Problem set 12 for the course FYS4130

April 19, 2013

Discrete random walk

Let us consider a discrete random walk with a continuous jump size distribution. We will denote the position of the walker at a discrete time N by x_{N}. It is obtained as a sum of independent jumps

$$
\begin{equation*}
x_{N}=\sum_{n=0}^{N} \xi_{n} \tag{1}
\end{equation*}
$$

where the size of the jumps ξ_{n} is assumed to be statistically independent and identically distributed uniformly in the interval between -1 and 1, i.e. $\xi=U(-1,1)$. We also have that $x_{0}=0$.
(a) What is the characteristic function of the uniform jump probability distribution function $p_{\xi}(\xi)$?
(b) Use the convolution theorem of probabilities to calculate the probability distribution function ($p d f$) for x_{N} for $N=2$? We will denote this probability by $p(x, N=2)$.
(c) Calculate $p(x, N=2)$ using the characteristic function from question (a).
(d) Obtain the characteristic function, $G_{x}(k, N)$, valid for any time N, and show how it relates to $p(x, N)$.

Diffusion coefficient and random walk

Consider a discrete-time random walk a jump size that can take values $\pm \Delta x$ with equal probablity. The position of the walker at a discrete time $t=N \Delta t$ depends on the previous position by

$$
\begin{equation*}
x_{t}=x_{t-\Delta t}+\xi_{t} \tag{2}
\end{equation*}
$$

where $\left\langle\xi_{t}\right\rangle=0$ and $\left\langle\xi_{t}^{2}\right\rangle=\Delta x^{2}$.
(a) Show that the standard deviation of the position $\sigma^{2}=\left\langle x_{t}^{2}\right\rangle-\left\langle x_{t}\right\rangle^{2}$ can be written as $\sigma^{2}=2 D t$. Find the diffusion coefficient D as a function of Δx and Δt.
(b) Show that in the limit of $\Delta x, \Delta t \rightarrow 0$, the evolution equation for the position reduced to overdamped limit of the Langevin equation.

