constant entropy the energy u must be decreasing function of vol-
ume. This requirement is met only for Eqs. (i), (ii) and (iv). Thus we are left with equations

(i) s = R
{

1+
[
(u/u0)

3/2(v/v0)
]}

(ii) s = N−1
0 R(uv/u0v0)

2

(iv) s = N−1
0 R(uv/u0v0)

1/3

where u0 = E0/N0, v0 =V0/N0. These relations do not contradict general principles.

0.5. Consider an isolated composite system of constant total volume, which consists of two
subsystems separated by a movable wall that permits flow of heat across it but is non-permeable
by the flow of matter. Find out the condition of equilibrium between the two systems using

(a) the energy minimum principle

(b) the entropy maximum principle

Solution 0.5: Denote partial energies as Ei, partial entropies as Si, and partial volumes as Vi for
i = 1,2. We have

E = E1 +E2 = const , S = S1 +S2 = const , V =V1 +V2 = const .

We have also

T =

(
∂E
∂S

)
V
=

[(
∂S
∂E

)
V

]−1

, P =−
(

∂E
∂V

)
S
= T

(
∂S
∂V

)
E
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(a) Minimum energy
∂E
∂S1

=
∂E1

∂S1
+

∂E2

∂S2

∂S2

∂S1
=

∂E1

∂S1
− ∂E2

∂S2
→ T1 = T2 ,

∂E
∂V1

=
∂E1

∂V1
+

∂E2

∂V2

∂V2

∂V1
=

∂E1

∂V1
− ∂E2

∂V2
→ P1 = P2 .

(b) Maximum entropy
∂S

∂E1
=

∂S1

∂E1
+

∂S2

∂E2

∂E2

∂E1
=

∂S1

∂E1
− ∂S2

∂E2
→ T1 = T2 ,

∂S
∂V1

=
∂S1

∂V1
+

∂S2

∂V2

∂V2

∂V1
=

∂S1

∂V1
− ∂S2

∂V2
→ P1/T1 = P2/T2 .

0.6. Now assume that the wall in the problem 0.5 is permeable to the flow of molecules. Find
out the condition of equilibrium between the two systems using

(a) the energy minimum principle

(b) the entropy maximum principle

Solution 0.6:
(a) Remembering the expression for thermodynamic potential dE = T dS−PdV − µdN and

using previous considerations we obtain the condition for the equilibrium as

µ1 = µ2 .

(b) Following the previous considerations we get (∂S1/∂N1) = (∂S2/∂N2). Since

dS =
dE
T
− µ

T
dN

we obtain the condition
µ1/T1 = µ2/T2 → µ1 = µ2 .

0.7. Prove the following consequences of the third law of thermodynamics

(i) cP and cV of simple fluids must vanish at T = 0.

(ii) Coefficient of thermal expansion α vanishes at T = 0

Solution 0.7:
(i) For i =V,P, according to the definition, ci = T (∂s/∂T )i = (∂S/∂ lnT )i. Since S tends to a

finite limit (zero) and lnT →−∞.

(ii) The thermal expansion coefficient α = (∂V/∂T )P can be determined by the Maxwell rela-
tion (∂V/∂T )P =−(∂S/∂P)T . Since S→ 0 at T → 0 we observe that α→ 0.
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Basic principles of statistical mechanics

0.8. The Hamiltonian of a collection of N non-interacting one-dimensional classic harmonic
oscillators is given by

H =
1

2M

N

∑
i=1

p2
i +

k
2

N

∑
i=1

x2
i .

Calculate the internal energy of the system using the rules of calculation for isolated systems.
Hint: Apply the law of equipartition of the energy.

Solution 0.8 According to the equipartition law, the average energy for each degree of freedom
is the same. Here we have 2N degrees of freedom. The average energy for one degree of freedom
is

E1 =

∫
∞

−∞
d p(p2/2M)e−p2/2MkT∫

∞

−∞
d pe−p2/2MkT

=
kT
2

.

The total energy is
E = 2NE1 = NkT .

0.9. Model for rubber elasticity.

The rubber is assumed to consist of a polymer chain of N rod-like monomers, each of length
a and is sibjected to a force F in the +X direction. Each monomer can point independently along
any of X ,Y,Z axes, in either the + or − direction. The energy is only X-dependent; ε = aF for
the monomer pointimg along −X , ε = −aF for the monomer pojnting along +X , ε = 0 for the
monomer along ±Y and ±Z.

(a) Calculate the partition function for the N-monomer chain.

(b) Show that the linear thermal expansivity is negative, as for the real rubber. Interpret the
result physically.
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Solution 0.9 .

(a) Each monomer has the partition function

Z1 = 2+2+ e−βFa + eβFa = 4+2cosh(βFa)

the total partition function being

Z = ZN
1 = 2N [2+ cosh(βFa)]N .

(b) If Nξ+ states point on the average to +X , Nξ− states point to −X , etc., then

〈LX〉= Na(ξ+−ξ−) , 〈LY 〉= Na(η+−η−) , 〈LZ〉= Na(ζ+−ζ−) ,

We immedately obtain that 〈LY 〉= 〈LZ〉= 0. Furthermore,

ξ± = e±βaF/Z1 , → 〈LX〉= Na
sinhβaF

2+ coshβaF
.

We immediately get ∂〈LX〉/∂β > 0. Consequently, ∂〈LX〉/∂T < 0. Rubber contracts upon
heating.

0.10. The partition function for a system of some kind of particles is

ZN =
[
(V −Nb)/λ

3]N exp(βaN2/V ) ,

where

λ =

√
2πh̄2/mkBT

and a and b are constants, V is the volume and N is the number of particles; all other symbols
have their usual meaning.

(a) Find the internal energy E(N,T,V ).

(b) Find the pressure P(N,T,V ).

(c) Find the entropy S(N,T,V ).

(d) Is this expression for S a valid fundamental relation, except perhaps at T = O? If not, what
is wrong, and how ca ZN be appropriately corrected?
Hint: Recall Gibbs paradox.
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Solution 0.10

(a) Since E =−∂ lnZ/∂β with β≡ (kBT )−1 we rewrite the partition function as

lnZN = N ln(V −Nb)−3N lnλ+βaN2/V

with λ =
√

βh̄/m. Having in mind that ∂λ/∂β = 1/2β = kBT/2 we get:

E = (3/2)NkBT −aN2/V .

(b) Let us define the Helmholtz free energy

F =−kBT lnZN =−kBT
[
N ln(V −Nb)−3N lnλ+βaN2/V

]
.

We have

P =−
(

∂F
∂V

)
T
=

NkBT
V −Nb

+
aN2

V 2 .

(c)

S = −
(

∂F
∂T

)
V,N

= NkB

[
3
2
+ ln

V −Nb
λ3

]
.

(d) Entropy is not an additive quantity. The states created by permutation of the particles are
actually the same, so the partition function ZN should be divided by N!. In the main
approximation it will result in the expression

S = NkB

[
3
2
+ ln

v−b
λ3

]
, v≡V/N .

Another point is that the entropy does not vanish as T → 0. One cannot correct this prop-
erty within classical statistics.

0.11. Calculate the partition function and the free energy for a ideal classical gas consisting
of N molecules at temperature T contained in a vertical column of height H and cross-sectional
area A in the presence of the of non-vanishing constant acceleration g due to gravity.
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Solution 0.11 The total energy of the molecule in the gravitational field is

E =
p2

2m
+mgz

where z-axis is directed perpendicular to the Earth surface. Then,

Z1 =
∫

d3r
∫ d3 p

(2πh̄)3 e−β(p2/2m+mgz)

= A
∫ H

0
dze−βmgz

∫ d3 p
(2πh̄)3 e−βp2/2m .

The first integral is equal to (βmg)−1
[
1− e−βmgH

]
. The second integral can be calculated in

the spherical coordinates. Since d3 p = p2 d pdθdφ and kinetic energy depends only on p we can
write:

d3 p
(2πh̄)3 =

p2 d p
2π2h̄3 =

m
√

2mεdε

2π2h̄3 ≡ g(ε)dε, .

Here ε≡ p2/2m, while

g(ε) = g0ε
1/2 , g0 =

(2m)3/2

4π2h̄3

is the density of states. Thus the second integral is

g0

∫
∞

0
dεε

1/2e−βε = g0β
−3/2

∫
∞

0
x1/2e−xdx =

√
π

2
g0β
−3/2 .

Collecting all the factors we obtain

Z1 = Z
1− e−βmgH

βmgH
, Z =V

√
π

2
(2m)3/2

4π2h̄3
β3/2

=
V
λ3 .

Finally,

ZN =
ZN

1
N!

=
V N

λ3NN!

[
1− e−βmgH

βmgH

]N

.

0.12. Calculate the partition function and the free energy for an ideal classical gas consist-

ing of N molecules at temperature T contained in a vessel and subjected to a centrifugal force
−Mω2z2/2, where z is the distance of the particle from the axis of rotation and ω is the angular
velocity of rotation of the centrifuge.
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Solution 0.12: When the external field is present, the integrand in the partition function con-
tains an extra factor e−βU where U ≡ −Mω2z2/2. Then one has to replace volume in the usual
expression for the partition function by

∫
d3r e−βU . This procedure yields an extra factor

1
V

∫
d3r e−βU =

2πL
πR2L

∫ R

0
zdzeβMω2z2/2

=
2

βMω2R2

∫
βMω2R2/2

0
dηeη =

2
βMω2R2

(
eβMω2R2/2−1

)
.

Thus,

Z =
2Z0

βMω2R2

(
eβMω2R2/2−1

)
, F = F0−NkBT ln

2kBT
Mω2R2

(
eMω2R2/2kBT −1

)
.

0.13. Consider an ideal monoatomic gas of N molecules in the presence of an external magnetic

field H, where each molecule behaves as an Ising spin. Calculate the free energy, energy, and
entropy and interpret the result physically. Find the limit of S at T → 0.

Solution 0.13: The energy of the Ising spin Sin magnetic field can be written as U = −µSHH
where SH acquires the values ±S. Consequently, the partition function can be written as

Z1 = Z0 ·∑
±

e∓βµSH = 2cosh(βµSH) .

Here Z0 allows for non-magnetic degrees of freedom. Consequently,

Z = ZN
1 /N! = (ZN

0 /N!) [2cosh(βµSH)] ,

F−F0 = −(N/β) ln[2ecosh(βµSH)] ,

E−E0 = −∂Z/∂β =−NµSH tanh(βµSH) ,

(S−S0)/kB = β(E−F) = N ln[2ecosh(βµSH)]−βNµSH tanh(βµSH) .

0.14. Evaluate the contribution of a one-dimensional anharmonic oscillator having a potential

V (x) = cx2− gx3− f x4 to the heat capacity. Discuss the the dependence of the mean value of
the position x of the oscillator on the temperature T . Here c,g, f are positive constants. Usually,
g� c3/2(kBT )−1/2 and f � c2/kBT .

Solution 0.14. Since g and f are small let us try to apply perturbation theory. Since the typical
value of the displacement x̄ = (kBT/c)1/2 we obtain

gx̄3/kBT = (kBT )1/2c−3/2� 1 , f x̄4/kBT = f kBT/c2� 1 .
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Thus one can expand the exponential to obtain

e−βV (x) ≈ e−βcx2 (
1−βgx3−β f x4) .

As a result,

Z = Z0

∫
∞

−∞

dxe−βV (x) ≈
√

π

βc

(
1+

3 f
4βc2

)
.

Here Z0 is the contribution of kinetic energy. Consequently,

lnZ = lnZ0 +(1/2) ln(π/c)− (1/2) lnβ+ ln(1+3 f/4βc2)

= lnZ0 +(1/2) ln(π/c)− (1/2) lnβ+3 f/4βc2 ,

E = −∂ lnZ0/∂β−∂ lnZ/∂β

= 1/2β+1/2β+3 f/4β
2c2

= kBT +3 f (kBT )2/4c2 ,

C = kB
(
1+3 f kBT/2c2) .

To estimate 〈x〉 we calculate

〈x〉 =

∫
∞

−∞
dxxe−βV (x)∫

∞

−∞
dxe−βV (x)

≈−βg
∫

∞

0 x4 dxe−βcx2∫
∞

0 dxe−βcx2 =
3
4

g
βc2 =−3

4
g x̄

β1/2c3/2 � x̄ .

We have 〈x〉 ∝ T . 0.15. The energy of anharmonic oscillator is given by

H = p2/2m+bx2n

where n is a positive integer and n > 1. Consider a thermodynamic system consisting of a large
number of these identical noninteracting oscillators.

(a) Derive the single oscillator partition function.

(b) Calculate an average kinetic energy of an oscillator.

(c) Calculate an average potential energy of an oscillator.

(d) Show that the heat capacity is
C = (NkB/2)(1+1/n) .
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Solution 0.15.

(a)

Z1 =
∫ d p

2πh̄
e−βp2/2m

∫
dxe−βbx2n

≡ Zk ·Zp ,

Zk =
m1/2

h̄(2πβ)1/2 ,

Zp =
Γ(1/2n)
n(βb)1/2n

.

(b)
Ek =−∂ lnZk/∂β = kBT/2 .

(c)
Ep =−∂ lnZp/∂β = kBT/2n .

(d) Straightforward.

0.16. Suppose the expression S = −kB ∑r Pr lnPr is accepted as a definition of the entropy.
Imagine that a system A1 has probability P(1)

r of being in a state r and a system A2 has probability
P(2)

s of being in a state s. Then

S1 =−kB ∑
r

P(1)
r lnP(1)

r , S2 =−kB ∑
s

P(2)
s lnP(2)

s .

Each state of a composite system A consisting of A1 and A2 can then be labeled by the pair of
numbers, r,s. Let the probability of A being found in the state r,s be denoted by Prs, and the
corresponding entropy is −kB ∑r,s Prs lnPrs.

(a) If A1 and A2 are weakly interacting so they are statistically independent, then Prs = P(1)
r P(2)

s
Show that under such circumstances the entropy is simply additive, i. e. S = S1 +S2.

(b) Suppose that A1 and A2 are not weakly so that Prs 6=P(1)
r P(2)

s . One has, of course, the general,
relations ∑s Prs = P(1)

r , ∑r Prs = P(2)
s , and ∑r,s Prs = 1. Show that

S− (S1 +S2) = kB ∑
rs

Prs ln
P(1)

r P(2)
s

Prs
.

Moreover, by using the inequality

− lnx≥ 1− x,

show that S ≤ S1 +S2, where the equality holds only if Prs = P(1)
r P(2)

s for all r and s. This
means that the existence of correlation between the systems leads to a situation less random
that where the systems are completely independent of each other.
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Solution 0.16: Let us start from the part (b), and the 1st part will be a limiting case. We have

−(S1 +S2)kB = ∑
r

P(1)
r lnP(1)

r +∑
r

P(2)
s lnP(2)

s

= ∑
r,s

Prs ln(P(1)
r +∑

s,r
Prs lnP(2)

s

= ∑
r,s

Prs ln
(

P(1)
r P(2)

s

)
.

If Prs = P(1)
r P(2)

s then S = S1 +S2. Now

S− (S1 +S2) = kB ∑
r,s

Prs ln
P(1)

r P(2)
s

Prs

≤ kB ∑
r,s

Prs

[
P(1)

r P(2)
s

Prs
−1

]
= kB ∑

r,s

[
P(1)

r P(2)
s −Prs

]
= 0 .

0.17. Consider a system distributed over its accessible states r in accordance with a probability
distribution Pr, and let its entropy be defined by the relations

S =−kB ∑
r

Pr lnPr , ∑
r

Pr = 1 .

Compare this distribution with the canonical distribution

P(0)
r =

e−βEr

∑r e−βEr

corresponding to the same mean energy 〈E〉, i. e.

∑
r

PrEr = ∑
r

P(0)
r Er = 〈E〉 .

The entropy of the canonical distribution is

S0 =−kB ∑
r

P(0)
r lnP(0)

r .

(a) Show that

S−S0 = kB ∑
r

Pr ln
P(0)

r

Pr
.

(b) Using the inequality lnx ≤ x−1 show that S0 ≥ S; the equality sign holds only if Pr = P(0)
r

for all states r. This shows that, for a specific value of mean energy, the entropy S is a
maximum for the canonical distribution.
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Solution 0.17:

(a)

(S−S0)/kB = −∑
r

[
Pr lnPr−P(0)

r lnP(0)
r

]
= −∑

r

[
Pr lnPr−P(0)

r (−βEr− lnN )
]

= − lnN −β〈E〉−∑
r

Pr lnPr

= ∑
r

Pr ln
P(0)

r

Pr
.

(b) We have

∑
r

Pr ln
P(0)

r

Pr
≤∑

r
Pr

(
P(0)

r

Pr
−1

)
= ∑

r

[
P(0)

r −Pr

]
= 0 .

0.18. A one-dimensional normal distribution of zero mean and standard deviation σ is given by

P(x) =
1

σ
√

2π
e−x2/2σ2

.

(a) Show that it entropy is (kB/2) ln(2πeσ2).

(b) show that for given ∫
∞

−∞

x2P(x)dx = σ
2

, the normalized probability distribution having the largest entropy in the one-dimensional
normal distribution.

Solution 0.18:

(a) By definition,

S/kB =−〈lnP〉=−
∫

∞

−∞

[
− x2

2σ2 −
1
2

ln(2πσ
2)

]
P(x)dx =

1
2

ln(2πeσ
2) .

(b) Let us construct the functional

F [P(x),λ1,λ2] =−
∫

∞

−∞

dxP(x) lnP(x)+λ1(
∫

∞

−∞

dxx2P(x)−σ
2)+λ2(

∫
∞

−∞

dxP(x)−1).
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Maximizing entropy under these two constraints implies that the variational derivation
δF /δ[P(x)] = 0 or equivalently:

− lnP(x)−1+λ1x2 +λ2 = 0,

where the constants λ1 and λ2 are determined from the constraints: λ1 = − 1
2σ2 and λ2 =

1− ln
√

2πσ2. Hence, the Gaussian distribution:

P(x) =
1√

2πσ2
e−x2/2σ2

.

0.19. Using the method of canonical ensemble. calculate the partition function, average energy
and specific heat of a system consisting of N noninteracting quantum harmonic oscillators and
show that these expressions do reduce to the corresponding classical results in the appropriate
classical limit.

Solution 0.19: Since εn = h̄ω(n+1/2) we obtain

Z1 = e−βh̄ω/2
∞

∑
n=0

e−βh̄ωn = [2sinh(βh̄ω/2)]−1 , Z = ZN
1 ,

E = N
h̄ω

2
+N

h̄ω

eβh̄ω−1
,

C/kB =
∂E
∂T

= N(βh̄ω)2 eβh̄ω(
eβh̄ω−1

)2 .

Classical limiting case at βh̄ω� 1 is obvious.

0.20. Let us denote the average occupation of the n-th single-particle level by the symbol fn.
For fermions, consider the “variational entropy”

Svar =−∑
n
[ fn ln fn +(1− fn) ln(1− fn)]

and for bosons, consider the “variational entropy”

Svar =−∑
n
[ fn ln fn +(1+ fn) ln(1+ fn)] .

Show that if Svar is maximized, subject to the conditions

∑
n

fn = N , ∑
n

fnεn = E

then the resulting distribution is the FD distribution in the 1st case and BE distribution in the
2nd case. Moreover, at the maximum Svar is equal to the equilibrium entropy of the FD and DE
systems, respectively.

18



Solution 0.20: Let us construct the functional

S̃ = Svar−βµN +βE = ∑
n
[− fn ln fn− (1∓ fn) ln(1∓ fn)−βµ fn +βεn fn] .

We have
∂S̃
∂ fn

= ln
1∓ fn

fn
−βµ+βεn = 0 → 1∓ fn

fn
= eβ(εn−µ) .

Consequently,

fn =
1

eβ(εn−µ)±1
.

Substituting these solutions to the expressions for the variational entropy we find the equilibrium
values of the entropy.
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Chapter 1

Fluctuations, correlations and response

1.1. Consider a closed system consisting of N noninteracting classical one-dimensional har-
monic oscillators at a temperature T . Using the canonical ensemble, show that the most probable
energy of the system is identical to its average energy.

Solution 1.1: Let us start with the density of states for one-dimensional classical oscillator with
the Hamiltonian H = p2/2m+mω2x2/2. We have

D(ε) =
∫ d pdx

2πh̄
δ

(
ε− p2

2m
− mω2x2

2

)
.

To calculate this integral let us first recall the relation∫ b

a
dxδ[ f (x)] = ∑

s

1
| f ′(xs)|

where xs are roots of equation f (x) = 0 belonging to the interval (a,b). In our case,

xs =±

√
2

mω2

(
ε− p2

2m

)
, | f ′(xs)|= mω

2|xs|=

√
2mω2

(
ε− p2

2m

)
Consequently,

D(ε) =
2

2πh̄
√

2mω2

∫ √2mε

0

d p√
ε− p2/2m

=
2

2πh̄
√

2mω2
π
√

2m =
1

h̄ω
.

Consequently, the number of states per particle is ε/h̄ω. The thermodynamical weight is then
(ε/h̄ω)N = (E/Nh̄ω)N . The entropy to be maximized is then

S = kBN ln
E
N
− E

T
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that yields for the most probable E the equation

∂S
∂E

= kB
N
E
− 1

T
= 0 → E = NkBT .

1.2. Calculate the mean-square fluctuation in energy, and the mean-square fractional fluctuation

in the energy of

(a) a quantum harmonic oscillator,

(b) a collection of N identical quantum harmonic oscillators.

Examine the results in the high-temperature limit.

Solution 1.2:

(a) Let us count the energy form the ground state energy E0 = h̄ω/2. Then

Z1 =
∞

∑
n=1

e−βnh̄ω =
1

1− e−βω
,

〈E〉 = −∂ lnZ1

∂β
=

h̄ω

eβh̄ω−1
= h̄ωN (ω) ,

〈E2〉 =
1
Z1

∂2Z1

∂β2 = h̄2
ω

2N (ω) [2N (ω)+1] ,

〈(∆E)2〉 = (h̄ω)2N (ω) [N (ω)+1] ,
〈(∆E)2〉/〈E〉2 = [N (ω)+1]/N (ω) .

(b) In the case of M oscillators one has to multiply both 〈E〉 and 〈(∆E)2〉 by M. Thus, 〈(∆E)2〉=
[N (ω)+1]/MN (ω). At high temperature, this ratio is approximately 1/M.

1.3. Show that for an ideal classical Ising magnet

(a) the thermal fluctuation in the magnetization 〈(∆M)2〉 is related to the thermal energy kBT
and the corresponding response function, namely susceptibility χ through

〈(∆M)2〉= kBT Nχ ,

(b) and
〈(∆M)2〉1/2/〈M〉 ∝ 1/

√
N .
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Solution 1.3:
(a) The energy is ε =−µH. Then,

Z1 = 2cosh(βµH) ,

〈M〉 =
1
H

∂ lnZ1

∂β
= µ tanh(βµH) ,

χ =
∂〈M〉
∂H

=
βµ2

cosh2(βµH)
,

〈M2〉 =
1

H2 Z1

∂2Z1

∂β2 = µ2 ,

〈(∆M)2〉 = µ2 [1− tanh2(βµH)
]
=

µ2

cosh2(βµH)
.

Thus
〈(∆M)2〉= kBT Nχ .

(b) Follows from statistical independence of different spins.

1.4. V1 is the volume of a small subsystem of a very large container of volume V , which is filled
with N atoms of an ideal classical monoatomic gas. Denote the probability of finding a particular
gas particle in the subsystem volume by p =V1/V . Find an expression for the Probability P(N1)
that there are N1 particles in the subsystem. From this expression , find the relative variance
〈(N1−〈N1〉)2〉. Show that the relative variance vanishes in the thermodynamic limit, i. e. when
V → ∞, N→ ∞ with N/V = const and simultaneously V1→ ∞ with p = constant.

Solution 1.4: Let us use the binomial distribution

P(N1) =
N!

N1!(N−N1)!

(
V1

V

)N1
(

1− V1

V

)N−N1

=
N!

N1!(N−N1)!
pN1 (1− p)N−N1 .

Assuming N1� N we write N!≈ (N−N1)!NN1 to get the Poisson distribution.

P(N1) =
(N p)N1

N1!
(1− p)N → (N p)N1

N1!
e−N p .

We have

〈N1〉 = e−N p
∞

∑
N1=0

N1 (N p)N1

N1!
= N pe−N p

∞

∑
N1=1

(N p)N1−1

(N1−1)!
= N p ,

〈N2
1 〉 = e−N p

∞

∑
N1=0

N2
1 (N p)N1

N1!
= N pe−N p

∞

∑
N1=1

N1 (N p)N1−1

(N1−1)!

= N pe−N p
∞

∑
N1=1

[1+(N1−1)] (N p)N1−1

(N1−1)!
= N p+(N p)2 ,

〈(∆N1)
2〉 = N p , 〈(∆N1)

2〉/〈N1〉2 = (N p)−1 .
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