Problems for the course FYS4130

Yuri Galperin

February 19, 2013

Introduction to statistical methods. Simple random walks

0.1. Simple calculations with probabilities

Three people shoot the same target, partial probabilities to hit the target being p_{1}, p_{2}, and p_{3}, respectively.

1. Find the probability that no one will hit the target.
2. Find the probability to find at least one bullet in the target.
3. Find the distribution function P_{n} to find n bullets in the target and check that $\sum_{n} P_{n}=1$.
4. Find average value of the number of bullets in the target, \bar{n}, and mean square deviation, $\overline{(\Delta n)^{2}} \equiv \overline{(n-\bar{n})^{2}}$.
5. Find numerical values of P_{n}, \bar{n}, and $\overline{(\Delta n)^{2}}$ for $p_{1}=0.8, p_{2}=0.9, p_{3}=0.7$.

Solution 0.1: Independent event are those in which a shooter misses the target. Then the solutions are:

1. $P_{0}=\left(1-p_{1}\right)\left(1-p_{2}\right)\left(1-p_{3}\right)$.
2. $P_{n \geq 1}=1-P_{0}=1-\left(1-p_{1}\right)\left(1-p_{2}\right)\left(1-p_{3}\right)$.
3. The distribution has the form:

$$
\begin{aligned}
& P_{0}=\left(1-p_{1}\right)\left(1-p_{2}\right)\left(1-p_{3}\right) \\
& P_{1}=p_{1}\left(1-p_{2}\right)\left(1-p_{3}\right)+p_{2}\left(1-p_{3}\right)\left(1-p_{1}\right)+p_{3}\left(1-p_{1}\right)\left(1-p_{2}\right) \\
& P_{2}=p_{1} p_{2}\left(1-p_{3}\right)+p_{2} p_{3}\left(1-p_{1}\right)+p_{3} p_{1}\left(1-p_{2}\right) \\
& P_{3}=p_{1} p_{2} p_{3}
\end{aligned}
$$

4. $\bar{n}=\sum_{n=1}^{3} p_{n}, \overline{(\Delta n)^{2}}=\sum_{n=1}^{3} p_{n}\left(1-p_{n}\right)$.
5. Numerical values are: $P_{0}=0.006, P_{1}=0.092, P_{2}=0.398, P_{3}=0.504, \bar{n}=2.4, \overline{(\Delta n)^{2}}=$ 0.46 .

The numerical results are obtained with the program Maple 6, see the file.

0.2. One-dimensional random walk. Binomial distribution

Consider a asymmetric random walk with the probability p for a hop to the right and $q=1-p$ for a hop to the left. The probability $W_{N}(m)$ for for m hops to the right from total number of hops N is given by the binomial distribution (??)

$$
W_{N}(m)=\frac{N!}{m!(N-m)!} p^{m}(1-p)^{N-m} .
$$

1. Find the probability $P_{N}(M)$ for a total displacement M after N hops.
2. Find this probability for a symmetric case, $p=1 / 2$.
3. Calculate average displacement \bar{M} after N hops. Hint: it is easier to use the equality $\bar{M}=2 \bar{m}-N$ and calculate \bar{m}.
4. For the same situation calculate the dispersion $\overline{(\Delta M)^{2}}=\overline{\left.(M-\bar{M})^{2}\right)}$.
5. Compare $\Delta^{*} M \equiv \sqrt{\overline{(\Delta M)^{2}}}$ and \bar{M}. What happens for symmetric random walk?
6. Two drunks start out together at the origin, each having equal probability of making a step to the left or to the right along the x axis. Find the probability that they meet again after each one makes N steps. It is understood that they make steps simultaneously. Hint: It is practical to consider their relative motion.

Solution 0.2:

1. Since the total displacement M is the difference of number m of the hops to the right and $N-m$ hops to the left, we have

$$
m=(N+M) / 2, \quad N-m=(N-M) / 2 .
$$

As a result,

$$
\begin{equation*}
P_{N}(M)=\frac{N!}{[(N+M) / 2]![(N-M) / 2]!} p^{(N+M) / 2}(1-p)^{(N-M) / 2} . \tag{1}
\end{equation*}
$$

2. For $p=1 / 2$,

$$
\begin{equation*}
P_{N}(M)=\frac{N!}{2^{N}[(N+M) / 2]![(N-M) / 2]!} . \tag{2}
\end{equation*}
$$

3. Let us start with calculation of \bar{m}. We have

$$
\begin{aligned}
\bar{m} & =\sum_{m=0}^{N} m W_{N}(m)=\sum_{m=0}^{N} m \frac{N!}{m!(N-m)!} p^{m} q^{N-m} \\
& =\sum_{m=0}^{N} \frac{N!}{m!(N-m)!} q^{N-m}\left[p \frac{d}{d p} p^{m}\right]=p \frac{d}{d p}\left[\sum_{m=0}^{N} \frac{N!}{m!(N-m)!} p^{m} q^{N-m}\right] \\
& =p \frac{d}{d p}(p+q)^{N}=p N(p+q)^{N-1}=p N .
\end{aligned}
$$

Here we have used that $p+q=1$. Then

$$
\bar{M}=2 \bar{m}-N=(2 p-1) N=(p-q) N .
$$

4. Again,

$$
\begin{aligned}
\overline{M^{2}} & =\overline{(2 m-N)^{2}}=4 \overline{m^{2}}-4 N \bar{m}+N^{2}=4 \overline{m^{2}}+(1-4 p) N^{2}, \\
\overline{M^{2}}-\bar{M}^{2} & =\overline{m^{2}}+(1-4 p) N^{2}-(2 p-1)^{2} N^{2}=4 \overline{m^{2}}-4 p^{2} N^{2}
\end{aligned}
$$

Now we can use the same trick as in the previous problem to calculate $\overline{m^{2}}$.

$$
\begin{aligned}
\overline{m^{2}} & =\sum_{m=0}^{N} m^{2} W_{N}(m)=\sum_{m=0}^{N} m^{2} \frac{N!}{m!(N-m)!} \\
& =\sum_{m=0}^{N} \frac{N!}{m!(N-m)}!\left(p \frac{d}{d p}\right)^{2} p^{m} q^{N-m}=\left(p \frac{d}{d p}\right)^{2}(p+q)^{N} \\
& =p\left[N(p+q)^{N-1}+p\left(N(N-1)(p+q)^{N-2}\right]\right. \\
& =(N p)^{2}+N p(1-p) .
\end{aligned}
$$

As a result, we obtain

$$
\begin{equation*}
\overline{M^{2}}=4(N p)^{2}+4 N p(1-p)-4(p N)^{2}=4 N p(1-p) . \tag{3}
\end{equation*}
$$

5. We have

$$
\frac{\Delta^{*} M}{\bar{M}}=\sqrt{\frac{4 N p q}{N^{2}(p-q)^{2}}}=\frac{1}{\sqrt{N}} \frac{\sqrt{2 p q}}{|p-q|} .
$$

6. The relative motion corresponds to $2 N$ steps, and the total displacement $m=0$. Thus, from Eq. (2) we get

$$
P_{2 N}(0)=\frac{(2 N)!}{\left(2^{N} N!\right)^{2}} .
$$

Basic principles of thermostatics

0.3. Van der Waals gas

The fundamental relation for the Van der Waals gas is given by

$$
\begin{equation*}
s=s_{0}+\mathcal{R} \ln \left[(v-b) /\left(v_{0}-b\right)\right]+(3 / 2) \mathcal{R} \ln \sinh [c(u+a / v)], \tag{4}
\end{equation*}
$$

(all notations in this section are according the the book [?].
(i) Show that the corresponding equation of state is given by

$$
\begin{equation*}
\left(P+a / v^{2}\right)(v-b)=\mathcal{R} T . \tag{5}
\end{equation*}
$$

(i) Expand the Van der Walls equation of state (5) in the form of virial expansion and determine 3 first virial coefficients.

Solution 0.3:

(i) By definition $T^{-1}=\left(\frac{\partial s}{\partial u}\right)_{V, N}$. Consequently,

$$
\begin{equation*}
T^{-1}=\frac{3 \mathcal{R}}{2} \frac{\cosh (u+a / v)}{\sinh (u+a / v)} \tag{6}
\end{equation*}
$$

Following the Maxwell relation

$$
\left(\frac{\partial S}{\partial V}\right)_{T}=\left(\frac{\partial P}{\partial T}\right)_{V}
$$

we get

$$
\begin{equation*}
\frac{P}{T}=\left(\frac{\partial s}{\partial v}\right)_{u, N}=\frac{\mathcal{R}}{v-b}-\frac{3 \mathcal{R}}{2} \frac{\cosh (u+a / v)}{\sinh (u+a / v)} \frac{a}{v^{2}}=\frac{\mathcal{R}}{v-b}-\frac{1}{T} \frac{a}{v^{2}} . \tag{7}
\end{equation*}
$$

As a result, we obtaine the VdW equation (5).
(ii) Expanding Eq. (5) in powers of v^{-1} we get

$$
P=\frac{T \mathcal{R}}{v}\left[1+\frac{b-a / \mathcal{R} T}{v}+\frac{b^{2}}{v^{2}}+\ldots\right]
$$

Thus

$$
B(T)=b-a / \mathcal{R} T, \quad C(T)=b^{2}
$$

0.4. Which of the following, offered as fundamental relations, are acceptable and which violate one or more of fundamental principles of thermostatics? (R, N_{0}, V_{0} and S_{0} are constants)
(i) $S=N R\left\{1+\left[\left(E / E_{0}\right)^{3 / 2}\left(V / V_{0}\right)\left(N / N_{0}\right)^{-5 / 2}\right]\right\}$
(ii) $S=R\left(E V / E_{0} V_{0}\right)^{2}\left(N / N_{0}\right)^{-3}$
(iii) $S=\tan \left[\left(E / E_{0}\right)\left(V / V_{0}\right)^{2}\left(N / N_{0}\right)^{-3}\right]$
(iv) $S=R\left(E V N / E_{0} V_{0} N_{0}\right)^{1 / 3}$
(v) $S=N R \exp \left[\left(E / E_{0}\right)^{2}\left(V / V_{0}\right)^{-2}\right]$
(vi) $S=N R \operatorname{coth}\left[\left(E / E_{0}\right)^{2}\left(V / V_{0}\right)\left(N / N_{0}\right)\right]$
(vii) $S=R\left(E N / E_{0} N_{0}\right)^{1 / 2} \exp \left[-\left(V N_{0} / V_{0} N\right)^{2}\right]$
(viii) $S=R\left(N E / N_{0} E_{0}\right)^{2}\left(V / V_{0}\right)^{1 / 5}$.

Solution 0.4: \quad Main principle: the quantities S and V are additive in the particle number. Thus, the energy can be expressed as $E=N f(S / N, V / N)$, or $S / N=f_{1}(E / N, V / N)=f_{1}(u, v)$. Let us put $S=N s, E=N u, V=N v$ and rewrite the equations as
(i) $s=R\left\{1+\left[\left(u / E_{0}\right)^{3 / 2}\left(v / V_{0}\right) N_{0}^{5 / 2}\right]\right\}$
(ii) $s=N_{0}^{3} R\left(u v / E_{0} V_{0}\right)^{2}$
(iii) $s=N^{-1} \tan \left[N_{0}^{3}\left(u / E_{0}\right)\left(v / V_{0}\right)^{2}\right]$
(iv) $s=N_{0}^{-1 / 3} R\left(u v / E_{0} V_{0}\right)^{1 / 3}$
(v) $s=R \exp \left[\left(u / E_{0}\right)^{2}\left(v / V_{0}\right)^{-2}\right]$
(vi) $s=R \operatorname{coth}\left[\left(u / E_{0}\right)^{2}\left(v / V_{0}\right)\left(N^{4} / N_{0}\right)\right]$
(vii) $s=R\left(u / E_{0} N_{0}\right)^{1 / 2} \exp \left[-\left(v N_{0} / V_{0}\right)^{2}\right]$
(viii) $s=N^{16 / 5} R\left(u / N_{0} E_{0}\right)^{2}\left(v / V_{0}\right)^{1 / 5}$.

We observe that only Eqs. (i), (ii), (iv) (v) and (vii) meet the requirements. Thus, we are left with
(i) $s=R\left\{1+\left[\left(u / E_{0}\right)^{3 / 2}\left(v / V_{0}\right) N_{0}^{5 / 2}\right]\right\}$
(ii) $s=N_{0}^{3} R\left(u v / E_{0} V_{0}\right)^{2}$
(iv) $s=N_{0}^{-1 / 3} R\left(u v / E_{0} V_{0}\right)^{1 / 3}$
(v) $s=R \exp \left[\left(u / E_{0}\right)^{2}\left(v / V_{0}\right)^{-2}\right]$
(vii) $s=R\left(u / E_{0} N_{0}\right)^{1 / 2} \exp \left[-\left(v N_{0} / V_{0}\right)^{2}\right]$

For all these expression the entropy is an increasing function of the energy that is requires for the temperature to be positive, remember that $T^{-1}=(\partial S / \partial E)_{V, N}$.

Then, the pressure must also be positive, and the pressure is given by the relation $P=$ $-(\partial u / \partial v)_{s, N}$. Thus, for a constant entropy the energy u must be decreasing function of volume. This requirement is met only for Eqs. (i), (ii) and (iv). Thus we are left with equations
(i) $s=R\left\{1+\left[\left(u / u_{0}\right)^{3 / 2}\left(v / v_{0}\right)\right]\right\}$
(ii) $s=N_{0}^{-1} R\left(u v / u_{0} v_{0}\right)^{2}$
(iv) $s=N_{0}^{-1} R\left(u v / u_{0} v_{0}\right)^{1 / 3}$
where $u_{0}=E_{0} / N_{0}, v_{0}=V_{0} / N_{0}$. These relations do not contradict general principles.
0.5. Consider an isolated composite system of constant total volume, which consists of two subsystems separated by a movable wall that permits flow of heat across it but is non-permeable by the flow of matter. Find out the condition of equilibrium between the two systems using
(a) the energy minimum principle
(b) the entropy maximum principle

Solution 0.5; \quad Denote partial energies as E_{i}, partial entropies as S_{i}, and partial volumes as V_{i} for $i=1,2$. We have

$$
E=E_{1}+E_{2}=\text { const }, \quad S=S_{1}+S_{2}=\text { const }, \quad V=V_{1}+V_{2}=\text { const } .
$$

We have also

$$
T=\left(\frac{\partial E}{\partial S}\right)_{V}=\left[\left(\frac{\partial S}{\partial E}\right)_{V}\right]^{-1}, \quad P=-\left(\frac{\partial E}{\partial V}\right)_{S}=T\left(\frac{\partial S}{\partial V}\right)_{E}
$$

(a) Minimum energy

$$
\begin{aligned}
& \frac{\partial E}{\partial S_{1}}=\frac{\partial E_{1}}{\partial S_{1}}+\frac{\partial E_{2}}{\partial S_{2}} \frac{\partial S_{2}}{\partial S_{1}}=\frac{\partial E_{1}}{\partial S_{1}}-\frac{\partial E_{2}}{\partial S_{2}} \quad \rightarrow \quad T_{1}=T_{2} \\
& \frac{\partial E}{\partial V_{1}}=\frac{\partial E_{1}}{\partial V_{1}}+\frac{\partial E_{2}}{\partial V_{2}} \frac{\partial V_{2}}{\partial V_{1}}=\frac{\partial E_{1}}{\partial V_{1}}-\frac{\partial E_{2}}{\partial V_{2}} \quad \rightarrow \quad P_{1}=P_{2}
\end{aligned}
$$

(b) Maximum entropy

$$
\begin{aligned}
\frac{\partial S}{\partial E_{1}} & =\frac{\partial S_{1}}{\partial E_{1}}+\frac{\partial S_{2}}{\partial E_{2}} \frac{\partial E_{2}}{\partial E_{1}}=\frac{\partial S_{1}}{\partial E_{1}}-\frac{\partial S_{2}}{\partial E_{2}} \quad \rightarrow \quad T_{1}=T_{2} \\
\frac{\partial S}{\partial V_{1}} & =\frac{\partial S_{1}}{\partial V_{1}}+\frac{\partial S_{2}}{\partial V_{2}} \frac{\partial V_{2}}{\partial V_{1}}=\frac{\partial S_{1}}{\partial V_{1}}-\frac{\partial S_{2}}{\partial V_{2}} \quad \rightarrow \quad P_{1} / T_{1}=P_{2} / T_{2}
\end{aligned}
$$

0.6. Now assume that the wall in the problem 0.5 is permeable to the flow of molecules. Find out the condition of equilibrium between the two systems using
(a) the energy minimum principle
(b) the entropy maximum principle

Solution 0.6:

(a) Remembering the expression for thermodynamic potential $d E=T d S-P d V-\mu d N$ and using previous considerations we obtain the condition for the equilibrium as

$$
\mu_{1}=\mu_{2}
$$

(b) Following the previous considerations we get $\left(\partial S_{1} / \partial N_{1}\right)=\left(\partial S_{2} / \partial N_{2}\right)$. Since

$$
d S=\frac{d E}{T}-\frac{\mu}{T} d N
$$

we obtain the condition

$$
\mu_{1} / T_{1}=\mu_{2} / T_{2} \quad \rightarrow \quad \mu_{1}=\mu_{2} .
$$

0.7. Prove the following consequences of the third law of thermodynamics
(i) c_{P} and c_{V} of simple fluids must vanish at $T=0$.
(ii) Coefficient of thermal expansion α vanishes at $T=0$

Solution 0.7:

(i) For $i=V, P$, according to the definition, $c_{i}=T(\partial s / \partial T)_{i}=(\partial S / \partial \ln T)_{i}$. Since S tends to a finite limit (zero) and $\ln T \rightarrow-\infty$.
(ii) The thermal expansion coefficient $\alpha=(\partial V / \partial T)_{P}$ can be determined by the Maxwell relation $(\partial V / \partial T)_{P}=-(\partial S / \partial P)_{T}$. Since $S \rightarrow 0$ at $T \rightarrow 0$ we observe that $\alpha \rightarrow 0$.

Basic principles of statistical mechanics

0.8. The Hamiltonian of a collection of N non-interacting one-dimensional classic harmonic oscillators is given by

$$
H=\frac{1}{2 M} \sum_{i=1}^{N} p_{i}^{2}+\frac{k}{2} \sum_{i=1}^{N} x_{i}^{2}
$$

Calculate the internal energy of the system using the rules of calculation for isolated systems. Hint: Apply the law of equipartition of the energy.

Solution 0.8 According to the equipartition law, the average energy for each degree of freedom is the same. Here we have $2 N$ degrees of freedom. The average energy for one degree of freedom is

$$
E_{1}=\frac{\int_{-\infty}^{\infty} d p\left(p^{2} / 2 M\right) e^{-p^{2} / 2 M k T}}{\int_{-\infty}^{\infty} d p e^{-p^{2} / 2 M k T}}=\frac{k T}{2} .
$$

The total energy is

$$
E=2 N E_{1}=N k T
$$

0.9. Model for rubber elasticity.

The rubber is assumed to consist of a polymer chain of N rod-like monomers, each of length a and is sibjected to a force F in the $+X$ direction. Each monomer can point independently along any of X, Y, Z axes, in either the + or - direction. The energy is only X-dependent; $\varepsilon=a F$ for the monomer pointimg along $-X, \varepsilon=-a F$ for the monomer pojnting along $+X, \varepsilon=0$ for the monomer along $\pm Y$ and $\pm Z$.
(a) Calculate the partition function for the N -monomer chain.
(b) Show that the linear thermal expansivity is negative, as for the real rubber. Interpret the result physically.

Solution 0.9 .

(a) Each monomer has the partition function

$$
Z_{1}=2+2+e^{-\beta F a}+e^{\beta F a}=4+2 \cosh (\beta F a)
$$

the total partition function being

$$
Z=Z_{1}^{N}=2^{N}[2+\cosh (\beta F a)]^{N}
$$

(b) If $N \xi_{+}$states point on the average to $+X, N \xi_{-}$states point to $-X$, etc., then

$$
\left\langle L_{X}\right\rangle=N a\left(\xi_{+}-\xi_{-}\right), \quad\left\langle L_{Y}\right\rangle=N a\left(\eta_{+}-\eta_{-}\right), \quad\left\langle L_{Z}\right\rangle=N a\left(\zeta_{+}-\zeta_{-}\right),
$$

We immedately obtain that $\left\langle L_{Y}\right\rangle=\left\langle L_{Z}\right\rangle=0$. Furthermore,

$$
\xi_{ \pm}=e^{ \pm \beta a F} / Z_{1}, \quad \rightarrow \quad\left\langle L_{X}\right\rangle=N a \frac{\sinh \beta a F}{2+\cosh \beta a F}
$$

We immediately get $\partial\left\langle L_{X}\right\rangle / \partial \beta>0$. Consequently, $\partial\left\langle L_{X}\right\rangle / \partial T<0$. Rubber contracts upon heating.
0.10. The partition function for a system of some kind of particles is

$$
Z_{N}=\left[(V-N b) / \lambda^{3}\right]^{N} \exp \left(\beta a N^{2} / V\right),
$$

where

$$
\lambda=\sqrt{2 \pi \hbar^{2} / m k_{B} T}
$$

and a and b are constants, V is the volume and N is the number of particles; all other symbols have their usual meaning.
(a) Find the internal energy $E(N, T, V)$.
(b) Find the pressure $P(N, T, V)$.
(c) Find the entropy $S(N, T, V)$.
(d) Is this expression for S a valid fundamental relation, except perhaps at $T=O$? If not, what is wrong, and how ca Z_{N} be appropriately corrected?
Hint: Recall Gibbs paradox.

Solution 0.10

(a) Since $E=-\partial \ln Z / \partial \beta$ with $\beta \equiv\left(k_{B} T\right)^{-1}$ we rewrite the partition function as

$$
\ln Z_{N}=N \ln (V-N b)-3 N \ln \lambda+\beta a N^{2} / V
$$

with $\lambda=\sqrt{\beta \hbar / m}$. Having in mind that $\partial \lambda / \partial \beta=1 / 2 \beta=k_{B} T / 2$ we get:

$$
E=(3 / 2) N k_{B} T-a N^{2} / V
$$

(b) Let us define the Helmholtz free energy

$$
F=-k_{B} T \ln Z_{N}=-k_{B} T\left[N \ln (V-N b)-3 N \ln \lambda+\beta a N^{2} / V\right] .
$$

We have

$$
P=-\left(\frac{\partial F}{\partial V}\right)_{T}=\frac{N k_{B} T}{V-N b}+\frac{a N^{2}}{V^{2}} .
$$

(c)

$$
\begin{aligned}
S & =-\left(\frac{\partial F}{\partial T}\right)_{V, N} \\
& =N k_{B}\left[\frac{3}{2}+\ln \frac{V-N b}{\lambda^{3}}\right] .
\end{aligned}
$$

(d) Entropy is not an additive quantity. The states created by permutation of the particles are actually the same, so the partition function Z_{N} should be divided by $N!$. In the main approximation it will result in the expression

$$
S=N k_{B}\left[\frac{3}{2}+\ln \frac{v-b}{\lambda^{3}}\right], \quad v \equiv V / N .
$$

Another point is that the entropy does not vanish as $T \rightarrow 0$. One cannot correct this property within classical statistics.
0.11. Calculate the partition function and the free energy for a ideal classical gas consisting of N molecules at temperature T contained in a vertical column of height H and cross-sectional area A in the presence of the of non-vanishing constant acceleration g due to gravity.

Solution 0.11 The total energy of the molecule in the gravitational field is

$$
E=\frac{p^{2}}{2 m}+m g z
$$

where z-axis is directed perpendicular to the Earth surface. Then,

$$
\begin{aligned}
Z_{1} & =\int d^{3} r \int \frac{d^{3} p}{(2 \pi \hbar)^{3}} e^{-\beta\left(p^{2} / 2 m+m g z\right)} \\
& =A \int_{0}^{H} d z e^{-\beta m g z} \int \frac{d^{3} p}{(2 \pi \hbar)^{3}} e^{-\beta p^{2} / 2 m} .
\end{aligned}
$$

The first integral is equal to $(\beta m g)^{-1}\left[1-e^{-\beta m g H}\right]$. The second integral can be calculated in the spherical coordinates. Since $d^{3} p=p^{2} d p d \theta d \phi$ and kinetic energy depends only on p we can write:

$$
\frac{d^{3} p}{(2 \pi \hbar)^{3}}=\frac{p^{2} d p}{2 \pi^{2} \hbar^{3}}=\frac{m \sqrt{2 m \varepsilon} d \varepsilon}{2 \pi^{2} \hbar^{3}} \equiv g(\varepsilon) d \varepsilon,
$$

Here $\varepsilon \equiv p^{2} / 2 m$, while

$$
g(\varepsilon)=g_{0} \varepsilon^{1 / 2}, \quad g_{0}=\frac{(2 m)^{3 / 2}}{4 \pi^{2} \hbar^{3}}
$$

is the density of states. Thus the second integral is

$$
g_{0} \int_{0}^{\infty} d \varepsilon \varepsilon^{1 / 2} e^{-\beta \varepsilon}=g_{0} \beta^{-3 / 2} \int_{0}^{\infty} x^{1 / 2} e^{-x} d x=\frac{\sqrt{\pi}}{2} g_{0} \beta^{-3 / 2} .
$$

Collecting all the factors we obtain

$$
Z_{1}=Z \frac{1-e^{-\beta m g H}}{\beta m g H}, \quad Z=V \frac{\sqrt{\pi}}{2} \frac{(2 m)^{3 / 2}}{4 \pi^{2} \hbar^{3} \beta^{3 / 2}}=\frac{V}{\lambda^{3}} .
$$

Finally,

$$
Z_{N}=\frac{Z_{1}^{N}}{N!}=\frac{V^{N}}{\lambda^{3 N} N!}\left[\frac{1-e^{-\beta m g H}}{\beta m g H}\right]^{N}
$$

0.12. Calculate the partition function and the free energy for an ideal classical gas consist-
ing of N molecules at temperature T contained in a vessel and subjected to a centrifugal force $-M \omega^{2} z^{2} / 2$, where z is the distance of the particle from the axis of rotation and ω is the angular velocity of rotation of the centrifuge.

Solution 0.12; When the external field is present, the integrand in the partition function contains an extra factor $e^{-\beta U}$ where $U \equiv-M \omega^{2} z^{2} / 2$. Then one has to replace volume in the usual expression for the partition function by $\int d^{3} r e^{-\beta U}$. This procedure yields an extra factor

$$
\begin{aligned}
\frac{1}{V} \int d^{3} r e^{-\beta U} & =\frac{2 \pi L}{\pi R^{2} L} \int_{0}^{R} z d z e^{\beta M \omega^{2} z^{2} / 2} \\
& =\frac{2}{\beta M \omega^{2} R^{2}} \int_{0}^{\beta M \omega^{2} R^{2} / 2} d \eta e^{\eta}=\frac{2}{\beta M \omega^{2} R^{2}}\left(e^{\beta M \omega^{2} R^{2} / 2}-1\right)
\end{aligned}
$$

Thus,

$$
Z=\frac{2 Z_{0}}{\beta M \omega^{2} R^{2}}\left(e^{\beta M \omega^{2} R^{2} / 2}-1\right), \quad F=F_{0}-N k_{B} T \ln \frac{2 k_{B} T}{M \omega^{2} R^{2}}\left(e^{M \omega^{2} R^{2} / 2 k_{B} T}-1\right) .
$$

0.13. Consider an ideal monoatomic gas of N molecules in the presence of an external magnetic
field H, where each molecule behaves as an Ising spin. Calculate the free energy, energy, and entropy and interpret the result physically. Find the limit of S at $T \rightarrow 0$.

Solution 0.13; The energy of the Ising spin Sin magnetic field can be written as $U=-\mu S_{H} H$ where S_{H} acquires the values $\pm S$. Consequently, the partition function can be written as

$$
Z_{1}=Z_{0} \cdot \sum_{ \pm} e^{\mp \beta \mu S H}=2 \cosh (\beta \mu S H) .
$$

Here Z_{0} allows for non-magnetic degrees of freedom. Consequently,

$$
\begin{aligned}
Z & =Z_{1}^{N} / N!=\left(Z_{0}^{N} / N!\right)[2 \cosh (\beta \mu S H)] \\
F-F_{0} & =-(N / \beta) \ln [2 e \cosh (\beta \mu S H)] \\
E-E_{0} & =-\partial Z / \partial \beta=-N \mu S H \tanh (\beta \mu S H) \\
\left(S-S_{0}\right) / k_{B} & =\beta(E-F)=N \ln [2 e \cosh (\beta \mu S H)]-\beta N \mu S H \tanh (\beta \mu S H) .
\end{aligned}
$$

0.14. Evaluate the contribution of a one-dimensional anharmonic oscillator having a potential
$V(x)=c x^{2}-g x^{3}-f x^{4}$ to the heat capacity. Discuss the the dependence of the mean value of the position x of the oscillator on the temperature T. Here c, g, f are positive constants. Usually, $g \ll c^{3 / 2}\left(k_{B} T\right)^{-1 / 2}$ and $f \ll c^{2} / k_{B} T$.

Solution 0.14. Since g and f are small let us try to apply perturbation theory. Since the typical value of the displacement $\bar{x}=\left(k_{B} T / c\right)^{1 / 2}$ we obtain

$$
g \bar{x}^{3} / k_{B} T=\left(k_{B} T\right)^{1 / 2} c^{-3 / 2} \ll 1, \quad f \bar{x}^{4} / k_{B} T=f k_{B} T / c^{2} \ll 1 .
$$

Thus one can expand the exponential to obtain

$$
e^{-\beta V(x)} \approx e^{-\beta c x^{2}}\left(1-\beta g x^{3}-\beta f x^{4}\right) .
$$

As a result,

$$
Z=Z_{0} \int_{-\infty}^{\infty} d x e^{-\beta V(x)} \approx \sqrt{\frac{\pi}{\beta c}}\left(1+\frac{3 f}{4 \beta c^{2}}\right) .
$$

Here Z_{0} is the contribution of kinetic energy. Consequently,

$$
\begin{aligned}
\ln Z & =\ln Z_{0}+(1 / 2) \ln (\pi / c)-(1 / 2) \ln \beta+\ln \left(1+3 f / 4 \beta c^{2}\right) \\
& =\ln Z_{0}+(1 / 2) \ln (\pi / c)-(1 / 2) \ln \beta+3 f / 4 \beta c^{2}, \\
E & =-\partial \ln Z_{0} / \partial \beta-\partial \ln Z / \partial \beta \\
& =1 / 2 \beta+1 / 2 \beta+3 f / 4 \beta^{2} c^{2} \\
& =k_{B} T+3 f\left(k_{B} T\right)^{2} / 4 c^{2}, \\
C & =k_{B}\left(1+3 f k_{B} T / 2 c^{2}\right) .
\end{aligned}
$$

To estimate $\langle x\rangle$ we calculate

$$
\langle x\rangle=\frac{\int_{-\infty}^{\infty} d x x e^{-\beta V(x)}}{\int_{-\infty}^{\infty} d x e^{-\beta V(x)}} \approx-\beta g \frac{\int_{0}^{\infty} x^{4} d x e^{-\beta c x^{2}}}{\int_{0}^{\infty} d x e^{-\beta c x^{2}}}=\frac{3}{4} \frac{g}{\beta c^{2}}=-\frac{3}{4} \frac{g \bar{x}}{\beta^{1 / 2} c^{3 / 2}} \ll \bar{x} .
$$

We have $\langle x\rangle \propto T$. 0.15. The energy of anharmonic oscillator is given by

$$
H=p^{2} / 2 m+b x^{2 n}
$$

where n is a positive integer and $n>1$. Consider a thermodynamic system consisting of a large number of these identical noninteracting oscillators.
(a) Derive the single oscillator partition function.
(b) Calculate an average kinetic energy of an oscillator.
(c) Calculate an average potential energy of an oscillator.
(d) Show that the heat capacity is

$$
C=\left(N k_{B} / 2\right)(1+1 / n) .
$$

Solution 0.15,

(a)

$$
\begin{aligned}
Z_{1} & =\int \frac{d p}{2 \pi \hbar} e^{-\beta p^{2} / 2 m} \int d x e^{-\beta b x^{2 n}} \equiv Z_{k} \cdot Z_{p} \\
Z_{k} & =\frac{m^{1 / 2}}{\hbar(2 \pi \beta)^{1 / 2}} \\
Z_{p} & =\frac{\Gamma(1 / 2 n)}{n(\beta b)^{1 / 2 n}} .
\end{aligned}
$$

(b)

$$
E_{k}=-\partial \ln Z_{k} / \partial \beta=k_{B} T / 2
$$

(c)

$$
E_{p}=-\partial \ln Z_{p} / \partial \beta=k_{B} T / 2 n .
$$

(d) Straightforward.
0.16. Suppose the expression $S=-k_{B} \sum_{r} P_{r} \ln P_{r}$ is accepted as a definition of the entropy. Imagine that a system A_{1} has probability $P_{r}^{(1)}$ of being in a state r and a system A_{2} has probability $P_{s}^{(2)}$ of being in a state s. Then

$$
S_{1}=-k_{B} \sum_{r} P_{r}^{(1)} \ln P_{r}^{(1)}, \quad S_{2}=-k_{B} \sum_{S} P_{S}^{(2)} \ln P_{S}^{(2)} .
$$

Each state of a composite system A consisting of A_{1} and A_{2} can then be labeled by the pair of numbers, r, s. Let the probability of A being found in the state r, s be denoted by $P_{r s}$, and the corresponding entropy is $-k_{B} \sum_{r, s} P_{r s} \ln P_{r s}$.
(a) If A_{1} and A_{2} are weakly interacting so they are statistically independent, then $P_{r s}=P_{r}^{(1)} P_{s}^{(2)}$ Show that under such circumstances the entropy is simply additive, i. e. $S=S_{1}+S_{2}$.
(b) Suppose that A_{1} and A_{2} are not weakly so that $P_{r s} \neq P_{r}^{(1)} P_{s}^{(2)}$. One has, of course, the general, relations $\sum_{s} P_{r s}=P_{r}^{(1)}, \sum_{r} P_{r s}=P_{s}^{(2)}$, and $\sum_{r, s} P_{r s}=1$. Show that

$$
S-\left(S_{1}+S_{2}\right)=k_{B} \sum_{r s} P_{r s} \ln \frac{P_{r}^{(1)} P_{s}^{(2)}}{P_{r s}}
$$

Moreover, by using the inequality

$$
-\ln x \geq 1-x
$$

show that $S \leq S_{1}+S_{2}$, where the equality holds only if $P_{r s}=P_{r}^{(1)} P_{s}^{(2)}$ for all r and s. This means that the existence of correlation between the systems leads to a situation less random that where the systems are completely independent of each other.

Solution 0.16: Let us start from the part (b), and the 1st part will be a limiting case. We have

$$
\begin{aligned}
-\left(S_{1}+S_{2}\right) k_{B} & =\sum_{r} P_{r}^{(1)} \ln P_{r}^{(1)}+\sum_{r} P_{s}^{(2)} \ln P_{s}^{(2)} \\
& =\sum_{r, s} P_{r s} \ln \left(P_{r}^{(1)}+\sum_{s, r} P_{r s} \ln P_{s}^{(2)}\right. \\
& =\sum_{r, s} P_{r s} \ln \left(P_{r}^{(1)} P_{s}^{(2)}\right) .
\end{aligned}
$$

If $P_{r s}=P_{r}^{(1)} P_{s}^{(2)}$ then $S=S_{1}+S_{2}$. Now

$$
\begin{aligned}
S-\left(S_{1}+S_{2}\right) & =k_{B} \sum_{r, s} P_{r s} \ln \frac{P_{r}^{(1)} P_{s}^{(2)}}{P_{r s}} \\
& \leq k_{B} \sum_{r, s} P_{r s}\left[\frac{P_{r}^{(1)} P_{s}^{(2)}}{P_{r s}}-1\right] \\
& =k_{B} \sum_{r, s}\left[P_{r}^{(1)} P_{s}^{(2)}-P_{r s}\right]=0
\end{aligned}
$$

0.17. Consider a system distributed over its accessible states r in accordance with a probability distribution P_{r}, and let its entropy be defined by the relations

$$
S=-k_{B} \sum_{r} P_{r} \ln P_{r}, \quad \sum_{r} P_{r}=1
$$

Compare this distribution with the canonical distribution

$$
P_{r}^{(0)}=\frac{e^{-\beta E_{r}}}{\sum_{r} e^{-\beta E_{r}}}
$$

corresponding to the same mean energy $\langle E\rangle$, i. e.

$$
\sum_{r} P_{r} E_{r}=\sum_{r} P_{r}^{(0)} E_{r}=\langle E\rangle .
$$

The entropy of the canonical distribution is

$$
S_{0}=-k_{B} \sum_{r} P_{r}^{(0)} \ln P_{r}^{(0)}
$$

(a) Show that

$$
S-S_{0}=k_{B} \sum_{r} P_{r} \ln \frac{P_{r}^{(0)}}{P_{r}}
$$

(b) Using the inequality $\ln x \leq x-1$ show that $S_{0} \geq S$; the equality sign holds only if $P_{r}=P_{r}^{(0)}$ for all states r. This shows that, for a specific value of mean energy, the entropy S is a maximum for the canonical distribution.

Solution 0.17;

(a)

$$
\begin{aligned}
\left(S-S_{0}\right) / k_{B} & =-\sum_{r}\left[P_{r} \ln P_{r}-P_{r}^{(0)} \ln P_{r}^{(0)}\right] \\
& =-\sum_{r}\left[P_{r} \ln P_{r}-P_{r}^{(0)}\left(-\beta E_{r}-\ln \mathcal{N}\right)\right] \\
& =-\ln \mathcal{N}-\beta\langle E\rangle-\sum_{r} P_{r} \ln P_{r} \\
& =\sum_{r} P_{r} \ln \frac{P_{r}^{(0)}}{P_{r}}
\end{aligned}
$$

(b) We have

$$
\sum_{r} P_{r} \ln \frac{P_{r}^{(0)}}{P_{r}} \leq \sum_{r} P_{r}\left(\frac{P_{r}^{(0)}}{P_{r}}-1\right)=\sum_{r}\left[P_{r}^{(0)}-P_{r}\right]=0 .
$$

0.18. A one-dimensional normal distribution of zero mean and standard deviation σ is given by

$$
P(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-x^{2} / 2 \sigma^{2}}
$$

(a) Show that it entropy is $\left(k_{B} / 2\right) \ln \left(2 \pi e \sigma^{2}\right)$.
(b) show that for given

$$
\int_{-\infty}^{\infty} x^{2} P(x) d x=\sigma^{2}
$$

, the normalized probability distribution having the largest entropy in the one-dimensional normal distribution.

Solution 0.18;

(a) By definition,

$$
S / k_{B}=-\langle\ln P\rangle=-\int_{-\infty}^{\infty}\left[-\frac{x^{2}}{2 \sigma^{2}}-\frac{1}{2} \ln \left(2 \pi \sigma^{2}\right)\right] P(x) d x=\frac{1}{2} \ln \left(2 \pi e \sigma^{2}\right) .
$$

(b) Let us construct the functional

$$
\mathcal{F}\left[P(x), \lambda_{1}, \lambda_{2}\right]=-\int_{-\infty}^{\infty} d x P(x) \ln P(x)+\lambda_{1}\left(\int_{-\infty}^{\infty} d x x^{2} P(x)-\sigma^{2}\right)+\lambda_{2}\left(\int_{-\infty}^{\infty} d x P(x)-1\right) .
$$

Maximizing entropy under these two constraints implies that the variational derivation $\delta \mathcal{F} / \delta[P(x)]=0$ or equivalently:

$$
-\ln P(x)-1+\lambda_{1} x^{2}+\lambda_{2}=0,
$$

where the constants λ_{1} and λ_{2} are determined from the constraints: $\lambda_{1}=-\frac{1}{2 \sigma^{2}}$ and $\lambda_{2}=$ $1-\ln \sqrt{2 \pi \sigma^{2}}$. Hence, the Gaussian distribution:

$$
P(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-x^{2} / 2 \sigma^{2}}
$$

0.19. Using the method of canonical ensemble. calculate the partition function, average energy and specific heat of a system consisting of N noninteracting quantum harmonic oscillators and show that these expressions do reduce to the corresponding classical results in the appropriate classical limit.

Solution 0.19: \quad Since $\varepsilon_{n}=\hbar \omega(n+1 / 2)$ we obtain

$$
\begin{aligned}
Z_{1} & =e^{-\beta \hbar \omega / 2} \sum_{n=0}^{\infty} e^{-\beta \hbar \omega n}=[2 \sinh (\beta \hbar \omega / 2)]^{-1}, \quad Z=Z_{1}^{N}, \\
E & =N \frac{\hbar \omega}{2}+N \frac{\hbar \omega}{e^{\beta \hbar \omega}-1}, \\
C / k_{B} & =\frac{\partial E}{\partial T}=N(\beta \hbar \omega)^{2} \frac{e^{\beta \hbar \omega}}{\left(e^{\beta \hbar \omega}-1\right)^{2}} .
\end{aligned}
$$

Classical limiting case at $\beta \hbar \omega \ll 1$ is obvious.
0.20. Let us denote the average occupation of the n-th single-particle level by the symbol f_{n}. For fermions, consider the "variational entropy"

$$
S_{\mathrm{var}}=-\sum_{n}\left[f_{n} \ln f_{n}+\left(1-f_{n}\right) \ln \left(1-f_{n}\right)\right]
$$

and for bosons, consider the "variational entropy"

$$
S_{\mathrm{var}}=-\sum_{n}\left[f_{n} \ln f_{n}+\left(1+f_{n}\right) \ln \left(1+f_{n}\right)\right]
$$

Show that if $S_{\text {var }}$ is maximized, subject to the conditions

$$
\sum_{n} f_{n}=N, \quad \sum_{n} f_{n} \varepsilon_{n}=E
$$

then the resulting distribution is the FD distribution in the 1st case and BE distribution in the 2nd case. Moreover, at the maximum $S_{\text {var }}$ is equal to the equilibrium entropy of the FD and DE systems, respectively.

Solution 0.20; Let us construct the functional

$$
\tilde{S}=S_{\mathrm{var}}-\beta \mu N+\beta E=\sum_{n}\left[-f_{n} \ln f_{n}-\left(1 \mp f_{n}\right) \ln \left(1 \mp f_{n}\right)-\beta \mu f_{n}+\beta \varepsilon_{n} f_{n}\right] .
$$

We have

$$
\frac{\partial \tilde{S}}{\partial f_{n}}=\ln \frac{1 \mp f_{n}}{f_{n}}-\beta \mu+\beta \varepsilon_{n}=0 \quad \rightarrow \quad \frac{1 \mp f_{n}}{f_{n}}=e^{\beta\left(\varepsilon_{n}-\mu\right)}
$$

Consequently,

$$
f_{n}=\frac{1}{e^{\beta\left(\varepsilon_{n}-\mu\right)} \pm 1} .
$$

Substituting these solutions to the expressions for the variational entropy we find the equilibrium values of the entropy.

Chapter 1

Fluctuations, correlations and response

1.1. Consider a closed system consisting of N noninteracting classical one-dimensional harmonic oscillators at a temperature T. Using the canonical ensemble, show that the most probable energy of the system is identical to its average energy.

Solution 1.1: Let us start with the density of states for one-dimensional classical oscillator with the Hamiltonian $\mathcal{H}=p^{2} / 2 m+m \omega^{2} x^{2} / 2$. We have

$$
D(\varepsilon)=\int \frac{d p d x}{2 \pi \hbar} \delta\left(\varepsilon-\frac{p^{2}}{2 m}-\frac{m \omega^{2} x^{2}}{2}\right)
$$

To calculate this integral let us first recall the relation

$$
\int_{a}^{b} d x \delta[f(x)]=\sum_{s} \frac{1}{\left|f^{\prime}\left(x_{s}\right)\right|}
$$

where x_{s} are roots of equation $f(x)=0$ belonging to the interval (a, b). In our case,

$$
x_{s}= \pm \sqrt{\frac{2}{m \omega^{2}}\left(\varepsilon-\frac{p^{2}}{2 m}\right)}, \quad\left|f^{\prime}\left(x_{s}\right)\right|=m \omega^{2}\left|x_{s}\right|=\sqrt{2 m \omega^{2}\left(\varepsilon-\frac{p^{2}}{2 m}\right)}
$$

Consequently,

$$
D(\varepsilon)=\frac{2}{2 \pi \hbar \sqrt{2 m \omega^{2}}} \int_{0}^{\sqrt{2 m \varepsilon}} \frac{d p}{\sqrt{\varepsilon-p^{2} / 2 m}}=\frac{2}{2 \pi \hbar \sqrt{2 m \omega^{2}}} \pi \sqrt{2 m}=\frac{1}{\hbar \omega}
$$

Consequently, the number of states per particle is $\varepsilon / \hbar \omega$. The thermodynamical weight is then $(\varepsilon / \hbar \omega)^{N}=(E / N \hbar \omega)^{N}$. The entropy to be maximized is then

$$
S=k_{B} N \ln \frac{E}{N}-\frac{E}{T}
$$

that yields for the most probable E the equation

$$
\frac{\partial S}{\partial E}=k_{B} \frac{N}{E}-\frac{1}{T}=0 \quad \rightarrow \quad E=N k_{B} T
$$

1.2. Calculate the mean-square fluctuation in energy, and the mean-square fractional fluctuation in the energy of
(a) a quantum harmonic oscillator,
(b) a collection of N identical quantum harmonic oscillators.

Examine the results in the high-temperature limit.

Solution 1.2:

(a) Let us count the energy form the ground state energy $E_{0}=\hbar \omega / 2$. Then

$$
\begin{aligned}
Z_{1} & =\sum_{n=1}^{\infty} e^{-\beta n \hbar \omega}=\frac{1}{1-e^{-\beta \omega}}, \\
\langle E\rangle & =-\frac{\partial \ln Z_{1}}{\partial \beta}=\frac{\hbar \omega}{e^{\beta \hbar \omega}-1}=\hbar \omega \mathcal{N}(\omega), \\
\left\langle E^{2}\right\rangle & =\frac{1}{Z_{1}} \frac{\partial^{2} Z_{1}}{\partial \beta^{2}}=\hbar^{2} \omega^{2} \mathcal{N}(\omega)[2 \mathcal{N}(\omega)+1], \\
\left\langle(\Delta E)^{2}\right\rangle & =(\hbar \omega)^{2} \mathcal{N}(\omega)[\mathcal{N}(\omega)+1], \\
\left\langle(\Delta E)^{2}\right\rangle /\langle E\rangle^{2} & =[\mathcal{N}(\omega)+1] / \mathcal{N}(\omega) .
\end{aligned}
$$

(b) In the case of M oscillators one has to multiply both $\langle E\rangle$ and $\left\langle(\Delta E)^{2}\right\rangle$ by M. Thus, $\left\langle(\Delta E)^{2}\right\rangle=$ $[\mathcal{N}(\omega)+1] / M \mathcal{N}(\omega)$. At high temperature, this ratio is approximately $1 / M$.
1.3. Show that for an ideal classical Ising magnet
(a) the thermal fluctuation in the magnetization $\left\langle(\Delta M)^{2}\right\rangle$ is related to the thermal energy $k_{B} T$ and the corresponding response function, namely susceptibility χ through

$$
\left\langle(\Delta M)^{2}\right\rangle=k_{B} T N \chi
$$

(b) and

$$
\left\langle(\Delta M)^{2}\right\rangle^{1 / 2} /\langle M\rangle \propto 1 / \sqrt{N} .
$$

Solution 1.3:

(a) The energy is $\varepsilon=-\mu H$. Then,

$$
\begin{aligned}
Z_{1} & =2 \cosh (\beta \mu H) \\
\langle M\rangle & =\frac{1}{H} \frac{\partial \ln Z_{1}}{\partial \beta}=\mu \tanh (\beta \mu H) \\
\chi & =\frac{\partial\langle M\rangle}{\partial H}=\frac{\beta \mu^{2}}{\cosh ^{2}(\beta \mu H)}, \\
\left\langle M^{2}\right\rangle & =\frac{1}{H^{2} Z_{1}} \frac{\partial^{2} Z_{1}}{\partial \beta^{2}}=\mu^{2}, \\
\left\langle(\Delta M)^{2}\right\rangle & =\mu^{2}\left[1-\tanh ^{2}(\beta \mu H)\right]=\frac{\mu^{2}}{\cosh ^{2}(\beta \mu H)} .
\end{aligned}
$$

Thus

$$
\left\langle(\Delta M)^{2}\right\rangle=k_{B} T N \chi
$$

(b) Follows from statistical independence of different spins.
1.4. V_{1} is the volume of a small subsystem of a very large container of volume V, which is filled with N atoms of an ideal classical monoatomic gas. Denote the probability of finding a particular gas particle in the subsystem volume by $p=V_{1} / V$. Find an expression for the Probability $P\left(N_{1}\right)$ that there are N_{1} particles in the subsystem. From this expression, find the relative variance $\left\langle\left(N_{1}-\left\langle N_{1}\right\rangle\right)^{2}\right\rangle$. Show that the relative variance vanishes in the thermodynamic limit, i. e. when $V \rightarrow \infty, N \rightarrow \infty$ with $N / V=$ const and simultaneously $V_{1} \rightarrow \infty$ with $p=$ constant.

Solution 1.4: Let us use the binomial distribution

$$
P\left(N_{1}\right)=\frac{N!}{N_{1}!\left(N-N_{1}\right)!}\left(\frac{V_{1}}{V}\right)^{N_{1}}\left(1-\frac{V_{1}}{V}\right)^{N-N_{1}}=\frac{N!}{N_{1}!\left(N-N_{1}\right)!} p^{N_{1}}(1-p)^{N-N_{1}}
$$

Assuming $N_{1} \ll N$ we write $N!\approx\left(N-N_{1}\right)!N^{N_{1}}$ to get the Poisson distribution.

$$
P\left(N_{1}\right)=\frac{(N p)^{N_{1}}}{N_{1}!}(1-p)^{N} \rightarrow \frac{(N p)^{N_{1}}}{N_{1}!} e^{-N p} .
$$

We have

$$
\begin{aligned}
\left\langle N_{1}\right\rangle & =e^{-N p} \sum_{N_{1}=0}^{\infty} \frac{N_{1}(N p)^{N_{1}}}{N_{1}!}=N p e^{-N p} \sum_{N_{1}=1}^{\infty} \frac{(N p)^{N_{1}-1}}{\left(N_{1}-1\right)!}=N p \\
\left\langle N_{1}^{2}\right\rangle & =e^{-N p} \sum_{N_{1}=0}^{\infty} \frac{N_{1}^{2}(N p)^{N_{1}}}{N_{1}!}=N p e^{-N p} \sum_{N_{1}=1}^{\infty} \frac{N_{1}(N p)^{N_{1}-1}}{\left(N_{1}-1\right)!} \\
& =N p e^{-N p} \sum_{N_{1}=1}^{\infty} \frac{\left[1+\left(N_{1}-1\right)\right](N p)^{N_{1}-1}}{\left(N_{1}-1\right)!}=N p+(N p)^{2} \\
\left\langle\left(\Delta N_{1}\right)^{2}\right\rangle & =N p, \quad\left\langle\left(\Delta N_{1}\right)^{2}\right\rangle /\left\langle N_{1}\right\rangle^{2}=(N p)^{-1} .
\end{aligned}
$$

