Problem set 10 for the course FYS4130

April 5, 2013

Mean field

1. Consider the Ising model with spins $\sigma= \pm 1$ on a d-dimensional lattice with the Hamiltonian

$$
\begin{equation*}
\mathcal{H}=-J \sum_{\langle i, j\rangle} \sigma_{i} \sigma_{j}-B \sum_{i} \sigma_{i}, \tag{1}
\end{equation*}
$$

where B is the external magnetic field and $\langle i j\rangle$ represents summation over nearest neighbors $\left(\sum_{\langle i, j\rangle}=\frac{1}{2} \sum_{i} \sum_{j=n . n .(i)}\right)$.

- Determined the Gibbs and Hemholtz free energies, $G(T, B)$ and $F(T, M)$, in the mean field approximation using that $\sigma_{i}=m+\delta \sigma_{i}$, with $\delta \sigma_{i}$ beging a small fluctuation around the average value m.
- Plot $G(T, B)$ and $F(T, M)$ for different temperatures below and above the critical temperature T_{c}.

Random walk

1. Consider a 1d random walk where the displacement is a continuous, random variable determined by the probability density $w\left(s_{i}\right)$ such that $w\left(s_{i}\right) d s_{i}$ is the probability to find the step length between s_{i} and $s_{i}+d s_{i}$. In the following let us for simplicity assume that the probabilities for each step are the same.

- Express the average \bar{x} and dispersion $\overline{(\Delta x)^{2}}$ through the single-step probability density $w(s)$.
- Apply these general expressions for the case of a one-dimensional random walk with the step length l. Write the Gaussian probability density for this case.

2. Express the general probability density $\mathcal{P}(x)$ through $w(s)$. Show that if one defines the Fourier component $\tilde{\mathcal{P}}(k)$ and $\tilde{w}(k)$ of the probability densities $\mathcal{P}(x)$ and $w(s)$, respectively, as

$$
\tilde{A}(k)=\int_{-\infty}^{\infty} A(x) e^{-i k x} d x, \quad A(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \tilde{A}(k) e^{-i k x} d k
$$

then

$$
\begin{equation*}
\tilde{P}(k)=\tilde{w}^{N}(k) . \tag{2}
\end{equation*}
$$

Hint: take into account the constrain $x=\sum_{i=1}^{N} s_{i}$ and express it using Dirac delta-function.
3. Apply Eq. (2) to the case of equal step length l discussed above.

