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Chapter 1

Summary of
Thermodynamics

Equation of state The dynamics of particles and their interactions were under-
stood at the classical level by the establishment of Newton’s laws. Later, these
had to be slightly modified with the introduction of Einstein’s theory of relativ-
ity. A complete reformulation of mechanics became necessary when quantum
effects were discovered.

In the middle of last century steam engines were invented and physicists
were trying to establish the connection between thermal heat and mechanical
work. This effort led to the fundamental laws of thermodynamics. In contrast
to the laws of mechanics which had to be modified, these turned out to have a
much larger range of validity. In fact, today we know that they can be used to
describe all systems from classical gases and liquids, through quantum systems
like superconductors and nuclear matter, to black holes and the elementary
particles in the early Universe in exactly the same form as they were originally
established. In this way thermodynamics is one of the most fundamental parts
of modern science.

1.1 Equations of state

Equation of state

We will now in the beginning consider classical systems like gases and liquids.
When these are in equilibrium, they can be assigned state variables like temper-
ature T', pressure P and total volume V. These can not take arbitrary values
when the system is in equilibrium since they will be related by an equation of
state. Usually it has the form

P=PV,T). (1.1)

Only values for two state variables can be independently assigned to the system.
The third state variable is then fixed.
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The equations of state for physical systems cannot be obtained from ther-
modynamics but must be established experimentally. But using the methods
of statistical mechanics and knowing the fundamental interactions between and
the properties of the atoms and molecules in the system, it can in principle be
obtained.

An ideal gas of N particles obeys the equation of state

_ NkT

P
V

(1.2)

where k is Boltzmann’s fundamental constant k& = 1.381 x 1072 J K~!. For
one mole of the gas the number of particles equals Avogadro’s number N4 =
6.023 x 102> mol~! and R = Nak =8.314J K~ mol~! = 1.987 cal K~ mol~1.
Since p = N/V is the density of particles, the ideal gas law (1.2) can also be

p

v

Figure 1.1: Equation of state for an ideal gas at constant temperature.

written as P = kTp. The pressure in the gas increases with temperature for
constant density.

In an ideal gas there are no interactions between the particles. Including
these in a simple and approximative way gives the more realistic van der Waals
equation of state

NET aN?
P=——-—-—. 1.3
V—-Nb V2 (13)
It is useful for understanding in an elementary way the transition of the gas to
a liquid phase.
Later in these lectures we will derive the general equation of state for gases
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with two-body interactions. It will have the general form
P=kT> p"Bu(T). (1.4)
n=1

The functions B, (T") are called virial coeflicients with B; = 1. They can all
be calculated in principle, but only the first few are usually obtained. We see
that the van der Waal’s equation (1.3) can be expanded to give this form of the
virial expansion.

A real gas-liquid system has a phase diagram which can be obtained from
the equation of state. When it is projected onto the PT and PV planes, it has
the general form shown in Fig.1.2. For low pressures there is a gas phase g.
It condenses into a liquid phase ¢ at higher pressures and eventually goes into

P

Figure 1.2: Phase diagram of a real liquid-gas system. The dotted line in the left figure
indicates the two phase transitions it undergoes while being heated up at constant pressure.

the sold phase s at the highest pressures. At low temperatures, the gas can
go directly into the solid phase. At the triple point t all three phases are in
equilibrium. The gas-liquid co-existence curve terminates at the critical point
c.

In other thermodynamic systems like magnets and superconductors, there
will be other state variables needed to specify the equilibrium states. But they
will again all be related by an equation of state. These systems are in many ways
more important and interesting today than the physics of gases and liquids. But
the general thermodynamics will be very similar. We will come back to these
systems later in the lectures.

1.2 Laws of thermodynamics

Laws of thermodynamics

When we add an small amount of heat AQ to a system, its internal energy
U will change at the same time as the system can perform some work AW.
These changes are related by energy conservation,

AQ = AU + AW . (1.5)
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For a system with fixed number of particles, the work done is given by the
change of volume AV and the pressure in the gas as

AW =PAV . (1.6)

It is positive when the volume of the system increases. The internal energy U
depends only on the state of the system in contrast to the heat added and work
done. These quantities depend on the way they have changed. U is therefore
called a state function.

Experiments also revealed that the system can be assigned another, very
important state function which is the entropy S. It is related to the heat added
by the fundamental inequality

ASE%Q (1.7)

where T is the temperature of the system. Reversible processes are defined to
be those for which this is an equality.

In the limit where the heat is added infinitely slowly, the process becomes
reversible and (1.5) and (1.7) combined give

TAS = AU + PAV (1.8)

for such a gas-liquid system. This equation is a mathematical statement of the
First Law of thermodynamics. When we later consider magnets, it will involve
other variables, but still basically express energy conservation.

The Second Law of thermodynamics is already given in (1.7). For an isolated
system, AQ = 0, it then follows that the entropy has to remain constant or
increase, AS > 0. Combining (1.7) with energy conservation from (1.5), we
obtain

TAS > AU+ PAV . (1.9)

This important inequality contains information about the allowed changes in
the system.

As an illustration of the Second Law, consider the melting of ice. At normal pressure it
takes place at 0 °C degrees with the latent or melting heat A = 1440 cal mol~! taken from
the surroundings. Water is more disordered than ice and its entropy is higher by the amount
AS = A/273K = 5.27 cal K~1 mol~! since the process is reversible at this temperature. But
why doesn’t ice melt at —10 °C since it would then increase its entropy? The answer is given
by (1.7) which in this case is violated, 5.27 < 1440/263. However, it will melt spontaneously
at +10 °C as we all know since 5.27 > 1440/283. We have here made the reasonable approx-

imation that the latent heat doesn’t vary significantly in this temperature range.

The two laws of thermodynamics were formulated more than a hundred years
ago by the German physicist Rudolf Clausius. In his words they were
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1. Die Energi der Welt ist konstant.
2. Die Entropi der Welt strebt einem Maximum zu.

Sometimes (1.9) is also called Clausius’ Inequality. It is the Second Law and
the fundamental concept of entropy which contains the key to the connection
between thermodynamics and statistical mechanics.

1.3 Maxwell relations and thermodynamic deriva-
tives

Maxwell relations
We have already stated that the internal energy U is a state function. The
first law (1.8) can be written on the form

dU =TdS — PdV (1.10)

which shows that the natural variables for U are the entropy S and volume V,
ie. U=U(S,V). Taking the differential,

ou ou
dU = (&S)Vds+ (W)de

and comparing, we find the partial derivatives

(gg)v =T (1.11)

(gg)g =-P. (1.12)

Since the second derivatives satisfy 92U/0S9V = 02U/0V S, it follows that
we must have the Maxwell relation

(). -(%),

We can derive others when we have introduced new thermodynamic potentials
in addition to the internal energy.

When using partial derivatives of this kind in thermodynamics, we will often
need a few special properties they share. Consider the internal energy which is
a function of the two natural state variables S and V', i.e. U = U(S, V). But the
entropy S is also a function of two such variables, say 7" and V' which implies
that that U can be considered as an implicit function of T and V. But this could
just as well be two other state variables which will call X and Y to be general.
A third state variable Z is then no longer independent because of the equation

and
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of state and we must have Z = Z(X,Y). We could also have taken Y and Z as
independent and then we would have had X = X (Y, Z). Taking the differentials
of these two equations we obtain dZ = (0Z/0X), dX + (0Z/0Y )y dY and
dX = (0X/0Y),dY +(0X/0Z), dZ. Eliminating dY between them now gives

(580, 80, (39, 2), (3 oo

Since the differentials dX and dZ are independent, their coefficients must sep-
arately be zero. It results in the two important relations

(%), (), a1

BLELE o

We can now take the internal energy to be a function of the two independent
variables X and Y. Then

ou ou
dU = | == | dX — | dY.
(%), =+ (av).
Dividing this by dZ and taking the resultant expression at constant Y, i.e.
dY =0, we are left with

@g)y - (gg)y (g)z()y (1.16)

which is just the ordinary chain rule for differentiation. On the other hand,
dividing the previous expression by dX on both sides and taking the resultant
equation at constant Z, we find

(2)U(>Z - (f))i)Y * (gg)x (g)z (1.17)

which also is a very useful relation.

and

1.4 Specific heats and compressibilities

When we add a small amount of heat AQ to the system holding the state
variable X constant, the temperature will in general rise by a corresponding
amount AT. The specific heat C'x is then defined by

L AQ B oS
Ox = Al%go (AT)X =7 (6T)X (1.18)
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from (1.7) since in this limit the process is reversible. The derivative of entropy
can be found from the First Law (1.8) where we can consider U = U(T, V),

TdS = (gg)vdT+ [P+ (gg)J av . (1.19)

Now taking this change under constant volume, we see that the specific heat
Cly is given by the partial derivative

Cy = <gg>v . (1.20)

We can therefore always obtain this specific heat directly from knowing how the
internal energy varies with the temperature.

Had we taken the heat addition above under constant pressure, we see that
the specific heat Cp is related to Cy by

NI
In (1.19) we could have considered instead U = U(P,T) and would then have
obtained directly that
Cp = (?;I)P . (1.22)
where
H(S,P)=U+PV (1.23)

is the enthalpy. It plays a similar role as the internal energy, but now at con-
stant pressure.

As an example, consider boiling of water. When it takes place at normal pressure
P = latm, an amount of heat AQ = 539cal is required to transform 1lg of water into
vapor. But the vapor has a much larger volume, AV = (1671 — 1) cm?® and in the process
must also do work AW = P AV = 41 cal against the atmospheric pressure. The change in
enthalpy for this process is now AH = AU+ P AV = AQ = 539 cal from the First Law, while
the change in internal energy is AU = AH — P AV = 498 cal.

The specific heats (1.18) measures the change in temperature as a result of
the added heat. Other such response functions are the compressibilities

1 /ov
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and the thermal expansion coefficient

1 [0V
=== . 1.25
Ty (6‘T> - (1.25)
All these repose functions are related and one can show that for example
TV
Cp—Cy =—20a’ 1.26
R = (1.26)
T
Kp—Kg = IV - (1.27)
Cp
and
Cp Krp
—— = 1.28
O = Ks (1.28)

Later we will see that for magnetic systems the susceptibilities play the same
role as the compressibilities do in gas-liquid systems. They are important in
characterizing the properties of these systems at the critical point.

1.5 Thermodynamic potentials

Until now we have considered closed systems which can not exchange particles
with the surroundings. For an open system there will be an extra contribution
to the work (1.6) done by the system when AN particles is transferred,

AW = PAV — u AN (1.29)
where p is the chemical potential. The First Law is therefore changed into
dU =TdS — PdV + pudN . (1.30)

Equations like (1.11) and (1.12) must now be taken also at constant particle
number N.

In the differential (1.30) T', P and p are intensive variables, while S, V' and
N are extensive variables, i.e. proportional to the number of particles in the
system. Since the internal energy is also extensive, we must have

U(AS, AV, AN) = AU(S, V, N) (1.31)

where A is some scale parameter. Taking the derivative with respect to A on
both sides, we get

0

US,V.N) = ZUASAV,AN)
0 0 0
= (Sa(AS)+V6()\V)+N8(AN))U()\S,)\V,/\N)

TS — PV + uN (1.32)
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where we use that all the partial derivatives gives intensive variables which are
independent of A. If we take the differential of U and again use (1.30), it follows
that

SdT —VdP + Ndp =0 (1.33)

which is the Gibbs-Duhem relation.

When a system is isolated, the energy, particle number and volume is fixed
and the entropy will be maximized in a spontaneous process. But sometimes
other experimental parameters are fixed, like the temperature in stead of the
energy. This can be achieved by putting the system in contact with a big
reservoir at constant temperature Ty. If it is big enough the system can absorb
energy from it without changing its temperature. Then, the total entropy of the
system and the reservoir combined will be maximized, provided the total system
is isolated. We will denote the energy and the entropy of the reservoir by primed
quentities S’ and U’. We are free to assume that the reservoir exchanges energy
through a reversible process so that ToAS’ = AU’. By energy conservation
AU’ = —AU, so that the total entropy change in a spontaneous process is

0 < TH(AS + AS") = ToAS — AU. (1.34)
Defining the Helholtz free energy as
F=U-1T,S (1.35)

this may be written as
(AF)rv,n <0 (1.36)

since Tj is a constant during the spontaneous process. Note that F is defined
entirely in terms of system quantities, the only external parameter being Tj.

Equation (1.36) describes processes that happen by them selves at fixed
(V,N,Tp). The system could for instance be a rigid bottle water with an ice
cube melting in a warm room. At equilibrium, when the ice has melted, the
actual value of F' depends on the variable set (V, N, T;). To determine how, we
must consider these variables as free and take the differential of equation (1.35).
Setting T' = Ty this gives

dF =dU —dTS — TdS (1.37)
Using equation (1.30), which holds for reversible processes, we get
dF = —SdT — PdV + udN. (1.38)

This result is of course general, and not limited to the bottle of ice and water.
It shows that the natural, or canonical, variables of F' is indeed the ones that
are fixed for the system. It is seen from equation (1.38) that at equilibrium
F = F(T,V,N), and once this function is known S, p and p may be obtained as
the derivatives of F. Note that when (7, V, N) are fixed, equation (1.38) gives
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dF = 0, which is the reversible case. For spontaneous, irreversible processes
AF > 0, and in this case the actual change in F' can be determined if the
process goes from one equilibrium state to another. For instance if the bottle of
ice is placed in a warm room, it will change to a bottle of water and vapor, and
AF is the difference between the initial equilibrium value in the frozen state,
and the final equilibrium value in the melted state.

From a mathematical point of view U and F are related by a so-called
Legendre transformation. Adding T'S changes the S-dependence of U to a
T-dependence in F. In general, if some quantity F' = F(X,Y) where Z =
(OF/0X)y, then G = F — X Z will be a function of Y and Z only, G = G(Y, 2).
This follows from dG = (0F/0Y) y dY —XdZ. We can use this transformation to
construct other important thermodynamic potentials. With the help of equation
(1.38)

OF OF oOF
S (8T>V,N (aV>T7N («‘ﬂv)m (1.39)

These derivatives can be used to establish new Maxwell relations.

In addition to eliminating S as a variable in the internal energy U in favor
of T to arrive at the Helmholtz free energy, we could also add PV to replace V
by P. The Legendre transformation is then

G(T,P,N) = U-TS+ PV
= Nu(T,P) (1.40)

which is the Gibbs free energy. From (1.30) it follows that
dG = =SdTI' +V dP + pdN (1.41)

which implies

0G oG 0G
SZ‘(aT)p}N V:(ap>m “:(azv)Tp (142)

) )

in analogy with (1.39).
If the pressure is held at constant pressure instead of volume, the Gibbs free
energy will spontaneously decrease or be minimal,

(AG)r.pn <0. (1.43)

These thermodynamic potentials have many important applications and spe-
cially in physical chemistry in connection with phase equilibria and in chemical
reactions.

In condensed matter physics one often also considers systems with fixed vol-
ume, temperature and constant chemical potential u instead of particle number
N. For such systems one needs the corresponding thermodynamic potential
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which can be derived from Helmholtz free energy by another Legendre transfor-
mation. It gives

= —PV (1.44)

which is usually called the Landau free energy. From (1.30) it follows that the
differential

dQ=—-SdT — PdV — Ndu . (1.45)

This new thermodynamic potential will be extensively used when we later con-
sider quantum systems of indistinguishable particles.

The free energies so far depend on canonical variables that may be fixed ex-
perimentally. This is true for the variable sets (T, V, N), (T, P, N) and (T, u, V)
corresponding to the free energies F', G and 2. It does not matter if the systems
in question evolve spontaneously and change. In contrast, there is no simple and
general experimental procedure to fix (S, V, N), the variables corresponding to
U. In order to fix S one must remove heat from the system after a spontaneous
process, that increases S, has taken place.

Assuming such a procedure one can imagine processes at constant S. From
(1.9) it then follows that a system that is kept at constant entropy and volume,
can only change spontaneously such that

(AU)s,v <0 (1.46)

i.e. by lowering its internal energy. When the system is in equilibrium, it
cannot change spontaneously and hence its internal energy must be a minimum
at constant volume and entropy.

Finally, we can write (1.9) in terms of the enthalpy (1.23) as

TAS > AH+V AP . (1.47)

For a system which is kept at constant pressure and entropy, the enthalpy will
therefore be a minimum when it is at equilibrium,

(AH)s,p <0. (1.48)

Like the internal energy U, H is also a thermodynamic potential. From the
First Law (1.8) we now have

dH =TdS +V dP (1.49)

so that entropy and pressure are the natural variables for the enthalpy. From
this we can derive the Maxwell relation

(). (3,

in the same way as we derived (1.13).
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1.6 Fluctuations and thermodynamic stability

The infinitesimal variations AS, AV and AU in Clausius Inequality (1.9) rep-
resent spontaneous changes in the system. When it is in equilibrium, its prob-
ability is at a maximum. As we shall see more in detail later, there can still be
statistical fluctuations away from equilibrium, S — S +6S, V — V + 6V and
U — U + 0U. These will then take the system to a state with less probability.
But the process back to equilibrium will be spontaneous and satisfy Clausius
Inequality. We therefore have that A = —§ and get the condition

T5S < 6U + P oV (1.51)

which has to be satisfied by all thermodynamic fluctuations.
As an application of this, consider again the internal energy U(S, V). Then

oUu oU
w = (1) s (%) v
1[/0%U 9 02U 02U 9
3| (5 )05 +2 (g ) osv + (G ) ov?]
Now since P = — (0U/0V)g and T' = (0U/0S)y,, it follows from (1.51) that
02U 9 02U 02U 5
2 >0.
K@SZ>6S + (858V)656V+<3V2)6V]_0

Since the fluctuations 65 and 6V are independent, this is satisfied when the two
quadratic terms have positive coefficients, i.e.

02U oP 1
- — | = — > .
(572) =~ (5v), = vi; 2 (152
and
02U oT T
— = = = —>0. .
(352> <8S>V Cy ~ 0 (1.33)

In addition, the coefficient matrix must be positive definite so the determinant

must be positive,
O°UN (92U ([ °U N
052 oVv? asov ) —

oT\? T
Y <= 1.54
<8V>S =~ VKsCy (1.54)

which requires

We see that the most important result from these conditions for thermodynamic
stability, is that specific heats and compressibilities are positive.
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1.7 Phase transitions

Let us consider an isolated system consisting of two phases in thermodynamic
equilibrium with each other. This happens due to exchange of particles and ener-
gies between them until the entropy S(U,V, N) = S1 (U1, V1, N1)+S52(Uz, Va, Na)
of the combined system is maximal. We must therefore have

(351> _<552> (351) _<352>
U, Vi,N1 U2 Va,N2 v U1,N1 qe Uz,N2

0S4 ) (852 )
— — | == dN1 =0
(aNl U, Vi ON Uz, Va '

where we have used that dU; = —dU; etc. for such an isolated system. Since
these three infinitesimal changes are all independent, their coefficients must all
be zero. From (1.30) we have the important derivatives

95y _ 1 95y _ P 95V LB (15
ou )y T vV )yn T ON ),y T '

which immediately give the equilibrium conditions

ds = dU, + avy

+

T1 = T2 P1 = P2 M1 = M2 . (156)

These are just what we intuitively had expected.

We will now make a little use of these conditions. Consider two points
T,P and T + dT, P + dP along the co-existence curve in the phase diagram
Fig.1.2 between gas and liquid. Phase equilibrium at the first point requires
that pg (T, P) = pe(T, P) and py(T +dT, P+ dP) = (T +dT, P+ dP) at the
second point. These two conditions give together that duy(T, P) = dp(T, P).
But from the Gibbs-Duhem relation (1.33) we have du = —sdT" + vdP where
s = S/N is the molecular entropy and v = V/N is the molecular volume. The
equilibrium conditions thus lead to the relation

—84dT + vygdP = —5¢dT + ved P

or

dP Sg — 5¢ A
il - = 1.57
(dT> coer Vg —ve  T(vg —vyp) ( )

where A = T'(sy — s¢) is the latent heat per particle in the transition. This is
the Clausius-Clapeyron equation.

If we furthermore assume that the latent heat along the co-existence curve
is constant and v, << vy = kKT/P, we can integrate the Clausius-Clapeyron
equation to give the vapor pressure formula

P(T) = Ce™ #r (1.58)
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where C' is some constant and A = N4 is the latent heat per mole. Knowing
the equations of state for the liquid and solid states, we can also similarly find
the pressure along their co-existence line.

When we change the temperature, pressure or volume of a substance so that
we cross a co-existence line in the phase diagram, it will absorb or release some
latent heat A. Since entropy is the first derivative of one of the free energies and
it changes discontinuously by the amount AS = A/T in the transition across
the co-existence line, this is called a first order phase transition. They all involve
some latent heat like in melting or condensation.

Accurate measurements reveal that the latent heat A actually varies with
temperature along the liquid-gas co-existence curve. The nearer one gets to
the critical temperature 7., the smaller it gets as shown in Fig.1.3. At the
critical point the two phases become identical and A(7..) = 0 so that the entropy
changes continuously. But its first derivative, i.e. the second derivative of the
free energy, will be discontinuous. At the critical point we therefore say that we

T T,

Figure 1.3: The latent heat in a first order phase transition decreases as the temperature
approaches the critical temperature 7.

have a second order phase transition. It is in many ways the most interesting
from a theoretical point of view and will later be discussed in greater detail.

When the equation of state is projected into the PV plane, it has the typical
form shown in Fig.1.2. We see that the critical point is an inflexion point
determined by the two conditions

opr a%p
<8V>TC =0 <8V2 >Tc =0 (1.59)

They can be used to find the critical values T., P. and V, from a given equation
of state.
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1.8 Entropy

The state variable which provides the bridge between thermodynamics and sta-
tistical mechanics, is the entropy. It is given by Boltzmann’s famous formula

S = klogW (1.60)

where W is the number of microscopic or quantum states it can be in. When
the temperature goes to zero, most systems end up in a non-degenerate ground
state of lowest energy, i.e. W =1 and the zero-temperature entropy Sy = 0.

This very general result is called Nernst’s Theorem and sometimes also pro-
moted to new, third law of thermodynamics. But it is not always true and hence
does not deserve this status. When the ground state is degenerate, W > 1 and
So > 0. For instance, a substance of N linear molecules which can line up in
two equivalent directions, will have W = 2V and a zero-temperature entropy
So = Rlog 2 per mol. Another example is ice which has Sy = Rlog3/2 as first
explained by Linus Pauling.

For substances with Sy = 0 we can determine the entropy from the measure-
ments of the specific heat using formula (1.18). The specific heat at constant
pressure Cp is experimentally most accessible over a wide range of temperatures
for gas-liquid systems. We must then have

%1200 Cp(T)=0 (1.61)
so that
T Cp(T)
S(T) :/ dT ——= (1.62)
O T

is well-defined in this limit.

When these measurements are done, one finds an entropy which typically
varies with temperature as in Fig.1.4. It makes finite jumps at the melting
temperature T}, and at the boiling temperature T;. Denoting the corresponding
latent heats by A,, and Ay, the entropy just above the boiling temperature is
given by four contributions:

S(Tb> = SS(O — Tm) + A7m + S@(Tm —Tp) + ﬁ
Ty T,
where the entropies of the solid phase Sy and liquid phases Sy can be experi-
mentally determined from (1.62).
Such data have been established for very many substances in physical chem-
istry. As an example, let us consider 1mol of the noble gas Kr at constant
pressure Py = 1 atm:

T, =1159 K Ty, =119.9 K
Ay, = 390.9 cal mol ™1 Ap = 2158 cal mol ™!
Se=12.75 cal K" ' mol™' S, =0.36 cal K~* mol~!
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Figure 1.4: When the solid s is heated up, it melts at the temperature Tp,, goes into a
liquid phase [, boils at the temperature T} and goes into the gas phase g.

Adding the four contributions together, we find the entropy S(7 = 119.9)/R =
17.35 for krypton at the boiling point.

The entropy of a gas can not be calculated from thermodynamics alone.
From the First Law (1.8) we have

1 P
dS = =dU + =dV
T + T

Assuming the gas to be ideal, the pressure is P = NkT/V and the internal
energy U = %N kT. We can then integrate up the entropy differential to get

S = Nk(logV + glogT-l-ao) (1.63)

where o( is an unknown integration constant. It is called the entropy constant.
This constant can not be determined from the thermodynamic formulation, but
requires calculations based on the counting of states, and, in order to do this
correctly, quantum mechanics.

When calculating the entropy from Boltzmanns formula by counting mi-
crostates the following observation, first made by Gibbs, is crucial. Gibbs
pointed out that even in the classical limit the particles in the gas are really
identical, and when we calculate the entropy from Boltzmann’s formula (1.60)
we should divide the number of microstates W by IN! corresponding to the
number of permutations of the NV indistinguishable particles in the gas.

As mentioned, one of the big problems in physical chemistry before the
advent of quantum mechanics was the origin of the entropy constants. Without
them, one could not calculate absolute values of the entropy. They could be
obtained by measurements for different substances, but it was first with the
advent of quantum mechanics one were able to understand the physics behind
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them and actually calculate some of them. This was first done in 1912 by Sackur
and Tetrode using the new quantum physics still in its infancy. They found for
an ideal gas

(1.64)

where m is the mass of the particles, e = 2.718 ... and h is Planck’s constant.
We will derive this result in the next chapter.

For practical calculations of entropy, it is convenient to rewrite (?7?) slightly
in terms of a reference temperature T, and a reference pressure Py. It then
takes the form

S= Nk|}log % —log £ + C(To, Ro)] (1.65)

where now

3

[N

2mm ekTy)3
- (2) 2

For the krypton gas we considered we take Ty = 1 K and Py = 1 atm and obtain
C' = 5.38. This should be compared with the measured value which is

(1.66)

5
€ =17.35 — (5 log 119.9) = 5.36

in almost too good agreement with the measured value. Remember that the
ideal gas approximation has been used for krypton vapour just above the boiling
point.

This was a big triumph for modern physics, relating a fundamental quan-
tum constant having to do with light and energy levels in atoms to the ther-
modynamic properties of substances. From then on it was clear that statistical
mechanics must be based on quantum mechanics.

1.9 Free particles and multi-dimensional spheres

One of the simplest example of the practical use of the microcanonical ensemble
is again provided by the ideal gas. If it contains N free particles, it is described
by the Hamiltonian

H=S"2 (1.67)

The constant energy surface in phase space is therefore a multi-dimensional
cylinder with a spherical base of dimension n —1 = 3N — 1 and radius R =
v2mE. We will need the area S,,_1 and volume V,, of such a sphere in n
dimensions. They both follow from the integral

v, = / &z . (1.68)
z2<R?
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For dimensional reasons we must have V,, = C,,R™ where C,, is some constant
depending only on the dimension n. Since the differential volume element

dV,, = S,,_1dR = nC,, R 'dR

we also have S,,_1; = nC, R"~!. The main task is therefore to calculate C,,.
It can be obtained most directly from the product of Gaussian integrals

n +OO 2 2
H/ drje ™™ =2 = /an e
i=1Y "X

In the last integral we use our expression for dV,, and obtain
n o0 2
T = nCn/ dRR" 'e %
0

which is given by the gamma function. We then have for the constant

3
Cp = Ol (1.69)
)

and for the surface area of the n-dimensional sphere

27%
Spo1 = R"L (1.70)
(3 - !
As a check, it is seen to give the standard results S; = 2rR and Sy = 47 R?
using (3)! = /7. Furthermore, it gives Sy = 2 which is the surface of a 1-

dimensional sphere. i.e. the two endpoints of the straight line (—R/2, R/2),
while S35 = 272R3 is the 3-dimensional volume of the Universe in Einstein’s
cosmological model where it is closed with constant, positive curvature.

The volume in phase space inside the constant energy surface is now

N 3N
VT2 omp) ¥ (1.71)

(27T7L)3N (3N)!

and the density of states

o VN 2mm 2z 3N
Y= = omE)=z ! 1.72
9B = (@nhpN (3N _qy 2" (172)

where V = [ d3q is the physical volume of the gas. Since the particles in
the gas are indistinguishable, the number of microstates is W = Q/N!. When
calculating the entropy S = klog W, we use Stirling’s formula since N > 1 and

obtain
3
5 Vv mE 2
S=Nk{-+log| = —= . 1.73
{2 & N<37rNh2> } (1.73)
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Without the division by N! we would not have found the entropy to be extensive,
i.e. proportional with N. It should be clear that we would have obtained exactly
the same answer had we used the density of states (1.72) instead of the volume
(1.71) as long as N >> 1.

The remaining thermodynamic quantities now follow directly as before. Mak-
ing use of 1/T = (0S/0E)n vy we immediately obtain the internal energy
FE = %N kT. Using this result in the entropy expression (1.73) we get the
Sackur-Tetrode formula. The pressure follows from P/T = (05/90V)n, g which
gives the ideal gas law PV = NKT. The ideal gas chemical potential follows
from p = —TOS/ON as

1% mE 3/2
=—kTh|—|———s . 1.74
a " N(Sth2) (1.74)
S] S2
o

Figure 1.5: A system with entropy S2 that is free to interchange energy, particles or volume
with an ideal gas of entropy S;.

Equation (1.73) may be used to show that the Boltzmann formula (1.60)
is a valid definition of entropy for any system, and that the resulting pressure,
temperature and chemical potential for such a system agrees with those of an
ideal gas.

Assume that we use an ideal gas to probe the state of an arbitrary system
by bringing the gas and the system in contact, as shown in figure 1.5. The
system is described by the extensive quantities S, F1, N1, V7 and the ideal gas
by S3, Fo, No, V5, and each system has a number of available microstates Wy
and Ws. If the systems are not too strongly coupled we may write the total
number of microstates as the product W = W31 W5, which means that the total
entropy is additive:

Stot:kIHW1W2 :kan1+kan2 :Sl+52. (175)

It follows by the maximization of Si,; in equilibrium that any exchangable
quantity will adjust so as to give dSi,; = 0, or, if all extensive quantities are
exchangable

0 = dS;+dS;
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dE, + p1dVi  padNy

T Ty T
dEy  padVa  padNs
—= — . 1.76
Ty * Ty Ty ( )
Since the total energy, volume and particle number are conserved dFy = —dFEs,
dVh, = —dVs, and dN7; = —dN> and we may write
1 1 p1 P2 B M2
0 = — — — | dFE === )dV; — | = — = | dNy. (1L.77
<T1 TQ) v (Tl Tz) ! (Tl T S )
Since the differentials are independent
Ty =Ty ,p1 =ps and puy = o (1.78)

where T5, po and uo are given by the above ideal gas expressions. The above
derivation also shows that the basic relation equation (1.30) holds when the
entropy is defined by the Boltzmann formula, and that the intensive quantities
T, p, u are those that may be measured experimentally via an ideal gas.

Instead of a gas of free particles, we can also consider the system of free,
3-dimensional oscillators in the microcanonical ensemble. We can think of the
oscillators as the vibrating ions in a crystal lattice. The mathematics becomes
very similar as seen from the Hamiltonian

- 1
H=) ( p;l + —mw?q?) (1.79)

when we assume that all have the same frequency. The phase space volume )
is again a sphere but now with twice the dimension, n = 6/NV:

Q:

1 N <2mE)3N

@)V (3N)] (1.80)

mw

Since the oscillator are localized and therefore distinguishable, the number of
microstates is just W = 0 and the entropy becomes

S =3Nk(1+ log

) (1.81)

It is again extensive as it should be. The internal energy is now U = 3NkT as
follows directly from the Hamiltonian (1.79) and the equipartition theorem.



Chapter 2

Non-Interacting Particles

When the thermodynamics of simple systems is developed, one very often starts
with the ideal gas. The reasons for this are many. First of all the ideal gas is
a quite good approximation to real gases with interactions as long as one stays
away from questions having to do with the liquid phase and phase transitions.
Secondly, the mathematics is transparent and one can introduce in a simple way
concepts and methods which will be useful when one later starts to treat more
realistic systems.

Free spin-1/2 magnetic moments in an external field constitutes an even
simpler system than the ideal gas. Although being an idealized system, it is also
physically important in many instances. This example will introduce the basic
properties of the microcanonical and canonical ensembles. After developing
Maxwell-Boltzmann statistics for independent particles, we will treat the ideal
gas and derive its equation of state and the Sackur-Tetrode result for the entropy.
When the particles are quantum mechanically indistinguishable, the counting of
states will be different and we arrive at Bose-Einstein and Fermi-Dirac statistics.

2.1 Spin—% particles in a magnetic field

We will here consider N particles in an external magnetic field B which is taken
along the z-axis. The particles are assumed to be localized, i.e. cannot move.
One can for instance consider them to be sitting at the lattice sites of a regular
crystal as a simple model of a magnetic material. They have all the same spin
S = % Each of them will have an energy in the field given by

e=-m-B=-m,B (2.1)

where m = 2uS is the magnetic moment and p is a Bohr magneton. Since the
quantum mechanical spin along the z-axis can only take the values S, = :I:%,
we see that a particle can only have the energy e = —pB if its spin points up
along the B-field, and €| = 4+uB if it points down.

25
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The quantum states of the whole system with for example N = 5 spins are
given by corresponding spin sequences like 1)/ 1. If we denote the number of
up-spins by ny and the number of down-spins by n in such a state, the energy
of the system will be

E = —p(ny —n,)B (22)
with total number of particles or spins
N=n4+n. (2.3)
The difference
M = p(ny —ny) (24)

is the total magnetic moment of the system.

Now let us assume first that the system is isolated so that its total energy
is constant. Obviously, there are many states with the same energy, i.e. with
the same numbers n4 and ny. As an example, consider again N = 5 spins with
ny = 3 and n; = 2. Then all the possible states shown in Fig.2.1 They are said

I AR
AR R R

| 4
ERAZEENEERE Y
SRR TR AR & &
EAZ X BN R

Figure 2.1: Ensemble of 5 spins with magnetization M/u = +1.

to form an ensemble of states. Since it consists of states with given energy, it
is called a microcanonical ensemble. In this example it contains 10 states. In
general the number will be

N!
Ny ny:

Notice that the numbers n4 and n; are fixed by the energy (2.2) and total
number of particles (2.3).
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In the microcanonical ensemble each state is assumed to occur with the
same probability in the ensemble. This is a fundamental assumption in statis-
tical mechanics and cannot be proven in general. But it can be made plausible
by many different arguments. For the spin system we consider, it follows almost
from symmetry alone since there is nothing which a priori makes any state in
the ensemble more probable than others. The number of states (2.5) is then
directly proportional to the probability of finding the system in the thermody-
namic state specified by F and N and represented by the different quantum
states in the ensemble.

In order to find the most probable state, we must take the derivative of (2.5). Since the
number of particles is assumed to be large, we can make use of Stirling’s formula logn! ~
nlogn — n. It follows directly from

n n
logn! = Zlog/m/ dklog k
k=1 1

n
klogk\?f/ dk =nlogn —n+1
1

A more accurate result valid for smaller values of n can be obtained in the saddle point
approximation for the integral
b
I:/ dre (=)
a

If the function f(z) has a pronounced minimum in the interval (a,b) at the point zo, the
dominant part to the integral will come from the region around the minimum because the
integrand is exponentially small outside it. Expanding the function to second order

§(&) = Flwo) + £ (@) + 3 (w0) (@ = 20)* + ..

with f’(zo) = 0, we obtain for the integral

I =~ e—f(Zo)/ duee— 37" (@o)(z—20)?
—f(x 2
= e f(zo0) o) (2.6)

where we have expanded the integration interval from (a,b) to (—oo, +00).
Stirling’s formula now follows from writing

(e o) (o)
n! :/ dea"e™ " = / dz e (@—nloge)
0 0

The function f(z) = x —nlog z has a minimum for z = zg = n where f”(z¢) = 1/n. We then
get from the saddle point approximation

n! e (P18 ™) /oy = \/2mn ne ™ . (2.7)

Keeping the next higher term in the approximation, one finds
1
nlx~V2rnn"e 14+ —).
12n

To the same order in 1/n it can be written as

1
nl x4 /2r(n+ 6) n"e " (2.8)
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which is the Mermin formula for n!. It is very accurate down to n = 1 and even gives
0!'=1.023...

Knowing the number of states in the ensemble, we can from Boltzmann’s
formula (1.60) find the entropy of the system. Using Stirling’s approximation
for n!, it gives

S =k(NlogN —nslogns —nylogny) . (2.9)

It is a function of the system energy E via the constraints (2.2) and (2.3). The
distribution of particles is now given by (1.55) or

oS ) 1
— == (2.10)
<8E N T
when the system is at thermodynamic equilibrium with temperature 7. Taking
the derivative
oS a8 ([ Ony oS (0n,
il === (=% = = 2.11
<8E>N» 6n¢(aE)A/+6n¢(aE)N’ S

using (2.2) and rearranging the result, we obtain

n B
LI s (2.12)
ny
We see that the lower the temperature of the system, the more particles have
spin up, i.e. are in the lowest one-particle energy state. The total energy of

the system is £ = —M B where the magnetization now follows from the above
result as
uB
M = Nptanh — . 2.13
ptanh 22 (2.13)

When the temperature 7" — 0, all the spins point up along the external field
and the magnetization M = Npu. At very high temperatures it goes to zero
with just as many spins pointing up as down.

The magnetization also varies with the external field. This dependence is
measured by the susceptibility defined by

X = <%A;>T (2.14)

in analogy with the compressibility (1.24) in a gas. From (2.13) we find

- Np? 1
XZ 0T cosh? (uB/KT)

(2.15)

and it is seen to diverge when the temperature goes to zero.
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Instead of using the microcanonical ensemble where the energy is fixed and
the temperature is a derived property, we can use the canonical ensemble. Then
the system is at a fixed temperature and the energy will be a derived quantity.
In fact, we will find an average value for the energy and the measured energy
will fluctuate around this mean. Now many more states will be included in the
ensemble since they no longer need to have a given energy. They will no longer
have the same probability, but will have a distribution in energy as we will now
derive.

Again we start with Boltzmann’s relation for the entropy, S = klog W, with
W from (2.5). But now n4 and n; are not known, but have to be determined
from the requirement that the system is in thermal equilibrium at temperature
T. To achieve this in practice, our system of spins must be in thermal contact
with a large, surrounding system or heat bath at the same temperature. By the
exchange of energy, these two systems will then be in thermal equilibrium.

Let now the spin system receive an energy AU = 2uB which turns a spin
from being up to being down, i.e. n4y — ny —1 and ny — ny + 1. The
corresponding change in entropy is then

N! N!
AS = Fk|log — log
(ny — ! (ny +1)! nplng!
ny
= kl
Ogn¢+1

so that
AS k ny

S0 Py 2.16
AE ~ 2uB (2.16)

where we have written n) +1 = n| to a very good approximation when the
number of particles is macroscopic. Since the spin system is in thermal equi-
librium, this ratio is just the inverse temperature and we are back to the result
(2.12) from the microcanonical ensemble.

We can write the above result for the distribution of particles at thermody-
namic equilibrium as

(2.17)

where 8 = 1/KT and the sum over energy levels

Zy = Y el (2.18)
o=",1
_ GBuB | —BuB _ o oy PP
= e +e = 2cosh — 2.19
is called the one-particle partition function. It contains essentially all the ther-
modynamic information about the system. The average energy of one particle
is

1 B
() = A ;% ere P =B tanh'Z—T (2.20)
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so that the total energy U = N (¢) is the same as before. But now there will be
fluctuations around this average energy which was fixed at the value U = F in
the microcanonical ensemble.

2.2 Maxwell-Boltzmann statistics

We will first consider a system of free particles which can be taken to be atoms
or molecules localized at the sites of a lattice as a simple model of a crystal.
They are all assumed to be identical, but since they are localized, they can
be distinguished from each other. At the end of this section we will drop this
assumption and consider the same particles in a gas where they can move freely
around. They will then be indistinguishable. But they will in both cases be
independent of each other since there will be no interactions between them.
These will be included in the following chapter.

The possible energy levels ¢; for each atom or particle in the system are given
by the eigenvalues of some quantum mechanical Hamiltonian operator. Let us
denote the degeneracy of the level ¢; by g;. If the number of particles in this
level is n;, the total number of particles in the system is

N=>n (2.21)

which is here assumed to be held constant. We can pick out such a set {n;} of
occupation numbers in

c=nN']] i' (2.22)

different ways when the particles are distinguishable. But the n; particles at
level ¢; can be distributed in g¢;"* different ways over the different quantum
states with that energy. The total number of microstates for a given set {n;} of
occupation numbers is then

(2.23)

The equilibrium distribution of particles is the one which makes this number
maximal for a given total energy E = ). n;¢; of the system.

It is simplest to use the canonical ensemble in order to derive the equilibrium
distribution of particles. Let the system be in thermal contact with a heat bath
so that the two systems can exchange energy. If some energy AU = ¢; — ¢; is
then transferred to the particles, the occupation numbers will change in (2.23),
n; — n; +1 and n; — n; — 1, and there will be a corresponding change in the
entropy,

n+1 ?’L]'—l n; nj
T g g"t g
AS = k|l L J — log -2
ginj
= klog 2.24
gj(ni + 1) ( )
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Again we use that at equilibrium AU = T'AS which gives

gin; _ B(ei—¢j)
—— =c¢ i, 2.25
gj(ni + 1) ( )

Similar constraints must be satisfied by other pairs of occupation numbers also.
Taking n; + 1 = n;, we see immediately that they are all satisfied together with
(2.21) if

n; = —g;e P (2.26)

where

Zl = Zgl e_ﬁgi (227)

%

is the one-particle partition function. It will again give all the thermodynamics.
This method has two attractive features. First of all we do not need Stirling’s
formula for n!. Secondly, we have to assume that only one occupation number
satisfies n; > 1, all the other will be connected to it and can have any value as
n; did above.
The result (2.26) is the Boltzmann distribution for the occupation numbers.
It says that the probability to find a particle in the gas at temperature T with
energy €; is
mi_ 1 e

bi= = 7"9i€

-N-7 (2.28)

with ). p; = 1 according to (2.21). The average one-particle energy is therefore

(€) = Zéi pi = Zil Z eigi e e (2.29)

Other averages over this distribution are calculated in the same way. In this
particular case we do not have to perform a new summation since the result is
seen to be simply given by

o
(e) = ~ 95 log Z, (2.30)

Similar simplifications can very often be done when calculating such averages.
Writing the total internal energy of the system U = N(e) as U = ), ns€;
and taking the differential, we have

dU = Z €;dn; + Z n;de; . (2.31)

This is the statistical mechanical version of the first law of thermodynamics,
(1.8). In the first term the occupation numbers n; change and must be identified
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with the change in entropy T'dS. The second term is therefore the mechanical
work PdV.

The entropy of the gas can now be obtained from (2.23). Using Stirling’s
formula, we obtain

S
z = 1ogW:NlogN—N+Z(niloggi—nilogni—i—ni)

n; N
Nlog N — n;log — = Nlog N — n; [ log — — Be;
g Z 8y g Z (g21 ﬂ)

U U
NlogZ; + — =log ZN + — 2.32
og 1+kT og 1+kT (2.32)

Exactly this combination of entropy and internal energy occurs in the Helmholtz
free energy (?7?). Defining it now by

F = —kTlogZY (2.33)

we see that we indeed have F =U — T'S.

We will later see that the free energy is in general related to the full partition
function Z of the gas as F' = —kT log Z. For non-interacting and distinguishable
particles we therefore have

Z=e P =2V, (2.34)

This relation provides a bridge between the physics at the microscopic, atomic
level and the macroscopic, thermodynamic level.

As a simple example, take the Einstein model for the vibrations of the N ions in a crystal
lattice. They are then described by N free and distinguishable harmonic oscillators, all with
the same frequency w. The energy level of each harmonic oscillator is €, = hw(n + %) and
the one-particle partition function becomes

> 67%55“’ 1
= Zoe—ﬂfn T 1_ePhw  2simh (Bhw/2) (2:35)
n=
The free energy of one such oscillator is therefore
F= %hw + kT log (1 — e~ Phw) (2.36)
while the internal energy is
(e) = %hw + eﬁh‘*’%l (2.37)

which follows directly from (2.30). The same result also applies to one mode of the electro-
magnetic field in blackbody radiation.

In the one-particle partition function (2.27) we sum over the different energy
levels of the particle, each with degeneracy g;. But this is equivalent to

Zy =Y e P (2.38)
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where now the sum extends over all the one-particle quantum states, including
the degenerate ones. The average number of particles in the quantum state s is
then

N

= e P 2.39

ns

which would follow from maximizing the number of microstates

w=nN!'T] n1: : (2.40)
The entropy S = klog W is then simply
S = k(NlogN — Zns logns)
= —Nk Zps log ps (2.41)

where now ps = ng/N is the probability to find the particle in the quantum
state s. This formula for the entropy which is also due to Boltzmann, turns out
to be quite general and useful. We will meet it again when we discuss entropy
from the point of view of information theory.

Until now we have assumed the particles to be identical, but distinguishable.
If they are no more localized, we have to give up this assumption. Permuting
the N particles among themselves cannot make any observable difference and
the number W of quantum states must be reduced by the factor N!. The only
place where this factor shows up in the previous results, is in the expression
(2.32) for the entropy which now becomes instead

ZN
S:klogﬁ+%. (2.42)

Again we can write the Helmholtz free energy of the whole system as F =
—kT log Z where now the full partition function is

4

Z=NT

(2.43)

instead of (2.34). The entropy (2.32) will be reduced by the logarithm of this
permutation factor. It can be written as

S = _kzgi(fi log fi — fi) (2.44)

where f; = n;/g; is the filling fraction of energy level ¢;. These numbers are
very small in classical systems so that the entropy will be positive.
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2.3 Ideal gas

A free particle of mass m has the Hamiltonian H = p?/2m. The quantized
energy levels e, are the eigenvalues of the Schrodinger equation

Hipn(X) = eqthn(x) . (2.45)

In a cubic box with sides of length L we can require that the wave functions
must vanish on the walls z = 0,y 4+ 0 and z = 0. Then they they have the form

Yn(x) = sin (kyx) sin (kyy) sin (k. z) .

Since we also have 1, (x + Le;) = 0 where e; are the unit vectors in the three
directions, we find the wave numbers k; = n;w/L where the quantum numbers

n; = 1,2,3,.... This gives the energy eigenvalues
B2
=5 3 (n2 +n. +n?). (2.46)

All the thermodynamic properties of the ideal gas follow now from the one-
particle partition function

Zy =Y e P, (2.47)

n

This sum can only be performed numerically. But when the volume V = L3 in
which the particle moves, becomes very large, the spacing between the different
terms in the sum becomes so small that we can replace it with an integral. Since
the spacings between the allowed quantum numbers are An; = 1, we can write

e 27‘,2
Zy = Z AngAnyAn, e_i?nﬂ (ni+ny+n)
{ni=1}
1 3 _ pr2x2 n2 1 [e's] _ pn2n2 2 3
= g d’ne 2mrL2 = g dng e zm1Z e
3
\%4 2mm\ 2 \%4
= (27Th)3 < 5) = F (2.48)
Here the box volume V = L3 and
1
27r5n2) 2 h
A= = 2.49
( m VarmhT (2.49)

is called the thermal wavelength of the particle. We will discuss its significance
at the end of this section.
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Instead of the above box boundary conditions, we could have used periodic bound-
ary conditions v¥p(x + Le;) = tp(x) in open space. The wave functions are then plane
wave, momentum eigenstates of the form ¥p(x) = exp (%p -x) with momentum eigenvalues
p= %(nmez +nyey+n.e;). With the energies en = % (2%)2 n? in the partition function
we see that we get the same result as above since the quantum numbers n; now take the values
n; = 0,£1,£2,.... Periodic boundary conditions are very often used since the eigenstates

can then be labeled by the momentum eigenvalues p.

Irrespective of the boundary conditions we use, we see that we can always
write the partition function as

& 2
Zy = V/ P _o-68 (2.50)

The continuous energy eigenvalues are now € = p2/2m. Expressing the momen-
tum by the energy, p = v/2me, we can rewrite the above integral as

3
V 2m 2 > 1 _ B¢
Zl = m <h2> /0 dee2e p . (251)

The integration measure

3
1 2m\ 2 1
is called the density of states for one particle. Its name is derived from the
property that there is exactly one quantum state in the phase space volume
(27h)3 = h? as follows from (2.50). In 3-dimensional space it varies as the
square root of the energy. A similar calculation shows that in two dimensions
it is independent of the energy for non-relativistic particles. This has many
important, physical consequences.

The thermodynamic properties of a gas of such particles can now be derived
from the free energy

z{
Most easily follows the pressure
OF NkT
P=—-(— = — 2.53
(57 ), = (259

which is just the equation of state for the ideal gas. Similarly, we obtain the
chemical potential

OF Al PA3
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and the internal energy from (2.39),

0 3
=——logZ = -NKT . 2.
U 95 og 5 k (2.55)
The specific heat is therefore
3
Cy = §Nk . (2.56)
Finally, we find for the entropy
oF zy U
S=—(=— =klog =L + — 2.57
(8T>V’N BN T (257)

which is just equation (2.42). Substituting (2.48), we obtain
5
S =Nk [2 - logpAﬂ (2.58)

where p = N/V is the density of particles. Since p = P/kT, we recover exactly
the Sackur-Tetrode equation (1.65) for the ideal gas entropy. It is also seen
that there is no Gibb’s paradox for the mixing of identical gases. Without the
permutation factor N! divided out of the partition function to account for the
indistinguishability of the particles, we would have ended up with a different
result for the entropy which would not agree with experiments.

The specific heat (2.56) is constant and therefore does not go to zero as the
temperature goes to zero. As discussed in connection with the so-called Third
Law of thermodynamics in the previous chapter, this property is required of
experimental heat capacities in order to have well-defined entropies in this limit.
So something is wrong with our results for the ideal gas at low temperatures.
One might first think that it is related to the approximation we did in arriving
at the partition function (2.48) where we replaced the sum with an integral.
But this is not the cause of the difficulties.

From quantum mechanics we know that particles at the atomic level have
wave properties which make them very different from classical particles. Their
de Broglie wavelength is given by the momentum as A = h/p. From (2.55) we
find the average momentum (p?) = 2m(e) = 3mkT. We see that A\ depends
on the temperature and equals the quantity A in (2.49) except for a numerical
factor of order one. It is therefore the thermal wavelength. Putting in numbers,
we find that

A= (2.59)

when M is the molar mass of the particle. In order for the classical picture of
particles to be valid, the thermal wavelength should be smaller than the typical
distance ¢ = (V/N)3 between the particles. In terms of the particle density
p = N/V, we get the criterium

pA? << 1 (2.60)
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for Maxwell-Boltzmann statistics to be applicable. When this is not the case,
the corresponding wave functions will overlap and we can no longer separate
the individual particles. At low enough temperatures this always happens. The
smaller the mass of the particles is, the easier it will be to see the quantum
effects. For He* at room temperature, we find A ~ 14 and is therefore smaller
than the average distance between atoms at normal densities. But when T =
1 K the thermal wavelength will be more than ten times larger and quantum
effects will start to dominate. On the other hand, electrons in metals have much
smaller masses and we conclude from (2.59) that even at room temperatures they
must be described by quantum statistics.

2.4 Fermi-Dirac statistics

In the counting of available microstates that led to Maxwell-Boltzmann statis-
tics we assumed that the particles were identical but could be distinguished in
principle. Even if they are very small, we could for example assume that they
could be painted in different colors or assigned numbered labels. This classical
assumption was then tried compensated for by dividing the obtained number
of microstates by the number of particle permutations. The net result is still
not quantum statistics, but classical Maxwell-Boltzmann statistics of identical
particles. In quantum statistics one can not distinguish identical particles and
the counting of microstates must be done differently.

When the particles in the system have half-integer spin, they are fermions.
As such, they will obey the Pauli principle saying that not more than one particle
can be in each quantum state. We have to incorporate this quantum requirement
in the counting of available microstates for system of identical fermions.

The particles will again be assumed to have no mutual interactions. Each
of them can be in a quantized energy level €; with degeneracy g; as before. For
the first particle in this level there are therefore g; available states. The next
particle in the same level can then be in one of the g; — 1 unoccupied states
so not to violate the Pauli principle. Since the particles are indistinguishable,
there are therefore g;(g; —1)/2 available states for two fermions. For n; fermions
this number will be g;!/n;! (g; — n;)!. A typical state is shown in Fig. 2.2. The

o] |ee[e] [o] | [e]e] [o]

Figure 2.2: Energy level with degeneracy g; = 14 occupied by n; = 8 fermions.

total number of available states for fermions in all energy levels is then
gi!
W = | | —_— . 2.61
p ni! (gi —n;)! ( )

We see that this result is much different from the classical result in (2.23), even
when dividing out the factor N!. The entropy is again given by Boltzmann’s
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formula S = klog W.

The equilibrium distribution n; of particles over the different energy levels
is now most easily found in the canonical ensemble where the fermion system
is in thermal and material contact with a heat bath at fixed temperature T’
and chemical potential p containing the same kind of particles. If a particle of
energy ¢; is transferred from the heat bath to the system, only the occupation
number n; — n; + 1 is changed. The corresponding change in entropy is then
from (2.61) found to be

gi! gi!
AS = kl — klog ————
gi — Ny
= kl

In the denominator we can drop replace ny + 1 by n; when we assume that the
number of particles in each energy level is very large. This entropy change is
now related to the energy change AU = ¢; and number change AN = 1 by the
First Law which gives TAS = AU — uAN = ¢; — pu. Substituting for AS we
obtain

9i 1 = Blei—n) (2,62)
n;

which gives the equilibrium number of particles in energy level ¢; as

9i

= ST (2.63)

U

This is the Fermi-Dirac distribution. The chemical potential is determined from
the constraint

1
N:Znizzm (2.64)

where N is the total number of particles in the systems. Similarly, one obtains
the internal energy of the system of particles from

U:Zenzzm (2.65)

i

In a later chapter we will come back to discuss in more detail the new physics
which follows.

2.5 Bose-Einstein statistics

When bosons occupy an energy level €; consisting of g; degenerate one-particle
quantum states, there can be an arbitrary number of particles in each state as
shown in Fig.2.3. Here the different states are separated by vertical walls. Of
the g; + 1 such walls only g; — 1 gan be used to generate different separations of
the identical bosons since two of the walls always have to be fixed at the ends.
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Figure 2.3: Energy level with degeneracy g; = 11 occupied by n; = 10 bosons.

The number of such separations is therefore given by the different groupings of
n; bosons and g; — 1 walls. In this way we obtain (n; + ¢g; — 1)!/n;! (g; — 1)!
microstates for the n; bosons in this level. The total number of states for the
whole system is then

nz +gz - 1
W= H g 1)1 (2.66)
i K3

which can be used to find the entropy.

We can now proceed as in the previous derivations of Fermi-Dirac statistics
to derive the equilibrium distribution of bosons. The system is kept in contact
with a heat bath at temperature 7" and chemical potential p. Taking one particle
with energy ¢; from the bath to the system of bosons induces now the entropy
change

gi + 1
n;+1 ’

AS =kl

(2.67)

Again using the First Law TAS = AU — pAN = ¢; — 1 and assuming n; > 1,
we obtain at once the Bose-Einstein distribution
9i

B 1 (2.68)

n; =
The chemical potential and internal energy can then be obtained as for fermions.
We will later use this result to derive the thermodynamics of photons, phonons
and other bosonic systems.
All the thermodynamics of these quantum systems is seen to be determined
by the filling fractions

ni_ 1

fi= G T et

(2.69)

The entropy follows from Boltzmann’s formula applied to the equilibrium values
of (2.61) for fermions and (2.66) for bosons. In both cases one finds that the
result takes essentially the same form

S=—k Zgi[fi log fi + (1 F fi)log (1 F fi)] (2.70)

where the upper signs hold for fermions and the lower ones for bosons.

In the classical limit the particles are spread out over very many energy levels
so that it is characterized by n; < g¢;. Since the number (2.61) of microstates
for fermions can be written as

W:Hnii![gxgif1><gﬁz>...<gi*m+1>1,
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we see that it gives the Maxwell-Boltzmann result

W:Hiii!

%

in this classical limit. Similarly, the number of microstates for bosons (2.66) can
be written as

W:H%[(gi—kni—1)(gi+ni—2)...(gi+1)gi}

which also gives the same result in the classical limit. We see that the factor V!
which we previously had to remove by fiat in deriving the Maxwell-Boltzmann
distribution, is now automatically absent. The quantum entropy (2.70) also
becomes equal to the classical result (2.44).

When the gas becomes classical, the chemical potential is large and negative.
Both of the quantum distributions (2.69) then approach the classical result

fi — 6’8“ 6—561' .

Comparing this expression with (2.28), we see that we have the relation e®# =
N/Zy or

Al
= —kTlog — 2.71
I 0g 37 (2.71)

between the one-particle partition function and the chemical potential. This
result was previously obtained for the ideal gas in (2.54). It is seen to be
generally valid for non-interacting systems in the classical limit.



Chapter 3

Statistical Ensembles

We saw in the preceding chapter that a system of particles could be in a number
of different of microstates or quantum states. When the system is in thermody-
namic equilibrium, we envisage that it passes with time through all these states.
A thermodynamic average is then in some sense an average over all these states
it will eventually be in. But instead of taking this system average over time,
we can equivalently average over an imagined ensemble of identical copies of
the system where the different members of the ensemble are to be found in
the available microstates of the system. This method based on ensembles was
invented by Gibbs and is far superior.

For a closed system with given energy, it was necessary to assume that
the probability to find the system in any of the available microstates was the
same. Only this a priori assumption made it possible to extract thermodynamic
properties which agree with experiments. Obviously, it would be of interest
to derive this assumption from more fundamental principles. In the following
section we will see that it may be justified from the laws of classical mechanics
for classical systems and from quantum mechanics for quantum systems.

3.1 Ensembles in phase space
We will now consider more general and physically more realistic systems where

the particles have mutual interactions. The simplest Hamiltonian of such a
system is

LD
i

where f = 3N for N identical particles in 3-dimensional space. They have
position coordinates ¢; and momenta p;. We can easily imagine more complex
systems where for instance the interaction energy also depends on the momenta,
where the masses are position-dependent or the motion is relativistic. This

41
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will not matter for what we will derive in the following and we will just write
H = H(q,p) where g stands for the set of coordinates {¢;} and p the set of
momenta {p;}.

The classical dynamics of the system is determined by Hamilton’s equations

. OH . oH

- R 2
qi apiv Di 9q; (3 )

which is a generalization of Newton’s laws for classical mechanics. If we could
solve all these coupled, first order differential equations, we could write the
solutions on the general form

¢ = ¢i(t, qo,po), pi = pi(t, o, Do) (3.3)

where (qo,po) specify the initial set of values for these variables. It gives the
classical state of the system as it changes with time and can be represented by
a moving point in a 2f-dimensional phase space with coordinates (g, p).

As an example, consider the 1-dimensional harmonic oscillator with with mass m
and frequency w so that the Hamiltonian is

2

p 1 2 2
H="—+= . 4
2m + g d (3-4)
The equations of motion (3.2) now become ¢ = p/m and p = —mw?q of which the first

is just the ordinary relation between momentum and velocity. Using it in the second,
we obtain the standard oscillator equation § + w?q = 0. Its general solution can be
written as

q Acos (wt + @)
p = —Amwsin(wt+ ¢)

where the integration constants A and ¢ can be expressed in terms of the position go

LN
N |

Figure 3.1: Particle in 1-dimensional harmonic oscillator potential moves in phase space on
an ellipse where the energy is constant.

and momentum pg at time ¢ = 0. We see that this oscillatory motion in 1-dimensional
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space corresponds to a cyclic motion on the ellipse

2
in the 2-dimensional phase space as shown in Fig.3.1. From (3.4) we find that A is
directly given in terms of the oscillator energy, £ = %mw2A2.

Exact solutions of Hamilton’s equations can only be obtained for few, special
systems. In most cases one has to use numerical methods to investigate the
motion in phase space. Until a few years ago most physicists believed that
this could be done to any desired accuracy by just letting bigger and faster
computers work for longer periods. But these investigations have revealed that
most realistic systems of interacting particles which have non-linear equations
of motion, are basically chaotic. This means that the motion in phase space
is extremely sensitive to the initial conditions (qo,po) in the general solutions
(3.3). The smallest change in any of these variables can result in a completely
different trajectory after a finite time. And since numerical methods today make
use of computers which all have finite word lengths, there will always be some
inaccuracy in the initial conditions and we cannot in practice predict the motion
of the system for all later times. This insight is still new and one does still not
really understand what implications it has for classical, statistical mechanics.

Even if we cannot calculate the trajectory in phase space, we can still discuss
it. For a system with very many particles in thermodynamic equilibrium, we
would not be interested in the details of the motion. Only average properties
over long time intervals will be related to the thermodynamic state variables.
Such a time average of the function A = A(q, p) is

T

A= lim 1 / dt A(q(t),p(t)) (3.5)
T—oo T 0

where one includes states of the system corresponding to all the different regions

in phase space it visits. The problem is to actually calculate this average since

it requires knowledge of the system trajectory for all times. And that we don’t

have, especially not if the motion is chaotic.

Gibbs proposed instead to use an average over a huge ensemble of the same
systems, but having different initial conditions so that they to any time fills
the available phase space as a liquid fills a container. If we denote the den-
sity in phase space of these system points in the ensemble by p = p(q,p), the
number of systems in a volume element AgAp near the phase space point (g, p)
is p(q,p) AqAp. The greater the density is in a certain region of phase space,
the greater the probability is to find the system under consideration with the
corresponding values for the dynamical variables.

As we saw in the previous chapter, it is necessary to invoke quantum mechan-
ics in the counting of microstates. The reason is that due to Heisenberg’s uncer-
tainty principle, it is impossible to specify simultaneously both the position and
momentum of a particle to an accuracy smaller than Planck’s constant. From
the result (2.50) for the density of states of one particle in a large, 3-dimensional
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box, we know that the volume in phase space corresponding to one microstate
is h3 = (27h)3. In our multi-dimensional phase space with dimension 2f it is
therefore natural to introduce the dimensionless differential volume element

B dfqdfp
~ (2mwh)f

already here in the connection with classical statistical mechanics. This vol-
ume element will arise automatically when we later derive quantum statistical
mechanics of many-particle systems.

It is now convenient to choose the normalization of phase space density
p(gq,p) such that

(3.6)

/ dwp(q,p) = 1. (3.7)

Then the ensemble average of the same quantity A(g, p) we considered above, is

(4) = /dw p(q,p)A(q,p) - (3.8)

Instead of finding the average from the full trajectory of one system as the
solution of an enormous set of coupled differential equations, we now only have
to find the function p(g,p) and obtain the average by a multiple integration.

Actual measurements are obviously given by the time average (3.5). It is
not at all obvious that it equal to the ensemble average (3.8). The ergodic
hypothesis says that they are the same. It can only be proven for a few special
systems. A general proof will probably involve a better understanding than we
have today of chaos in Hamiltonian systems.

3.2 Liouville’s theorem

The density p in phase space is governed by Hamilton’s equations for each
point in this abstract liquid. Since systems cannot spontaneously be created or
destroyed, the number of points in a given volume can only change by currents
flowing in and out. As in ordinary hydrodynamics or electrodynamics, this gives
rise to the equation of continuity

Ip

5 PV I=0 (3.9)

for the most general case when p varies explicitly with time. The current of sys-
tem points is J = pV where the velocity vector V = (¢;, p;) has 2f components.
Similarly, the nabla operator in phase space is V = (9/9¢;, 0/0p;). It gives the
current divergence

f
_ dp . Op .
v ;(%ﬂﬁapipl)
Z Op OH OH 0Op
dq; Op;  0q; Op;

i
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when we use Hamilton’s equations (3.2). Note that 9¢;/0q; = (d/dt)dq;/0q; =
dd;;/dt = 0, and, likewise, Op;/Jq;. The special combination of partial deriva-
tives in equation (3.10) is called the Poisson bracket in classical mechanics. For
two general variables A = A(q,p) and B = B(q, p) it is denoted by the symbol

0A 0B 0BOJA
t4,B} = Z: (3% opi 5%@%) ' (310)

It plays the same role in classical mechanics as the commutator does in quantum
mechanics. The fundamental Poisson brackets are {¢;,q;} = 0, {qi,p;} = 6;;
and {p;, p;} = 0. Hamilton’s equations can then be written as ¢, = {¢;, H} and
pi = {pi, H}.

We can now write the continuity equation (3.9) as

Ip
ot
In order to see the physical content of this expression, we calculate the change

in the density near a system point as it moves with the phase space liquid. It
is given by the total derivative

+{p,H}=0. (3.11)

f
do _ 00 N~(oo,  on
dat 3t+;<a%‘qz+apipz

_ o _op

= 5 TV V)p= o +{p H} (3.12)

where the first term gives the change in density at a fixed point in phase space
while the second term gives the change due to the flow of the liquid. Comparing

Figure 3.2: The size of a volume of particles moving in phase space is constant but changes
in shape.

this with (3.11), we see that the derivative is zero,

do _

5 =0 (3.13)
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and the local density remains constant as seen by an observer moving with a
system point. This is Liouville’s theorem. If we follow an initial volume element
in phase space defined by the system particles within it, it will remain constant
but in general change its form as shown in Fig.3.2. Since the motion is most
probably chaotic, its very difficult to picture of how this theorem is actually
satisfied at all times. However, if p is initially constant throughout phase space,
it will remain so in time. This is equivalent to saying that an initial phase-space
state, where all microstates are equally probable, will stay that way over the
course of time. This is nothing else than the previously assumed postulate of
a priori probabilities, i.e. any microstate has the same probability. Remember
that a given system needs to ergodic in order to be represented by an ensemble
of system. Ergodicity means that the system will eventually visit all of the
phase space that is covered by the ensemble, and for ergodic systems Liouvilles
theorem implies that every microstate is equally likely to be visited with time.

For a system in equilibrium all averages are constant in time. They must
therefore have an ensemble density which is independent of time, i.e. dp/dt = 0.
From (3.11) then follows that it must satisfy the condition

{p.H}=0. (3.14)

Writing out the Poisson bracket, we see that this is in general a very complex
differential equation which has to be satisfied by the ensemble density. It has
many different solutions of which we know very little.

The obviously simplest solution is just p = const and the corresponding en-
semble is called the microcanonical ensemble. It is of fundamental importance
in statistical mechanics and we will investigate it in the following section. Al-
most just as easily one sees that (3.14) has solutions of the form p = p(H).
If there are additional classical constants of motion C = C(g,p) defined by
dC/dt = {C, H} = 0, we can also have a density distribution p = p(H, C') which
satisfy (3.14). The corresponding system of points in phase space is then called
the canonical ensemble. It is used in most practical calculations in statistical
mechanics.

For both the microcanonical and canonical ensemble the density distribu-
tions are constant in time. On a truly microscopic level this cannot be the case
since then we will see the individual system points and their chaotic motion. It
is only when we consider the motion in phase space at a slightly larger scale
when this continuum description holds and the density appears to be smooth
and constant in time. This coarse-grained scale is necessary for the statistical
description to be valid and is set by quantum mechanics via Planck’s constant.
In terms of classical mechanics we can say that the chaotic motion of the in-
dividual phase space points have effectively stirred the liquid so much that it
assumes a stationary and smooth density.

These two general solutions for the ensemble density, seem almost trivial
and one is inclined to think that they have very little physical content. But we
will see that these are the density distributions Nature actually makes use of.
It is surprising that we can describe and understand these extremely complex
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interacting many-particle systems with the absolutely simplest solutions of the
differential equation (3.14). The physics is so complex that it gets simple.

3.3 Microcanonical ensembles

In the microcanonical ensemble the probability density is independent of (g, p).
The system points are therefore uniformly distributed over the available phase
space. If ergodicity holds a and we follow a particular point in the system
as it moves with time, it will eventually be in any region of phase space with
equal probability. This is again the previously assumed postulate of a priori
probabilities, i.e. any microstate has the same probability.

Let us now apply this ensemble to a closed system with given energy F,
volume V' and particle number N. Since the system is classical, it will move
in phase space on the (2f — 1)-dimensional hypersurface H(q,p) = E. The
probability to find it at any point on this surface is the same and can therefore
be written as

pla0) = 5 6(E ~ H(g,p) (315)

where 3 is called the density of states for the system. In some sense it is a
measure for the total area of the hypersurface and is given by the normalization
(3.7) as

Y= /dw 0(E — H(q,p)) - (3.16)

Here dw is the phase space volume element (3.6). We mentioned in that con-
nection that in order to measure the phase space density correctly, we had to
invoke quantum mechanics. But then ¢ and p cannot be both specified simul-
taneously, and we must instead imagine that the system points in the ensemble
move within a thin shell of finite thickness A. The probability density will then
be

[ Yr HE<H<E+A
P= o otherwise

where now I' = [ dw is the volume of the shell.

We will see that these two densities give the same thermodynamic results for
systems with very large number of particles. Then the dimension of phase space
is so large that if we we add in one extra dimension normal to the hypersurface,
the extra number of states we include will be negligible compared to those in
the surface. In fact, we can just as well include all the states in the volume of
phase space Q(F) with energies less than E. This volume naturally arises from
the density of states (3.16) which can be written

yo a%/dw@(E—H(q,p))

0
OE

(3.17)
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when we make use of the identity d(z) = 6 (). We can therefore write the
volume as = [dE Y. But it is also given by an ordinary volume integration
Q = [dodn where do is a differential surface element and dn is a differen-
tial normal to the surface. Now dE = |VH|dn so the integral (3.17) can be
transformed into

do

e =,
|VH]|

(3.18)
We will shortly see an example of this for the harmonic oscillator. Since |VH| is
a measure for the velocity of the points in phase space, we see that areas where
the points move slowly contribute correspondingly more to the density of states.
Having obtained the surface area ¥, the number of microstates W is then

by
W = il (3.19)
for indistinguishable particles and the entropy can be again obtained from Boltz-
mann’s equation S = klogW. As said above, we can here just as well use the
shell volume I" or the full volume 2 instead of ¥ when we have a system in the
thermodynamic limit N — co. We will see an example of why this is true when
we next consider the ideal gas in the microcanonical ensemble. From the en-
tropy we then get the temperature 1/T = 9S/0F and the other thermodynamic
variables.
If we calculate the entropy from the phase space volume 2, the temperature
follows from

1 _ 0 1 .qo 100
KT~ 0E 8" T QoE -

But the derivative of Q is (3.17) just the area of the bounding surface ¥ so we
obtain

Q
KT = (3.20)

This simple result gives rise to a compact derivation of the equipartition theo-
rem. It follows from the microcanonical average

OH 1 OH
)= =  —— (B — H
(Dn 8pn> > / dw pr, op 5( )

n

where we write

oH 0
%J(EfH) =~ o 0(E — H)) . (3.21)

Integrating over p,,, we then get

OH 1/ dfq

<pn@> 5 ———dp,---dps0(E — H) (3.22)

(2mh)f
after a partial integration where the boundary term doesn’t contribute. The
remaining integral is now just the volume 2. We then have

OH Q

(pn@> =5 =k, (3.23)
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Obviously, the same result applies also to the average with p,, replaced with g,,.
Since the Hamiltonian (3.1) for an interacting system of particles is quadratic
in the momenta, we can write the above result on the more well-known form

2
Pny_ 1
=)= —kT. 3.24
Every quadratic term in the Hamiltonian is seen to carry an average energy of
%kT. This is the equipartition theorem.
In the next chapter we will make use of the virial, defined by

. OH
0=— Xn:ann = zn:LIn@ : (3.25)

Taking the average of it and using (3.23), we find
(0) = 3NET (3.26)

where we have used that the sum contains f = 3N equal terms. This result is
called the virial theorem and will be used in the next chapter when we investi-
gate the equation of state for an interacting gas.

Some of this formalism can be illustrated in connection with the 1-dimensional harmonic
oscillator we considered in the previous section. The Hamiltonian (3.4) gave rise to a 2-
dimensional phase space. For a given energy E the system moves on an ellipse as shown in
Fig.3.1. It has the minor axis b = v2mE and the major axis a = b/mw. The area of the
ellipse is A = mab = 2w E /w so that the phase space volume Q = A/27h = E/hw. We then
find the entropy S = klog(E/hw) which gives the internal energy E = kT. This is correct
and also in agreement with the equipartition theorem.

It is slightly more difficult to obtain the density of states ¥. Starting from (3.17), we must
do the integration

P o1
27hY = /dqdp&(E - —Imw?P)=m [ = (3.27)
2m 2 P

where p = /2mE — m2w?q? as follows from the §-function. Integrating around the full

ellipse, we then find
5 - L, /mm / t da
7h E o /1 B %
a
1

1 2m w

= a— = —
wh E 2 hw

Had we instead started with (3.18), we would first need the line element do = +/dq? + dp?.
Since dp/dq = —m>2w?q/p, it follows that

20020\ 2
do = dg 1+(qu) :
p
From |VH|? = 777’1—22 + m2wq?, we have
p m2w2q ) ?
wvH = 24 /14 (7>
m p
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and we are back at the integral (3.27) for X.

We see that our results are consistent with the fundamental relation (3.17). But since this
system only contains one particle so that the phase space is 2-dimensional, we can not use 2
instead of €2 in the calculation of the number of available microstates. The density of states

is even independent of energy and would have given zero internal energy at all temperatures.

3.4 Canonical ensembles

The systems in a statistical ensemble behave in many ways as an ideal gas in
phase space. It is ideal since there can be no interactions between the system
particles. We can therefore describe this abstract gas in statistical terms exactly
as we did for an ideal gas in the previous chapter. We will make use of this
correspondence here in the derivation of the canonical distribution. It describes
a system in thermal equilibrium by allowing energy to be exchanged with the
surroundings.

In order to be more general, we will now describe the system of particles
by quantum mechanics. The classical Hamiltonian (3.1) is then replaced by the
Hamiltonian operator

LIPS
- ~ D; ~ o~ ~

i

It gives the possible states of the system as the solution of the corresponding
Schrédinger equation

HVU, = BV, (3.29)

where the energy eigenvalue E; results when the system is in the quantum
eigenstate ¥y = Ws(q1,q2,- -+, qr). Since the system is not thermally isolated, it
will not remain in such an eigenstate, but all the time make transitions to other
states. This corresponds in the classical picture to the motion of the system
point through phase space.

When we now have an ensemble of a very large number A of such systems,
there will at any time be a number A of these which are in the quantum state ¥
with energy Es. These numbers characterize the ensemble and are constant in
time although the individual systems always undergo transitions. The average
or internal energy of each system in the ensemble is therefore

U:<E>:%ZESAS:ZESPS (3.30)

where P; = As/A is the probability to find a system in the state ¥U,. They
satisfy the obvious normalization

d Po=1. (3.31)
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Note that when ergodicity holds, the ensemble represents a single system, and
P; is just the probablility of finding that system in state s.

Other averages are now defined in the same way. We can define the entropy
of the full ensemble in exactly the same way as for a gas of free particles. Aslong
as we concentrate on individual quantum states and not energy levels of each
system, we don’t have to worry about degeneracies. Also, there is no questions
about the counting of states since the ensemble gas can be considered classical
although the internal dynamics of each system is quantum mechanical. Since
each configuration {4} of the systems in the ensemble can be obtained in many
different ways given by the multinomial formula, we can define the entropy per
system as

1 Al
= Zklog LAl (3.32)
The equilibrium probability distribution can now be obtained my maximizing
this quantity with the average energy (3.30) held constant.

A more direct derivation of the canonical distribution is obtained by following
the steps which led to the Maxwell-Boltzmann distribution for independent
particles in Chapter 2. Assuming that one of the systems in the ensemble
receives an energy increment AU = E; — E;, it will jump from the quantum
state ¥; to ¥;. The resulting change 4, — A4; +1 and A; — A; — 1 in the
ensemble distribution will induce the entropy change

S

_ L
A

which follows from the analogous result (2.24). From the First Law AAS =
AU/T applied to the ensemble gas, follows now immediately that

A
klog J (3.33)

AS 11

é — ¢ BEi—Ej) (3.34)
J

when we assume that A; > 1. As a result, we have the canonical probability

P, = %efﬁEs (3.35)
to find a system at temperature T" with energy F,. It is just Boltzmann’s result
for the energy distribution of the systems in the ensemble gas.

The equilibrium entropy follows from the general formula (3.32). Since the
numbers A and Ay can be as large as we want, we can safely apply Stirling’s
formula for their factorials. We then easily obtain

S=-kY PlogP, (3.36)

which is Gibb’s formula for the entropy.
In the microcanonical ensemble, all the systems have the same energy, Es; =
FE and each state appears with the same probability. If there are W such allowed



52 CHAPTER 3. STATISTICAL ENSEMBLES

quantum states for the system, then P; = 1/ and the entropy (3.36) simplifies
to Boltzmann’s formula S = klog W.

We can also derive this canonical distribution (3.35) in a less abstract way. Consider just
one system in thermal equilibrium with a heat bath at given temperature 7. If the system and
the heat bath are closed towards other systems, their total energy Etot is constant and we can
use the microcanonical ensemble to describe this combined system. Then all the microstates
will have the same probability. If the system we consider has energy Es, the heat bath will
have an energy Ep = Etot — Es. At this energy, the heat bath can be in a great number
of microstates W. The probability to find the system in the specific state s must then be
proportional to this number, i.e. Ps x W (Etot — Es). We now write

1
W (Etot — Es) = exp ES(EtOt —Es).

Using that Es < FEtot, we can expand the exponential to get

oS

Fiot — Es) = S(Ftot) — Es | —
S(Etot ) = S(Etot) (aE

) = S(Etot) — Es)T
V,N

since we can keep only the leading terms in the limit where the heat bath is infinite. This

gives again the result (3.35).

The unknown normalization constant Z in the canonical distribution (3.35)
can depend on the temperature and other thermodynamic quantities necessary
to define the system. From the normalization condition (3.31) we get

Z=> e PP (3.37)

This sum is the canonical partition function for the system and can be used to
calculate essentially all the different thermodynamic properties of the system.
The internal energy (3.30) can now be written as

1
_ —BE;
U= Es By 0P (3.38)

Taking the derivative of (3.37) with respect to 3, we see that we can also obtain
the internal energy more directly from

U=- logz (3.39)

L
which is very useful in practical calculations. We can find the thermodynamic
content of Z from the Gibbs formula (3.36) in which we insert our result for the
equilibrium probability P to obtain

S kY (Pslog Z + BP.E,)

klogZ +U/T



3.4. CANONICAL ENSEMBLES 53

We see that Z = e #F where F = U — T'S is the Helmholtz free energy.

For a system of N non-interacting, distinguishable particles, we can express
the system energy Ey in terms of the one-particle energies €, state s; as Ey =
> €s,- The sum over all system states (3.37) will be the sum over

Z=Y e’ =D e =2".. (3.40)

{s:} ¢ %

When the particles are indistinguishable, we must again divide this result with
NI

We have here assumed that phase space can be divided up into regions with
discrete values for the possible energies of the system. So our results for the
canonical ensemble will automatically be valid for quantum systems. The state
of a classical system is on the other hand given by the continuous phase space
coordinates (g, p) and the probability to be in this state is proportional to the
ensemble density p(q, p). Comparing the formula (3.8) for the ensemble average
with our result (3.38) in the canonical ensemble, we have the obvious connection

1 1
P, = Ee_BES = plg,p) = Ee_ﬁH(q’p) (3.41)

between the probabilities in the two descriptions.

We can also obtain the exponential form of the classical density distribution by taking
two independent systems with Hamiltonians H; and H2 and combining them into one system
with Hamiltonian H = Hj 4+ H2. Then the combined phase space density must satisfy p(H1 +
Hs) x p(H1)p(H2). This equation for the unknown function p(H) has the solution p(H)
exp (—BH) where we must show that the unknown parameter 8 is in fact 1/kT.

From the normalizations of these two probability distributions follow the
corresponding partition functions

Z = Ze_BES = Z = /dw e PH(@P) (3.42)

The Helmholtz free energy is in both cases given by F' = —kT'log Z. If the
system consists of indistinguishable particles, the classical expression on the
right hand side must be reduced by the standard factor N!.

When the discrete expression on the left describes a quantum system and the
quantum states are correctly defined for identical particles, being symmetric for
bosons and antisymmetric for fermions, there should be no N! in the quantum
partition function. It will come out automatically when we take the quantum
result into the classical regime. Finally, the averages in the two cases also have
the same form,

1 1
= — 5 7ﬂES - = 7ﬁH(q’p) . .
(A) 7 ES Age = (A) 7 /de(q,p) e (3.43)
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When we in the following use the discrete description, its mostly because of
notational simplicity. With the above correspondences we can always take the
results over into the classical and continuous phase space.

In the canonical ensemble the temperature is fixed by the external heat bath.
This is achieved by the freedom the system has to exchange energy with the
bath. Its energy will therefore fluctuate around its average value (3.38) which
is different from the square root of

1 1 02
2 2 —BE; —BE;
(E°) ZZES6 Z@ﬁ?ze

The deviation from the average energy is given by the difference

(AE)? = (B%) - (E)’
18%Z (19z\° 0 (182
- ZopE (Z%) _8ﬁ<266>
_ _g%:mcv (3.44)

where C'y is the constant volume heat capacity. Since the left hand side goes
like the square of the number of particles IV in the system and Cy like N, we
see that the magnitude of the fluctuation goes like 1/v/N and is negligible for
a 1macroscopic system.

3.5 Grand canonical ensembles

The canonical ensemble describes systems in thermal contact with a heat bath
or the surroundings. It can then exchange energy, but the number of particles
remains the same. However, many system in chemistry and physics allow process
which will change the number of particles. In order to have thermodynamic
equilibrium, we must then let the system also to be in material contact with
the surroundings in addition to being in thermal contact. These more general
systems with variable particle number are described by the grand canonical
ensemble.

Again we will consider a very large ensemble of A such systems. When it is
in equilibrium, it contains Ay systems with exactly N particles and is in the
quantum state W, for this number of particles. Summing up, we then obviously
have

D Ani=A. (3.45)
Ns

The entropy of the system will then be given by the formula

Ly A

log ——
S Ak og T And!

(3.46)
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analogous to (3.32). We can find the equilibrium distribution by considering
AN = N’ — N particles added to the system with the simultaneous change in
energy AU = En'y — Eng. This will make the change An/yr — An/e + 1 and
Ans = Ans — 1 in the distribution of systems in the ensemble. From (3.46)
now follows the corresponding change in the entropy

. l ANS

AS Aklog Ao i1

(3.47)

Using the First Law ATAS = AU — pAN applied to ensemble where p is the
chemical potential of the surrounding heat bath, we now get

AN's' _ BuN' = N) =By~ Bxo) (3.48)
ANS

where we again have assumed that Ay > 1. As aresult, we have the probability

o ANs

A P N—ENs) (3.49)

PNs

(11| —

to find a system with N particles and with energy Fns. The unknown constant
E follows from the normalization (3.45) which gives

_ i S PN =Ens) (3.50)

N=0 s

(1]

It is the grand canonical partition function. We can now calculate the average
energy of the system

U= ZENSPNS = é i ZENS ePUN—Ens) (3.51)
Ns T N=0 s

Other averages are defined the same way.
The entropy can be obtained from (3.46) and is obviously again given by the
Gibbs formula

S=-kY_ Py, logPy, . (3.52)
Ns

Inserting the equilibrium probabilities (3.49), it gives

S = —kY PniB(uN — En,) —logE]
Ns

= —k[B(uN —U) —logE]

where N = > ~ns IVPns is the average number of particles in the system. Defin-
ing the free energy

Q= —kTlogZ (3.53)
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we find that it is

Q = U-TS—uN=G— PV —uN
—PV (3.54)

since the Gibbs free energy G = pN. The thermodynamic potential Q =
Q(T,V, p) is thus the Landau free energy.

In the classical case we must envisage a phase space with systems with all
possible number of particles. The systems with IV particles will then have the
probability density

pn(q,p) = e~ B(HN(q,p)—pN) (3.55)

[ =

with the partition function

== Z /dw e~ BHN(g:p)—puN) (3.56)

N=0

It should be divided by N! for indistinguishable particles.

It is possible to get to this conclusion along a different route. We will see that for a
macroscopic system the fluctuations AN in the particle number around the mean number N
is negligible. In the sum (3.50) for the grand partition function we then expect terms with
N =~ N to dominate. We will then approximately have

2(T,V, u) ~ ANePHN 74 (T, V)

where Z 5 (T, V) = exp (—BF) is the ordinary, fixed-volume partition function for N particles.
Taking logarithms on both sides now gives Q2 = F — Ny — log AN. Since AN/N — 0 as
N — oo, we can safely neglect the AN in the thermodynamic limit and we are back to the

result 2 = —PV for the Landau free energy.

From (3.49) we can find the probability Py that the system contains exactly
N particles. It is obtained from Py, by summing over all possible states s at
this particle number,

Z
Py = ZPNS = ?N N (3.57)

where Zp is the canonical partition function for the system with exactly NV
particles,

Zy = e PPne (3.58)
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The average number (N) = N of particles in the system is then

B o0 1 [ee]
N = Z NPy = = Z NZyePrN
N=0 ~ N=0
kKT 0= L)
_ ko= (% 3.59
E o <0u>T,v (359

This is consistent with € being the Legendre transformed of the Helmholtz free
energy F'(T,V, N) from where the chemical potential follows as = (0F/ON) .
Then 2 = F — Npu as we found above.

The fluctuations in the particle number around this average value can now
be obtained in the same way as the energy fluctuations (3.44) in the canonical
ensemble. We obtain

= kT)? 0°=
NZ) = 3 N2py = —
(N7) NZ:O N = op?
so that the deviation away from the mean is
(AN)? = (N?)—(N)?
0%log = 9%Q
= (kT)? = —kT () (3.60)
op? w? )y
From (3.59) we have that
opP N
T
so that the fluctuations are given by
(N%) —(N)? = kTV <8p> .
ou)

But using the chain rule

(&), ), (50)

o) ¢ OP ), \0u )

we find that the result can be expressed by the isothermal compressibility (1.24),
(N?) — (N)? = kTNpKr . (3.62)

Again we see that this statistical fluctuation can be related to a thermodynamic
response function. Both this result and (3.44) for the energy fluctuation in the
canonical ensemble are examples of what is more generally called the fluctuation-
dissipation theorem.
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Away from any second order phase transitions, the right hand side of (3.62)
is of the order N so that AN/N o 1/v/N and therefore completely negligible
in macroscopic systems.

Let us now treat the ideal gas in the grand canonical ensemble. The N-
particle canonical partition function can be obtained from the one-particle par-
tition function Z; in (2.48). For indistinguishable particles we then have

Zv 1 v\Y

We first find the grand canonical partition function (3.50)

= |4
= Z PPN Zn = exp (ABeﬁ”> (3.64)

N=0

(1]

Introducing the fugacity z = e®#/A3 we therefore have the simple result = =
expzV. The average number of particles (3.59) is then N = zV. But since
the Landau free energy Q = —kT log Z = —kT'N we immediately also have the
equation of state PV = NkT in this ensemble.

The probability that the ideal gas contains exactly IV particles is

e NV N NN o
Py =7 (m) = e (3.65)

which is just the Poisson probability distribution. It gives rise to a fluctuation
(3.60) in the particle number which is found to be exactly AN = v/N.

3.6 Information theory

There is a close relation between the concepts entropy and information. If a
thermodynamic system is at a low temperature, it can only be in a few states
and it has low entropy. One can then describe the state of the whole system
by using a few words or just a couple of lines with equations. It requires little
information. On the other hand, at high temperatures the system is much
more disordered and it has large entropy. Then one needs to provide much
information to describe the microscopic state of the system. We will now make
this correspondence between entropy and information more quantitative.
Many questions require just an answer of yes or no. Such an answer is defined
to provide one bit of information. It is then implicitly assumed that the two
possible answers will occur with the same probability if the question could be
asked several times under the same conditions. One bit of information is needed
to tell a person to do one of two possible things. In order to do one of four things
{A,B,C,D} a person must be given two bits of information. First he must be
told to do one in the group {A,B} or the group {C,D}. When this subgroup is
determined, it requires one more bit of information to determine which of the
two remaining possibilities to choose. More generally, if there are N possible
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choices to make, it requires I = log, IV bits of information to determine one of
these.

These considerations can easily be generalized to other kinds of information
or media. There are approximately thirty letters in the alphabet. If they are
produced independently, for example by a monkey at a typewriter, each letter
in such a text would have an information content of around 5 bits/character. A
page of text, 50 lines with 80 characters contains therefore 5 x 4000 = 2 x 10*
bits. Such a book with 500 pages contains therefore 107 bits of information.
We will later see that the real number is somewhat lower since the information
content in more intelligent text is actually less than 5 bits per character, perhaps
down to almost 1 bit.

In the genetic DNA code there are 4 bases, C,G, T and A. Assuming that
they appear at random, each provide for two bits of information. In the double
helix the distance between each base is 1.2 x 10~7 cm. The genetic DNA code
in a fruit fly is 1.2 cm long and contains 107 bits of information which is the
same as in the above book. In a virus it is only 10? bits and in a human it is
almost 1010 bits, i.e. one thousand books are needed to write it all down.

A black or white pixel on TV screen corresponds to one bit. A color TV
usually uses 24 bits, or 3 bytes, per pixel. For a red-green-blue representation
of colors, this means that 8 bits are used to specify each color level. Since a
full screen is made of typically 2500 x 1000 pixels, one TV image contains 7.5
Mbytes. This is the information content of 7 books. Since the screen is updated
25 times per second, we see that the TV produces 200 Mbytes, or almost 200
books of information every second. A file with a full movie of say 5000 s duration
should then have a size of 1000 Gbytes. But this is under the assumption that
all the TV pixels appear at random which is generally not the case. In fact,
compression algorithms, like MPEG4, will reduce that size by a typical factor
of 1-200. The basic idea of such algorithms is to represent the information more
compactly. For instance, if parts of the image is constantly red over time, we
can specify a pixel in that part by saying 'red for 5 seconds’, rather than writing
‘red’ 125 times.

As another simple example, consider a oil lamp in a car. It is usually green
saying that everything is ok and we hardly notice it. When there is a problem,
it lights red and we get really worried. If the probability to show red is Pr =
1/1024 then the probability to show green is P = 1023/1024. The information
we receive when it is green, is therefore only I = 0.0014 bits. On the other
hand, when it is red, we receive Igr = 10 bits of information which is a factor
7000 more and we jump in the driver’s seat. If we wanted to record the daily
state of the alarm lamp, we could write ’green lamp for all the year’ rather than
‘green’ 365 times.

Previously, we have quantified the information content in a symbol with
N possible states, by assuming that the N possibilities have equal probability
P = 1/N. Now, motivated by the observation that the information content
becomes very low when P = 1, we can write instead

I=—log, P =—klog P (3.66)
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where the constant £k = 1/log2 = 1.44... can be considered to be equivalent
to the Boltzmann constant. This formula will now be generalized to give the
information content of a message where each symbol has a different probability
P to occur or be produced. A symbol here can be almost anything, a spoken
word or sentence, a textbook, a TV picture, a character being produced at
a typewriter, a binary digit in a data stream and so on. This more general
definition of information content seems to satisfy all the requirements we would
intuitively have about it.

When the information source produces messages or symbols not at random,
we can assume that each symbol s is produced with a certain probability Ps.
When these probabilities are independent of time, i.e. the same yesterday as
tomorrow, we say that the source is ergodic. The average information in each
symbol produced will then be

I'=—k) PlogP,. (3.67)

This is just Gibb’s formula for the entropy of a system in a statistical ensem-
ble. We can therefore say that the entropy is just the information needed to
completely describe the microscopic state of the system. It was this realization
which made the physicist L. Szilard in 1927 lay the foundation of modern infor-
mation theory. But it was C. Shannon who twenty years later made it all into
a new scientific discipline.

If the four symbols {A,B,C,D} are produced with the probabilities P4 =
1/2,Pgp = 1/4,Pc = 1/8 and Pp = 1/8 we find from the above formula that
the information content is I = 1.75 bits per symbol. If they all had appeared
at random, it would have been I = 2 bits. One can show quite easily that the
maximum information production always occurs when the symbols are made at
random. A monkey at a typewriter produces more information than an educated
student. But we know that there is usually not much interesting content in most
information produced, so we should not be surprised by this conclusion.

If the N symbols are produced completely at random, then the information
content is I,,4, = klog N per symbol. We will now show that this is actually
the maximum possible. It follows that

Imaz —1 = k(logN + Y P,log P,)

kY Plog NP,
S

Now logx > 1 — 1/x so we find the bound

1
NP,

Imax*]’zkz}js(l ):k(lfl):(]

which proves the assertion.
The letters do not occur with the same probabilities in a human language.
In English the most common letter is ‘e’ with the probability P, = 0.131, then
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follows ‘t’ and ‘o’ with probabilities P; = 0.090 and P, = 0.082. The letter ‘e’ is
also most common in written French, with P, = 0.159 followed by P, = 0.094
and P; = 0.084. These are certainly averages over all possible written texts
in these two languages. Using such frequencies for all the letters in the two
languages, one finds the average information content per letter to be 4.13 bits
in English and 4.01 bits in French. A typical English book should therefore be
slightly longer when translated to French if it is to contain the same amount of
information.

From the above letter frequencies we see that the information content in
each letter is certainly below 5 bits as it would have been if they appeared com-
pletely at random. But we also know that some letters occur with much greater
probabilities together with certain letters than others. After ‘j” in English one
expects a vocal while after ‘q’ one is almost certain to find a ‘u’. This means
that if one looks at groups of letters, the information content per letter will be
smaller and therefore below 4 bits.

Considering words in English, the most common word is “the” followed by
“of”, “and” and “to”. There is an empirical relationship, called Zipf’s law, which
states that the probability for word number w in this ordering is P, = 0.1/w.
So the probability P, = 0.1, P,y = 0.05 and so on in English. Summing up
the contributions from N = 8727 words, Shannon found that the information
content was on the average

N
I=-k)» P,logP, =118 bits

w=1

per word. Since each word contains typically five letters, there is then only 2.1
bits of information in every English letter. Looking at even bigger groups of
letters than words, Shannon surmised that the information content could be
brought down to around one bit per character.
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Chapter 4

Real (Gases and Liquids

In the ideal gas there are no interactions between the particles. It can only be
in one, gaseous phase which is quite close to the state most real systems reach
at very high temperatures and low densities. But most systems are usually at
temperatures and densities where the interactions are important. They give rise
to deviations from ideal gas behavior and can even cause transitions to other
states like the liquid or solid phases. An exact result for the thermodynamics of a
real gas follows from the virial theorem. It can be used to derive an approximate
equation of state for such an interacting system. The crudest version of this
dates back to van der Waal.

Equations of state describe the bulk properties of fluids. A different type
of interactions in real systems is introduced by the boundary conditions, as in
the case of osmosis. This phenomenon is characterized by the presence of a
semi-permeable membrane that lets only one substance through, and blocks the
other. The result is a pressure difference across the membrane, that is known
as osmotic pressure. This chapter starts with a theoretical basis for equations
of state for real system and ends with a discussion of osmosis.

4.1 Correlation functions

In most gases and liquids the dominant interaction will be via a two-particle
potential u(r; —r;). We will here only consider such systems. The potential has
the typical form shown in Fig.4.1. When the separation between the particles
is very small, it becomes very repulsive and one says that the particles have a
hard core. At larger separations |r; —r;| it becomes weakly attractive and then
goes slowly to zero at increasing separations.

A physically realistic interaction potential is the Lennard-Jones potential

= [(5)"- ()] an

where the functional forms of the repulsive and attractive parts can be explained

63
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u(r)

Figure 4.1: Inter-particle potential consists of a repulsive part at short distances and a
weaker, attractive part at longer distances.

in terms of the more fundamental interactions between the atoms. It has the
form shown in Fig.4.1. The minimum u,,;, = —¢ is located at rp;, = 21/64,
For the noble gas argon one finds the parameters ¢/k = 120 K and o = 3.4A.

For analytical calculations one often approximates the potential with a hard-
sphere potential

oo ifr<d
u(r) { 0 otherwise (42)

Adding a square well attractive part to this for a finite distance outside the
hard-core diameter d still makes it analytically tractable.
All of the properties of the system will follow from the Hamiltonian

N 52
H(p,r)=) :;;1 +U(ry,10,...TN) (4.3)
=1

when it contains N particles and where the potential energy U = 3, j u(r;—r;j).
The canonical partition function is then

1 _ r 1 Qn
where A is the thermal wavelength (3.36) and
QN(T,V) = /d3Nr e AU(Lr2TN) (4.5)

is called the configuration integral. The equation of state then follows from

P 0
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For a macroscopically large number of particles, the general integral can only
be done numerically by, for example, Monte Carlo integration. However, it is
possible to show that the small integrals @2, @3 and so on will determine the
physics in the virial expansion of the equation of state.

From the above we see that the probability to find the particles in the gas
in a certain configuration (ri,ro,...ry) is

1
PN(I‘l,I'Q, . ~rN) — @efﬁU(n,m,...rN) . (47)

It can be used to obtain different correlation functions in the gas from the
microscopic density at position r,

n(r) = Z S(r—r;) . (4.8)

The two most important ones are the average density
p= (n(r)) (4.9)
and the two-particle correlation function
G(r —1') = (n(r)n(r")) . (4.10)

It contains information about the distribution of particles relative to each other.
Since the interactions are supposed to only depend on the relative distances be-
tween the particles, all results must be translational invariant. This means that
the correlation functions can only depend on coordinate differences like r — r’
in (4.10).

The same argument implies that the average (n(r)) must be be independent of the posi-
tion r. This can be verified by an explicit calculation from the definition

N
1 . .
(n(r)) = on E /d5r1 d®ro ... dPry 6(r — ;) e PUGL T2 rN)
N
i=1

It gives N equal terms of which we only have to consider the first one. Integrating over r; we

then have
fd37.2 o d3TN e—BU(r,ra,...rN)

3r1d3ry ... d3ry e=BUL T2, )
Since the potential energy U depends on coordinate differences, these two integrals differ only
by a factor fd3r1 =V in the denominator. The net result is therefore (n(r)) = N/V = p as

claimed.

(n(r)>=Nfd

The two-particle distribution (4.10) is most important. Inserting the densi-
ties in the average and splitting the double sum into two terms, it can be written

as
N N

Gr—r) =) (6(r—r:)d(r' — 1)) +5(r —1') Y (5(r —r3)) .

i] i=1
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The first part contains N(N — 1) equal terms corresponding to each particle
interacting with N — 1 others. When the separation |r — 1’| becomes large, the
corresponding interaction energy goes to zero and it goes to the ideal gas limit
N(N —1)/V? = p?. This term is called the pair correlation function g(r — r’)
and is defined by

1
p’g(r; —ry) = N(N — 1)Q—N /d3r3 o dBPryeBUrLr2,rN) (4.11)

so that it approaches one for large separations. We can now write the two-
particle distribution function as

Gr—r')=p*glr — 1)+ pi(r—1). (4.12)

The last term describes the correlation of the particle with itself. For isotropic
gases and liquids g(r—r’) = g(r) where r = |[r—1’| is the separation between the
two points. It is therefore also called the radial distribution function. From the
way G(r —r’) was defined, we see that it gives the probability to find a particle
at the position r’ given that there is one at r irrespectively of where all the
others are. When r’ approaches r, there is certainly going to be a particle. This
is taken care of by the d-function in (4.12) so g(r) describes only correlations
with other particles.

Another way of saying this is to take the origin to be at the position of
a certain particle. Then pg(r) is the average density of particles at distance r
away. The average number of other particles within a distance R from the origin
is therefore

R
n(R) = 47rp/0 drrig(r) . (4.13)

When R becomes very large, the integral gives the homogeneous result n(R) =
(47/3)pR3.

If the particles have a short-range repulsive core of radius r,,;n, the corre-
lation function g(r) has the typical form shown in Fig. 4.2. Tt goes to zero for
separations r < T, , reaches a peak at r > 7,,,;, and goes to the ideal gas limit
g(r) — 1 for large separations.

These correlation functions are intimately connected with the fluctuations in
the number of particles in a finite volume of the gas. As in the grand canonical
ensemble, this is measured by the quantity

V) = (6 = [ @ nfe) @) = (o) ()
Using (4.10) and (4.12) we can write this as
W= = [ [ et pate ) - 7

= N—G-Np/dgr(g(r)—l)
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g(r)

1 1.5

r .
min

Figure 4.2: The pair correlation function has a peak for small separations. At longer
separations it approaches the ideal gas value of one.

The special combination
h(r)y=g(r)—1 (4.14)

is called the reduced pair correlation function. From (4.11) follows that [dr g(r)
V in the canonical ensemble which would result in [d®rh(r) = 0. But for the
sub-volume of the gas we consider here, the number of particles is not fixed and
we must work in the grand canonical ensemble.

From (3.62) we can then relate the above integral over the reduced pair
correlation function to the isothermal compressibility,

1+ p/d3r h(r) = kTpKr . (4.15)

When the system is close to the critical point, the right hand side is very large.
This implies that the correlation function must become more and more long-
ranged as the system approaches criticality where the compressibility diverges.
We can see this behavior in many other systems near second order phase tran-
sitions.

We can use the pair correlation function g(r) to calculate the average po-
tential energy of the particles. Since there are N(N —1)/2 pair interactions, we
have

W) = ZNOV=1) (ulri)

1 1
= NN -1)— [d*ru(ry)e
5V )QN/ (r12)



68 CHAPTER 4. REAL GASES AND LIQUIDS

1 1
= —-NN-1)— /d3r1 /d3r2 u(riz) /d3r3 o dPryePY
2 Qn

1
- §/d3r1 /d3r2 u(ri2) p2g(ri2)

where 712 = |r1 — ra|. Using translational invariance we can do one integration
and get

(U)=Np % /d3r u(r) g(r) . (4.16)

Since the average kinetic energy is 3k7/2 per particle from the virial theorem,
we then obtain for the average energy per particle

(E)/N = ng + % /d3r u(r) g(r) . (4.17)
Knowing the interparticle energy and the pair correlation function, this exact
formula gives the internal energy of the system and therefore also the specific
heat. The main problem is to find the correlation function from a given poten-
tial.
At low densities it is possible to find an approximate expression for the
pair correlation function. From (4.11) we see that it is in general given by the
multiple integrals

1 f A e
p’g(ry —ry) = N(N —1) e*B“(TIQ)Q— /dSTg.../dBTNe B2 ics ™ ”)(4.18)
N

where the primed sum in the exponent means that the pair (12) should not be
included. When the density is not too large, the dominant contribution to the
dependence on the separation 715 comes from the first exponent. In the other
exponents the particles are on the average far removed from each other and we
can set u(r;;) there. We then find in this limit

g(r) = e Pu) (4.19)

The repulsive part of the inter-particle potential u(r) at short distances makes
g(r) go to zero when r — 0. At large separations, the potential goes to zero
and the pair correlation function approaches one. This behavior at low densities
explains the main features in Fig.4.2. When the density becomes higher, the
function is not so smooth anymore. It gets a more wiggly behavior due to the
closer packings of the particles in the system.

In thermodynamics one concentrates on the macroscopic properties of a sys-
tem like equation of states, specific heats and compressibilities. For most of
these quantities there is a very indirect connection between what one can mea-
sure and the detailed, microscopic properties of the system. On the other hand,
the pair correlation function g(r) reflects more directly the interactions and
molecular structure of the gas-liquid system. And even more importantly, it
can be directly measured in scattering experiments so to give a direct look into
the inner, microscopic workings of the thermodynamic system.
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4.2 The virial theorem

In connection with the microcanonical ensemble in the previous chapter we
derived the virial theorem (3.26). It can also be proven quite easily in the
canonical ensemble. From the definition

N

i=1

of the virial, where the sum goes over the N particles in the system, we can

write
N

) d
0= Z[I‘i “Pi — %(Pi “Pi)] -
i=1
Using the fact that the time average of a total derivative is zero in an ergodic
system, we find that the average of the virial is

N

(0) = (k- pi) = 2(K) (4.21)

i=1

where K is the kinetic energy of the particles. Using Hamilton’s equation r; =
OH /0p;, the average of the virial is now given by the phase space integral

1 Z 0H
(6) ZN < /del 8pie

By a partial integration where the boundary term vanishes, we are the left with

N
1
() 3kT 7 ; / dwe
= 3NKT (4.22)

For the kinetic energy we therefore have the result (K) = 2NET which we

already have used. ’

In the virial (4.20) p; = F; is the force acting on particle . It is made up of
two terms, F; = F¢ + Fint where F¢® is due to the forces from the walls of
the volume containing the particles, and Fi"* is due to the interactions with the
other particles. Since the average force from a small area element AS; in the
wall on particle i at position r; is F¢** = —PAS;, the total contribution from
the external forces to the average of the virial is

(Oons) = P 7( dS .t = 3PV (4.23)
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from Gauss’s integration theorem where V' is the volume of the gas.
The force on particle i from the other particles is

ou(rij)
Brl Z arlj

We can now calculate the contribution of these forces to the average virial
exactly as we derived the average of the potential energy in (4.16). It gives

(Oint) = gp /d3r ru'(r) g(r) . (4.24)

mnt
F" =

Adding these two contributions together and using (4.22) we find the virial
equation of state

P=p {kT _ ép / Br e (1) g(r)} . (4.25)

Just like the average potential energy we found in (4.16), this is an exact result
for the thermodynamics of a classical gas. Again, it can only yield useful results
when we know the pair correlation function g(r) resulting from the interaction
potential u(r).

The above result can be derived much more directly from (4.6) for the pressure by using

1
the dimensionless variables x; = V'~ 3r; in the configuration integral Q. Taking the volume
derivative, we then immediately obtain

P=kT [g - §N(N —1) (é%u/(r»]

which is just the above virial equation of state.

When the density of the gas is low, we can use the approximate result (4.19)
for the pair correlation function in (4.25). It then becomes

P 1 ,(s d _
Bl _ = 2 (1 = e Bulm)
kT P=5%P /d " ( € )
1
= rty3 p2/d3r [1— e Pu)] (4.26)

after a partial integration. It ay be shown that these are just the first two terms
in the virial expansion of the equation of state. It then takes the general form

= Bu(T)p" (4.27)

where B,,(T) are the virial coefficients with By = 1. In the above derivation we
found the second virial coefficient

T) = / Pl — e Pui)] (4.28)
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B,

Figure 4.3: The second virial coefficient increases with temperature for gases with attraction
between the particles.

which turns out to be correct for arbitrary densities.

A typical behavior of the inter-particle potential u(r) was shown in Fig.4.1.
For separations below the hard-core diameter d it is very repulsive. It is then
followed by a weakly attractive part. We can therefore approximate the second
virial coefficient (4.28) when the temperature is high by splitting it up in two
terms,

d 0
By(T) =~ 27r/0 der—l—lZ—;/d drr?u(r)
= b—a/kT (4.29)

where the constant b = 2md?/3 is one-half of the hard-core particle volume and
a = —27 f;odr r?u(r) is a positive quantity due to the long-range attraction
between the particles. The equation of state is then in this approximation

L=+ (b—a/hT). (4.30)

We see that the second virial coefficient is negative at low temperatures where
the pressure will be below the ideal-gass pressure. This is caused by the attrac-
tive part of the potential between the particles. By becomes positive at higher
temperatures where the repulsive part of the potential dominates. For any po-
tential of the general form in Fig.4.1, we will find that this virial coefficient
varies with temperature as shown in Fig.4.3. It goes through zero at a certain
temperature called the Boyle temperature Tg.
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4.3 Mean field theory for the van der Waals
equation

The equation of state (4.30) contains the first two terms of the virial expansion
of the equation of state. It is a perturbative expansion which should be most
accurate when the gas density p is low. For this reason it will not give any phase
transition to a liquid state with a high density. That will only follow from a
non-perturbative calculation. The simplest and most famous example of this is
the van der Waals equation of state written down in 1873.

It can be derived in many different ways. The method which can most easily
be generalized to other problems in phase transitions, is the mean field approxi-
mation. We then go back to (4.6) from which everything would follow if we only
could do the configuration integral Q). Since this is generally impossible, we
try to do it instead approximately by assuming that the mutual particle inter-
actions can be replaced by the interaction through a common or mean potential
4 when they are outside each others hard cores. Then we have reduced the
problem to a system of independent particles. For the configuration integral we
then simply have Qn = QY where

Q1= /dgr e " (4.31)

gives the value for each particle. Since the mean potential @ is independent of
r, it simply gives Q; = (V — Nb) e #% where V — Nb is the volume available for
each particle. The pressure will then be

o o
NET ou
= N (4.32)

The last term can be non-zero since the mean potential & depends on the density
of particle and hence on the volume.

We can find this term from the average potential energy is (4.16). In this
approximation we can set the pair correlation function g(r) = 0 when r < d
and g(r) = 1 outside the hard core. Then it follows directly that (U ) = —Npa
where a is the same quantity as in (4.29). In the mean field approximation we
must also have (U ) = Na so that @ = —pa. From (4.32) we then obtain

NET N2
a— (4.33)

P=v—N v

which is the van der Waal’s equation of state. Expanding the first denominator,
we get the corresponding virial expansion with By as in (4.29) and B,, = b"~!
when n > 2. Only the second virial coefficient is affected by the attractive part
of the potential, all the others are due to the hard-core repulsion.

The pressure at high temperatures is dominated by the first term in (4.33)
and is essentially that of an ideal gas. At lower temperatures we will begin to see
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the effect of the last, attractive part and the isotherms will deviate from the ideal
gas hyperbolas. At sufficiently low T the derivative 9P/0V will change sign as
V' is changed, as is illustrated in Fig. 4.4 along BC'D. The compressibility is
therefore negative and the system is not thermodynamically stable here. This
signals a phase transition to a liquid phase.

Figure 4.4: Tsotherms resulting from the Van der Waals equation above and below T.

We can interpret this in the following way: Plotting P as a function of V'
instead of the other way around we get a multivalued function, as in Fig. 4.5.
In order to trace the pressure through these multiple values we may introduce
a parametrization of Cypstapie, P = P(s) with 0 < s < 1 where s = 0 cor-
responds to the point a and s = 1 corresponds to b, see Fig. 4.5. Using the
thermodynamic relation

dG =VdP — SdT =VdP (4.34)
along isotherms where dT' = 0, we may integrate the Gibbs free energy along
Cunstable

oP
AG = / aPv(P) = [ s T V(P(s)) (4.35)
s

to obtain the graph C! . ...;. shown in the figure. However, if the system is
allowed to equilibrate, it will minimize G and, therefore, never venture out on
the unstablel path. Rather, as P is increased, it will pass directly from a to b,

and the corresponding volume change

oG
AV =A— 4.36
5P (4.36)
corresponds to the gas-liquid phase transition, i.e. AV =V, —V,, where V, and
V; are the volumes of the gas and the liquid, respectively. At the critical point
AOG/OP = 0 and the volume changes continuously.
As we pass from a to b there is no change in the free energy

AG:O:/dPg—g :/dPV:Al—AQ (4.37)
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%
a
Cstable\?/ AI Cunslable
P
G . AG<0
Cunstable
aand b
P

Figure 4.5: The volume as a function of pressure, and the corresponding Gibbs free energy
as the fluid passes throught the phase transition.

where the parameterization is implied in order to give meaning to the P-
integration. The fact that A; = A, allows us to construct the horizontal path
in Fig. 4.4, a geometric construction known as the Maxwell construction.

Very small, or very pure systems, where nucleation sites lack, may actually
move onto the unstable paths in Fig. 4.5. They are then in the metastable states
characteristic of undercooled or superheated systems. A superheated liquid will
burst into boiling with an excess energy to spend, and supercooled vapor may
exist near clouds.

When the temperature increases, the transition region decreases. At the
critical temperature 7T, the compressibility diverges. Thus the derivative

P NkT  2aN?
(8 ) L a (4.38)
T

v (V—Nw2+‘w
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must vanish. In addition, we must also have that the second derivative

<32P> _ 2NKT  6aN?
r

V2 V —Nb)3 V4 0 (4.39)

is zero since the critical point is here an inflection point. These two equations
together with the equation of state can easily be solved for the critical values of
the thermodynamic variables. One obtains

a 8a
— — _ = — . 4
V. = 3Nb, P, T kT, 57 (4.40)
The van der Waals equation of state is seen to imply that one should always
have

PV, = gNk:TC (4.41)

at the critical point. For most real gases the numerical factor on the right turns
out to be near 0.3 which is not too far off from 3/8.

In terms of these values we can construct a universal equation of state which
should be valid for all gases. Defining the dimensional variables

v P T
_v _F f— 4.42
V=g P=p T (4.42)
we can write van der Waals equation (4.33) as
8t 3
D (4.43)

S 3vu—1 o2’
Substances with the same values of these scaled variables are said to be in
corresponding states. This universal equation of state is obviously not more
accurate than the original equation. But it turns out that many real gases
show similar behavior near the critical point when described in terms of scaled
variables. It is first during the last two decades after the renormalization group
was introduced in statistical physics that we have begun to understand such
scaling behavior.

The critical region is best characterized by the critical exponents of the
different thermodynamic variables. They can be calculated by writing

p=14+Ap, wv=1+Av, t=1+At. (4.44)

All the A-terms will go to zero at the critical point. Substituting this expansion
into (4.43) and keeping only the leading terms, we find

Ap = (4 — 6Av)At — %Av?’ : (4.45)

On the critical isotherm, we have At = 0 and hence Ap = —(3/2)Av3. Mea-
surements on real gases give

P-P. (V-V. 0
P, Ve

(4.46)
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where the critical exponent § = 4.5 + 0.5. The van der Waals result § = 3 is
smaller, but comes out in all mean field theories.

One can similarly obtain the critical exponent for the compressibility K.
Taking the derivative of both sides of (4.45) with respect to the volume, we get
(0Op/0Ov)y = —6At. We therefore find near the critical point K = (T./6P.)(T —
T.)~' ~ (T — T,)" where v = 1. The experimental value is v = 1.25 4 0.05 is
in reasonable agreement with theory.

Other critical exponents can be calculated for the gas-liquid system. In a
later chapter on magnetic phase transitions we will meet the same exponents
again and they will then be discussed in more detail.

4.4 Osmosis

° ¢
. N .
® ) <% ¢ o

....\i‘.

Figure 4.6: A semi-permeable membrane where the small molecules may pass through but
where the large molecules may not.

Osmosis is the spontaneous net movement of a solvent, through a semi-
permeable membrane from a solution of low solute concentration to a solution
with high solute concentration The action of a semi-permeable membrane is
illustrated in Fig 4.6. Solvent molecules are typically water while the solute
molecules are those that are dissolved in the water. Osmosis is important in bi-
ological systems as many biological membranes are semi-permeable. In general,
these membranes are impermeable to organic solutes with large molecules, such
as polysaccharides, while permeable to water and small, uncharged solutes. Per-
meability may depend on solubility properties, charge, or chemistry as well as
solute size. Osmosis provides the primary means by which water is transported
into and out of cells.

The osmotic pressure is defined to be the pressure required to maintain
an equilibrium, with no net movement of solvent. In the following we derive
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the osmotic pressure difference as a function of solute concentration from the
assumption of a dilute solution.

We will need to know the chemical potential of the water molecules with
and without the solute molecules present, as it is this chemical potential that
will be constant across the membrane in equilibrium. We will use the relations
w = 0G/ON and G = —kT'log Zp to obtain u. For this purpose, assume first
that a single solute molecule is added to the water, so that the free energy is

G(P,T,N) = Go(P,T,N) + a(P,T,N) (4.47)

where a(P,T,N) is the small addition to the Gibbs free energy due to the
addition of the molecule. Since the solution is dilute, the solute molecules
are far apart, and we may ignore their interactions. For this reason we could
write G(P,T,N,n) = Go(P,T, N)+na(P,T, N) where n is the number of solute
molecules. But the expression G(P,T, N,n) = Go(P,T, N)+na(P,T, N) fails to
take into account that the solute molecules are identical. This is the expression
that would result if, in the partition function of equation (3.37), all the solute
molecules where taken to be different. In order to compensate for the over-
counting associated with identical particles we must in fact divide the partition
function by n!. Since this n! factor survives when the constant pressure partition
function of equation (??) is computed, we get

G(P,T,N,n) = Go(P,T,N) + na(P,T,N) + kT'Inn! . (4.48)

Using Stirlings approximation Inn! =~ nln(n/e) we may rewrite the above ex-
pression as

G(P,T,N,n) = Go(P,T, N) + nkTIn((n/e)e*TN)/KTy (4.49)
Now, we use that G is an extensive function, so that
G(P,T,AN,\n) = A\G(P,T,N,n) . (4.50)

This implies that the (n/e)e®™T-N)/FT must be an intensive quantity, and this
can only happen if the N-dependence in « is such that we may rewrite it as

N pa(PT.N) /KT _ %f(P, T), (4.51)

e

and the free energy takes the form
G(P,T,N,n) = Go(P,T,N) + nkT'In (%f(P, T)) . (4.52)

The chemical potential of the water then becomes

OG(P,T,N,n) kTn

where po(P,T) = 0Go(P, T, N)/ON is the water chemical potential without the
solute molecules. Note that p = u(P, T, c) where ¢ = n/N is the solute fraction.

u:
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Now, on the other side of the membrane, where there are no solute molecules,
the pressure Py will be different, and the water will have the chemical potential
to(Po,T). The equilibrium condition may then be written as

kTn
N

Expanding the difference puo(P,T) — po(Po,T) =~ (Opo/OP)AP to first order
in AP = P — Py, and using the Maxwell relation 0u/0P = 0V/ON = 1/p,
equation (4.54) reduces to

po(P,T) — = po(Po, T) - (4.54)

AP  kTn
P,T)— Py,T)~ — = —— 4.55
ﬂ0(7 ) #0( 05 ) P N ( )
or

APV = nkT . (4.56)

This expression, which has exactly the same form as the ideal gas formula, is
known as van’t Hoff’s formula and describes the osmotic pressure difference
across a semi-permeable membrane. It is interesting to note that while the
ideal gas by definition involves non-interacting particles, the solute molecules
may very well interact with the solvent molecules. The only assumption is that
they do not interact with each other. Osmosis releases energy, and can be made
to do work, as when a growing tree-root splits a stone.



Chapter 5

Quantum (ases and Liquids

Statistical mechanics of free particles are governed by quantum mechanics in two
widely different ways. First it gives a correct description of the energetics of each
particle in a system, being electrons, atoms or more complex molecules. But
even more importantly, it prescribes very definite permutation properties of the
wave function of all the particles in the system. As a consequence, the classically
free particles are not completely free anymore since they are no longer allowed to
occupy the different available energy levels independently of the other particles.
Their motion is correlated and there seems to be statistical forces acting between
them. These quantum effects can have dramatic, physical manifestations in both
bosonic and fermionic systems of macroscopic sizes. Some of the most important
of these will be discussed in this chapter.

5.1 Statistics of identical particles
We have a system of N indistinguishable particles moving in a common potential

V = V(r). The Hamiltonian operator for one of the particles with position
vector r; is

= 1. ~
H(i) = %P? + V(r;) (5.1)
where p; = —ih'V; is the momentum operator. Its energy is one of the eigen-

values ¢}, of the Schrédinger equation

H (i) (r:) = extoe(r:) (5.2)

where 1y (r;) is the corresponding eigenfunction. If the particles have non-zero
spin §, the quantum number k& would also also include it. The Hamiltonian
(5.1) is independent of spin and the eigenvalues e; will then be the same for
different spin projections §z. Hence, they will all be degenerate.

79
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The full Hamiltonian for the whole system of particles is then
A~ N A~
H=> H(). (5.3)
i=1

Even if the particles interact with an external potential, it is customary to
say that the particles are free since they do not have mutual interactions.
That would be the case if, for instance, the potential contained a term Vj,; =
Vint(r1,r9, -+, rN) which could not be split up into N separable terms as here.

If we denote one of their energy eigenfunctions by ¥y = ¥,(1,2,---, N), their
combined energy F; in this state follows from the many-particle Schrodinger
equation

HVU,=E,U, . (5.4)

Since H is a sum of independent terms, we know immediately that Wy is given
by products of one-particle wave-functions,

U, = H% (r;) (5.5)

so that the corresponding eigenvalue is Fy, = vazl €k, At this stage where we
have not yet made use of the indistinguishability of the particles, we can still
say in which one-particle state each of them are.

The Hamiltonian (5.3) is invariant under all permutations of the identical
particles. These different transformations generate the symmetric group. It
can be built up from more elementary operations which are interchanges of one
particle by another. Let us consider one of these which we denote by P. It
interchanges particle ¢ with particle j, i.e. it performs the operation r; <> r;.
The mathematical expression for the invariance of the Hamiltonian is thus

PHP'=H . (5.6)

This is equivalent to [ﬁ , }3] = 0. According to quantum theory, we can then
find eigenstates of the Hamiltonian which are also eigenstates of the permuta-
tion operator P. Since this conclusion holds for all the different permutation
operators, it is a very strong condition. The product state in (5.5) does obvi-
ously not have this property. Mathematically, one says that the eigenstates W
must be singlets of the permutation group, i.e.

PU, =pU, . (5.7)
Performing the same interchange again, we then get
P20, = p PO, = p*U, .

But the operator P2 is just the identity operator. Thus, the eigenvalues satisfy
p? = 1 and can only be p = £1. They correspond to the two singlet representa-
tions of the permutation group, the completely symmetric and the completely
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antisymmetric representation. Only these two are allowed eigenstates of the
Hamiltonian. Identical particles having symmetric statistics are called bosons
while those having antisymmetric statistics are fermions.

Until a few years go it was generally believed that these arguments applied to systems in
all dimensions. But it was pointed out by J.M. Leinaas and J. Myrheim in 1976 that it is
only for systems in dimensions d > 2 that we have P2 = 1. This surprising and important
discovery is illustrated in Fig. 5.1. The two particles on the left are interchanged by a rota-
tion of 180° normal to the plane. It is here the operation P. Similarly, the two particles on
the right are interchanged by the same rotation in the opposite direction, i.e. P-1. If the
particles are in three or more dimensions, we can rotate the configuration on the left an angle
of 180° around an axis through the two particles and we find them in the configuration on
the right. Thus we have P =Pl But for particles in two dimensions, we can not perform
this latter rotation out of the plane and we have in general no relation between P and P1.
We then have the possibility for new statistics in two dimensions. Since the symmetry of
the wave-functions can then in principle be anything between what we have for bosons and
fermions, the corresponding particles are called anyons. The physics of many-particle systems

of anyons is not yet understood.

Figure 5.1: Interchange of two identical particles can be made in one direction or the
opposite.

It is simplest to demonstrate this permutation symmetry in the case of two
particles with labels ¢ and j. If they can be in two one-particle states 1, and
¥y, the simple product state (5.5) is 4 (r;)¥s(r;). Under an interchange of
the particles, this state goes into 1, (r;)i(r;) and is therefore not a permu-
tation eigenstate. But adding these two products, we see that the symmetric
combination

Us(ri,rj) = \/g[%(ri)%(fj) + Ya (1)1 (rs)] (5.8)

is. It is invariant under all permutations and is the correct wave-function for two
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bosons. Similarly, the difference between the products give the antisymmetric
combination

Wa(ri,r)) = \/g[wa(ri)wb(rj) = Palr;) o (r)] (5.9)

which just changes sign under an interchange. It is the wave-function for two
fermions.

The antisymmetric wave-function is seen to identically vanish when they are
in the same state, i.e. ¥, = 1. This is the Pauli principle which says there can
never be more than one fermion in a one-particle state. Moreover we see that
it becomes small and eventually vanish when the two fermions approach each
other. This mean that the probability to find two identical fermions near each
other is smaller than if they had been distinguishable. There seems to be an
abstract force due to the statistics trying to keep them away from each other.
For bosons we see just the opposite effect. They have a larger probability
to be found at the same place than two distinguishable particles would have
had. There seems to be an effective attraction between bosons because of their
symmetric statistics.

Combined wave-functions for more than two fermions or bosons are easily
constructed in the same way. For example, we notice that the antisymmetric
wave-function (5.9) can be written as the determinant

Cp) = ¢a(ri) %(ri)
Ua(r;, ;) = Yalry) lr;) | (5.10)

The wave-function for N fermions is then given by the larger determinant

Ya(r1)  p(ry) - Pr(ry)

\I/A(I'l,I‘Q,-..7I'N): ¢a(r2) ¢b(r2) 1/%(1'2) . (5.11)

Ga(rn) U(rn) o dp(rn)

It vanishes when two of the one-particle states are the same or if two or more
particles have the same position coordinates. For bosons we can also write the
symmetric wave-function in the same way except for changing all the minus
signs to plus signs when it is evaluated as a sum of different products. This
symmetric combination is sometimes called a permanent.

With these symmetric or antisymmetric wave-functions the particles have
completely lost their classical identities. Even if the wave-functions still involve
a finite set of one-particles states, it is now impossible to relate any of these to
any particular particle. Each particle has now the same probability to be found
in any of these states. We can only describe the full many-particle state ¥'s 4 by
saying how many, and not which, particles are in each one-particle state 1, with
energy €. Denoting this occupation number by ny, we can write the energy of
the system of particles as

Eo= nex . (5.12)
k
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If ny = 0, there are no particles in the system with the quantum number k.
The many-particle states Ug 4 is uniquely characterized by this set {n;} of
occupation numbers.

The difference between classical and quantum statistics can be illustrated
by considering two identical particles in a harmonic oscillator potential. If we
ignore the zero-point energy, the one-particle state 1, has energy e, = nhw

with n =0,1,2,---. Thus, we have the one-particle partition function
Zy = i e — 1 (5.13)
o 1—=x

with & = e=P™_ If the particles are supposed to obey Maxwell-Boltzmann

statistics, we can then immediately write down the two-particle partition func-
tion as

1

1 1
MB __ 2
ZMB = — 72 T

5 (5.14)

This is the classical result we have used before and which is trivially extended
to the case of N particles.

In the product Z? there are two identical terms where one particle is in a
state 1, and the other in some other state 1. Dividing by 2! we then allow
for the fact that the particles after all are indistinguishable and we can not say
which one is in ¥, and which one is in v¢,. These configurations then get the
same weight 1 in the sum. But we have then really made a small mistake. Since
Z% involves only one term where the two particles are in the same state, these
configurations will then get the weight 1/2 after we divide the product by 2!.
Bosons are allowed to occupy the same one-particle state. So, in order to correct
this classical counting, we add these diagonal terms with the same factor 1/2 in
front. Thus we have

1
ZBE = zMB 3D (5.15)

where the compensating term D obviously is

= 1
D= —2nbhw : 5.16
’r;)e 1 _ ZEQ ( )

The two-particle partition function for bosons is therefore

1
zZer— 5.17
2 (I—-2)1—2a?) ( )
Fermions are not allowed to occupy the same state, so these diagonal terms in
the classical result (5.14) must be removed. In this way we find the partition
function for two fermions

T

e (5.18)

1
Z§D=Z§4B—§D:
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It is easy to show that in the classical region where Shw < 1, the quantum
correction D will be negligible. The particles can then occupy highly excited
states and it becomes very improbable that two of them will occupy the same
state. Fermions and bosons have then the same, classical partition functions
and hence also the same thermodynamics.

With more than two particles in the oscillator, one needs a more efficient method to
calculate these partition functions. We only have to make sure that we count each distinct
configuration of particles once. For IV bosons we then get the partition function as the multiple

sum
7BE _ E E E nitnz+-4ny _ . 5.19
N v 1—z1—22 1—zN ( )

ni>ng n2>ng ny >0

The internal energy of this many-particle system is then found to be

0 _BE hw 2hw Nhw
U=—-—22y" = cho /KT —1 " cehwikt — 1 VT CNRwRT — 7

oB

When T' — 0 we see that it goes to zero since all the particles will then be in the groundstate.

In the case of fermions, we must exclude the cases with more than one article in the same
same. Thus we get

(5.20)

N—!

oo o0 oo 1
ZEP = Z Z Z pritnetotny r .2 . 5.21
N 1—xz1—a2 1—aN ( )

ni>ng no>ns ny>0

The factors in the numerator will now give a non-zero value
N-1
Eo = hw Z n= %th(N —1) (5.22)
n=0
for the internal energy at zero temperature. We then have one fermion in each of the N lowest

one-particle states.

5.2 Blackbody radiation and the photon gas

When a body is heated to the temperature T, it will radiate energy. It is electro-
magnetic radiation at this temperature and is usually called thermal radiation.
One defines its intensity 1(0,T) as the energy radiated per unit time per unit
area per unit solid angle in the direction # away from the normal to the surface.
It usually follows the cosine law I(6,T) = I(T') cos . The emitted energy in all
directions

w/2
E(T) = 27TI(T)/ dfsinfcos® = wI(T) (5.23)
0

is called the total emissive power or the emittance. Since the radiation contains
all wavelengths A\, we can write

BE(T) = /O TANEOT) (5.24)
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where E(\,T) is the spectral emittance. When the body is exposed to the
radiation from another body with non-zero temperature, a fraction a(, T') of the
radiation is absorbed and the rest #(A,T) = 1 — a(\, T) is reflected if we ignore
transmission. A black body is defined to absorb all radiation, i.e. a(A\,T) =1
for all wavelengths.

Thermal radiation was first systematically investigated by Gustav R. Kirch-
hoff around 1859. He proved that E(X,T)/a(\, T) is the same for all bodies and
is therefore a universal function which equals the spectral radiation intensity of
a black body. Consider different bodies in an enclosure of thermal radiation.
At thermodynamic equilibrium just as much energy is absorbed as emitted by
each body at every wavelength. Since the absorbed energy is a(\, T') I when it is
exposed to a radiation intensity I = I(\,T") and the emitted energy is E(\,T),
the theorem follows. Equivalently, the radiation I hitting the body must equal
the energy leaving it. This latter equals the reflected radiation r(\,T) I plus
the emitted energy E(A, T). Then again we get the Kirchoff theorem. It implies
that a good absorber is also a good emitter. A perfectly white body is defined
to have a(A,T") = 0 and has therefore no thermal emission.

Figure 5.2: The radiation coming through the opening is black with the same temperature
as the enclosing walls.

We can make blackbody radiation by making a small opening in an enclosure
which is kept at a temperature T a shown in Fig.5.2. All radiation incident on
the hole are effectively absorbed. Radiation from inside the cavity can escape
through the hole which will act as the surface of a black body. If the radiation
with spectral energy density £(A,T) = U(X,T)/V moved only normal to the
opening with the light velocity ¢, the emittance would be just ¢£/2 since only
the radiation moving towards the hole would escape. But since the radiation
inside the cavity, moves in all possible direction in front of the hole, they will
on average have an effective velocity of ccos towards the hole. The effective
velocity is therefore only

/2 ¢
c/ dfsinfcost = —
0 2

and we have the important relation

E\T) = ES(A,T) (5.25)
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between the spectral emittance of a black body and the energy density of thermal
radiation.

Detailed measurements enabled J. Stefan in 1879 to conclude that the total
emittance E(T) had to increase as the fourth power of the temperature,

E(T)=0T* (5.26)

where o = 0.567 x 10~"Wm 2K % is Stefan’s constant. This famous result was
explained in 1884 by L. Boltzmann. From Maxwell’s electromagnetic theory
he knew that the pressure P in the z-direction was given by the square of the
z-components of the field. Since the pressure must be the same in all three
directions, it is just one third of the energy density, i.e.

P=-¢. (5.27)

This result applies also at finite temperatures where the total energy density is
E(T) :/ dNENT) . (5.28)
0

Considering the work performed by this radiation in a Carnot process, Boltz-
mann concluded that it had the functional form

E(T)=aT*. (5.29)

From (5.25) we then see that the Stefan-Boltzmann constant is a = 40/c.

The total radiation energy U is the enclosure with volume V' is U = £V. When the ther-
mally isolated radiation expands reversibly by a small amount AV, it performs the work PAV
against some external agent. The energy density changes to £ + A€ and energy conservation
requires

1
EV =(E+AE)(V+AV)+ gé‘AV .
In the limit where AV — 0, we then get d€/€ = —(4/3) dV/V which integrated gives £
V—4/8,
This simple reasoning is just a rewriting of the First Law T'dS = dU + P dV which gives
\% 4 (€
dS=—d£+7<f)dV‘

T 3\T
For an adiabatic change, dS = 0 and the above result follows. Now we can also find how the
energy density varies with the temperature. Writing d€ = (d€/dT') dT and requiring dS to be
a perfect differential, it follows that

TdT ~— 3dT \T
Taking the derivatives and collecting terms, we find d€/dT = 4€/T which gives the Stefan-

Boltzmann law (5.29).
We can now evaluate the differential dS which integrated gives the entropy

1de  4d (5)

4
S = gVT3 . (5.30)
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Hence, in an adiabatic change of the gas the temperature varies as T o V—1/3. When the

volume V' = L3 expands, the temperature decreases as T oc 1/L.

A more detailed analysis by W. Wien in 1893 based upon electromagnetism
and thermodynamics led to the result that the spectral energy density had to
have the form

1

ENT) = N (\T) . (5.31)
Instead of being a function of two independent arguments, \>£ is a function of
only one variable. The spectral form of the energy density at one temperature
is then directly related to the form at any other temperature. This represents
one of the first non-trivial scaling results in physics and was later confirmed by
accurate measurements repeated at different temperatures.

One important consequence of Wien’s result is the relation

AT = b = const (5.32)

between the wavelength where £(A,T') has its maximum and the temperature.
The higher it is, the shorter is the wavelength where the radiation is most
intense. It is called Wien’s displacement law and follows directly from taking
the derivative of (5.31). At the maximum we have

ae
d\
which gives 5f (A T) = AnTf (AnT). Solving the equation, it results in a
certain value b for the product A\, T characterizing the maximum. The experi-
mental value for the constant was found to be b = 0.29 em K.
A combination of phenomenological analysis and deep, theoretical insight
led Max Planck in the fall of 1900 to his famous formula for the energy density
of thermal radiation. He wrote it as

8mhe 1
N> ehc/XKT _

0= —BXSFOT) +TAX°f/(\T)|x,,

ENT) =

(5.33)

where k is Boltzmann’s constant and h was a new constant Planck was forced
to introduce. We see that it has the scaling form (5.31) previously predicted
by Wien. When plotted as function of the wavelength A, it has the general
shape shown in Fig.5.3. Experimental data were now reproduced by using the
values h = 6.55 x 10734 Js and k = 1.35 x 10723 J/K for these constants.
They should be compared with the modern values h = 6.625 x 10734 Js and
k = 1.380 x 10722 J/K. Since k is given in terms of the gas constant R as
k = R/N,, Planck obtained in this way one of the first accurate values for
Avogadro’s number N4 and therefore indirectly the scale of the atomic world.

Planck derived his radiation formula from assuming that the electromagnetic
field could be treated classically. It interacted with the matter in the walls which
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he furthermore assumed could be described as harmonic oscillators. The formula
then followed if these oscillators could absorb and emit radiation with frequency
v = ¢/ only in discrete quanta of energy

e=hv. (5.34)

Later it turned out that it was this last assumption which went fundamentally
against classical physics and which he resisted very much himself, which held
the key to the correct derivation of this result.

It was first after Einstein’s explanation of the photoelectric effect in 1905 that
a correct understanding of Planck’s formula emerged. Instead of quantizing the
atomic matter in the walls containing the radiation, it was the electromagnetic
field itself that had to be quantized. The quanta are photons which can be
treated as the particles in this new quantum gas.

Let us consider a cubic cavity of volume V = L? within a body of tempera-
ture T'. Since it does not contain any matter, the electric field within the cavity
satisfies the electromagnetic wave equation

v? - Lo E(x,t) =0. (5.35)
(v =)

The solution can always be written as the Fourier series

E(x,t) = \/E > Ex(t) e (5.36)
k

where the sum goes over all possible modes with wavenumbers k where |k| =
27 /A. Inserting this in the wave equation, we see that the amplitudes must
satisfy the differential equation

Ex + k2B, =0. (5.37)

But this is just the equation of motion for a harmonic oscillator with angular
frequency w = kc. Thus the quantum theory of the electromagnetic field is
given by the quantum mechanics of the harmonic oscillator. If the energy of
the oscillator is €, = nhw, disregarding the zero-point energy, we say that the
corresponding mode of the field contains or is occupied by n photons. This
is the point in the derivation where we make use of the fact that photons are
bosons so that we can have any number of them in the single photon quantum
state labeled by the wavenumber k. Since the average energy at temperature T'
of the photons in this oscillator mode is

00 I —nhw/kT h
(ex) = Z”:&n weh T = % A (5.38)
Zn:(] e—nhw/ ehw/kT _ 1

we obtain the total thermal radiation energy from all the modes of the field as

the sum
UT) =2 (a).
k
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We have here multiplied by a factor 2 since the electric field has two independent
transverse polarization states. This follows from the Maxwell equation V-E = 0
which gives k-Ey = 0. The vector Ey is therefore orthogonal to the propagation
vector k.

When the volume V is large, the modes are so dense in the wavenumber k
that the sum can be obtained the same way as in the sum (2.48) over modes for
a non-relativistic quantum particle in a box. We then get the integral

>k hw
T)=2 .
U( ) V/ (277)3 ehw/kT _ 1

Now using w = k¢, we find that the energy density £(T') = U(T)/V can be
written as

E(T) = /Ooodwg(w,T) (5.39)

where the spectral density is

w? hw

7208 ehw/kT _ 1 °

E(w,T) = (5.40)
This is just Planck’s result (5.33) expressed in terms of the angular frequency
w instead of the wavelength A. It follows from w = 2mc¢/X\ and the require-
ment E(A,T) dX\ = E(w, T') dw which must be satisfied in order to give the same
integrated energy density.

In the long-wavelength limit where AT > hc, we can approximate the
denominator in the Planck formula (5.33) by

Ghe/ART _ he

~

AT

and it simplifies to

8T
ENT) ~ FkT . (5.41)
Since Planck’s constant has canceled out, there are no quantum effects in this
reduced formula. It had previously been derived by Rayleigh and Jeans using
the classical result (e ) = kT for the average energy of the oscillator mode at
finite temperature. Similarly, in the short-wavelength limit AkT < hc we see
that Planck’s formula takes the form

ENT) = %e—cz/” (5.42)

where the constants C7 = 8whc and Co = he/k. It was also written down
earlier by Wien who combined his scaling formula (5.31) with the the Maxwell
distribution u o< e=¢/*T to arrive at this form with unknown constants C; and
Cs.
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In order to verify Wien’s displacement law (5.32), we take the derivative of
the energy density (5.33) with respect to A. It gives the equation y = 5(1 —e™¥)
where y = he/AnkT. We see that the solution is y ~ 5. Writing y = 5 — 6
and keeping only the leading terms, we obtain § ~ 5¢~® = 0.03. The maximum
in the intensity is therefore given by A,,T ~ he/4.97k which agrees with the
measured value b = 0.29 em K.

We can now calculate the total energy in the radiation field by integrating the
spectral density (5.40). Replacing the integration variable w with x = hw/kT,

we find
ET\* n [ o8
T = — —_— . 4
&(T) (n) 7T2c3/0 do—— (5.43)

The finite integral has the value I3 = 74/15 and we recover the radiation law
(5.29) with the Stefan-Boltzmann constant a = 72k*/15h%c?. Needless to say,
it agrees with the measured value.

Integrals of the form

oo xp
L= [ dax - (5.44)
0

eT —

can be expressed by the Riemann zeta-function ¢{(s). When s > 1, it is given by the infinite
sum
oo
1
=y —. (5.45)
n=1
One can show that ¢(2) = 72/6 and ¢(4) = 7*/90.
Multiplying the numerator and denominator in the integral by e~

resulting denominator in a geometric series, we find

o o)
I, = E / dx zPe™ "% .
n=1v0

This integral is just the definition of the I'-function which gives

p_—nx _ :
/0 dz zPe = i (5.46)

In this way we obtain for the desired integral

x

and expanding the

oo

Iy =p! Z np1+1 =pl¢p+1). (5.47)

n=1

Thus I3 = 6#4/90 = 7r4/15 as used above. It will appear many other places in the discussion

of quantum gases

The average number of photons in the mode with wavenumber k is from
(5.38) just

1

(nk) = Shw /KT _ | (5.48)
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since each photon in this mode has the energy e¢x = hw. Integrating over all
modes, we find the photon number density

d*k 1
n(T) = 2/ (2m)3 ehw/T _ 1
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Figure 5.3: Spectral energy density of the cosmic blackbody radiation measured by the
COBE satellite. The fit corresponds to a temperature 7' = 2.735 + 0.06K.

This integral can be done in the same way as for the energy density. We
then obtain

ZANR 3, —3 17-—3
n(T) = 2.404 (h> sy 20.37T°em™° K (5.49)
where we used Iz = 2((3) = 2.404.

In 1965 Penzias and Wilson discovered that the universe is filled with black-
body radiation of temperature T' ~ 3K. It was immediately explained as the
cooled-down remnant of the very hot radiation present in the universe just af-
ter the Big Bang. It provides detailed information about the conditions in the
universe at that early time and meant an enormous leap in the understanding
of this era and has many cosmological implications.

Since then one has studied this background radiation much more accurately.
The most recent results for the energy spectrum from the COBE satellite is
shown in Fig.5.3. It fits beautifully to the Planck formula with a temperature
of T'=2.73+£0.01 K. From (5.49) we see that it corresponds to n = 413 photons
per cm? left over from the initial bang 15 billion years ago. In all directions of
space one finds the same temperature to an accuracy of AT/T ~ 10~° when
local motion is corrected for. On these scales one sees a very isotropic universe
which present-day research in astrophysics is trying to explain.
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5.3 Phonons and the Debye theory of specific
heats

The simplest picture one has of a solid state material is a regular lattice with
atoms occupying all the sites as indicated in Fig.5.3. In a metal the atoms are
replaced by ions and there are conduction electrons floating more or less freely
around between the ions.

Figure 5.4: The atoms in a solid are held in equilibrium positions by elastic forces and form
a regular lattice.

At temperatures much below the melting temperature, the atoms will vibrate
around their equilibrium positions. Assuming that each of the N atoms is only
coupled to its nearest neighbors with a common coupling constant K, we can
write the Hamiltonian for the lattice as

1 & 1
H = o 0} + ) + 3 ZKij(CIi - q;)? (5.50)
i=1 i<j
which describes a set of coupled harmonic oscillators. Her K;; is non-zero only
for neighboring atoms. The common frequency w would arise if the atoms were
uncoupled. There are 3N independent coordinates and momenta since each
atom can vibrate in 3 different directions. By introducing normal coordinates

3N
Qi = Zaiqu‘ (5.51)
j=1

and corresponding momenta, one can determine the coefficients a;; in such a
way that the Hamiltonian takes the diagonal form

13N

H=g ;(Pf +wiQ) (5.52)
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which is a sum of harmonic oscillators. Using classical, statistical mechanics
we then see that the internal energy of these lattice vibrations is just U =
3NKT. This follows directly from the virial theorem for a Hamiltonian which is
quadratic both in momenta and coordinates. The specific heat is therefore just
Cy = 3Nk which is Dulong-Petit’s law. It was found to be in agreement with
measurements on insulators at relatively high temperatures. For metals there
should be an additional contribution coming from the electron gas. Again, using
classical statistics, it should be of the order of 3k/2 per electron. This addition
to the Dulong-Petit value was not seen and represented a real problem for the
understanding of metals.

The first quantum theory for these solid state specific heats was made in
1907 by Einstein. He treated each oscillator in (5.52) by quantum mechanics.
In analogy with the quantization of the electromagnetic field, we now say that
if the oscillator with frequency w; has the energy n;hiw, there are n; phonons in
this mode. The phonons are the quanta of lattice vibrations as the photons are
the quanta of electromagnetic oscillations. The average energy of the phonons
with frequency w; is therefore

hwi
(€)= ohwi JRT _ 1 (5.53)
In addition, Einstein assumed that the oscillators were not coupled as in (5.50).
Hence, they had all the common frequency w. Their internal energy is then
simply

3Nhw

U= ohw/KT _ 1

(5.54)
Taking the derivative with respect to the temperature, we then find the specific
heat

2 hw/kT
Cy = 3Nk h—w 872 . (5.55)
kT (ehw/kT — 1)

In the limits of very low and high temperature, it takes the simpler forms

hw\2 —hw/kT
Cv—{ 3Nk (22)" e h/RT T < hw/k (5.56)

3NE, T > hw/k

Above the characteristic Einstein temperature Ty = hw/k we recover the Dulong-
Petit law. Comparing with measurements as in Fig.5.5, we see that at lower
temperatures it reproduces quite well the trend of the data and gives a specific
heat which goes to zero at very low temperatures in agreement with the third
law.

But more detailed measurements revealed that the specific heat did not
approach zero exponentially with the temperature as it should according to
(5.56). In 1912 a better theory was constructed by P. Debye. He abandoned
the unrealistic assumption of Einstein that all the vibrations have the same
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Cy/Nk

Figure 5.5: Einstein’s theory gave specific heats which were too small at low temperatures.

frequency. He accepted the fact that there should be 3N normal modes, each
with its own frequency w; as in the Hamiltonian (5.52). Instead of (5.54) one
should therefore have the internal energy

- 3N o
Uu=>" ST T (5.57)
=1

Introducing the density of modes

3N
D(w) = Z d(w — wi), (5.58)
i=1
we can write the internal energy as the integral

o hw

When the number of particles N is very large, the different frequencies can
be considered to form a continuum with density D(w), i.e. there are D(w)Aw
frequencies between w and w + Aw. We obviously have the normalization

/Oode(w) = 3N (5.60)
0

which follows directly from the definition (5.58).
Taking the derivative of the internal energy (5.59) with respect to the tem-
perature, we find the specific heat

00 B 2 ehw/kT
C :k/ dw() —— 5 D(w) . 5.61
v 0 KT') (ehw/kT — 1>2 () (5.61)

Because of the constraint (5.60) on the density of modes, it is reasonable to
expect that there is an upper frequency wp above which there are no modes.
For temperatures T' > hwp /k we can therefore make the approximation
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in the integral (5.61) for the specific heat. Thus, at these high temperatures it
becomes

Cy :k:/ dw D(w) = 3Nk
0

in agreement with the Dulong-Petit law.

At very low temperatures it is the low-frequency part of the phonon spectrum
which is important. This corresponds to long wavelengths where the lattice can
be treated as an elastic continuum. The lattice vibrations are then just sound
waves where the discrete amplitudes g;(t) are replaced by the continuum sound
field g(x,t). It is now described by the wave equation

1 92
<v2 - wa#) q(x,t) =0 (5.62)

where v is the sound velocity. As for the electromagnetic field we introduce the
Fourier expansion

q(x,t) = \/E > alt) e (5.63)
k

in modes of definite wavenumber k where V' is the volume of the system. Each
modes is then seen to satisfy the equation of motion

Gk + 0k e =0 (5.64)
which again is a harmonic oscillator with frequency w = vk. The thermal energy
of the phonons in the mode with wavenumber k is then

hw

{e) = o1 (5.65)

and the total internal energy is
UT) =3 (). (5.66)
k

We have here multiplied by a factor three since the sound field can have a
longitudinal polarization along k in addition to the two transverse polarizations.

Even if this description of the lattice vibrations is only valid in the long-
wavelength limit, Debye assumed that it was valid for all the modes. Replacing
the sum in (5.66) by an integral,

A2k hw
T =
U(T) =3V [ G e

and using the continuum result w = vk, we find for the internal energy

BV [P 5w

= 5o |, p (5.67)

U(T)
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Comparing with (5.59), we see that in this approximation the density of modes
is

_ 3V w?
2723
for all frequencies less than the Debye frequency wp and zero otherwise. In
order to satisfy the normalization (5.60), wp is determined by the integral

3V [ep
2n2v3 J,

D(w)

(5.68)

dww? = 3N

which gives
wp = v(672p)t/3 (5.69)

in terms of the density p = N/V of atoms in the solid.

If the lattice distance in the solid is a, we will find the density to be p = 1/a® and thus a
Debye frequency of wp ~ 4v/a. For copper we have a = 2.3 x 10~8 em and a sound velocity of
v = 2.6 x10% em/s. This gives wp = 4.5x 1013 s~1. The numerical value for the characteristic
Debye temperature Tp = hwp/k is then Tp = 350 K. Even at room temperatures we will

then have quantum corrections to the specific heat.

In Fig.5.6 we we give an example of how the physical density of modes D(w)
compares with the Debye approximation. While they will by construction agree
at low frequencies, the large discrepancies at higher frequencies will have little
effect at low temperatures where it is important that the theory works.

D(®)

O Q)

Figure 5.6: The Debye approximation to the phonon density of states is best at low fre-
quencies.

We can now find the specific heat from (5.61) using the density of modes
(5.68). Changing integration variable to x = hiw/kT, we can write the result as

Cy = 3NkF(Tp/T) (5.70)
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where we have introduced the Debye function

3 [Y zte®
F(y) = E/o dx W (5.71)

and Tp = hwp/k. At temperatures much above the Debye temperature T
we can replace e” — 1 with z in the integral and find F(y — 0) = 1. This
gives just the Dulong-Petit result. In the opposite, low-temperature limit where
Tp < T, we can take the upper limit in the integral to be infinite. By a partial

integration we then
o] $4€z 1‘4 o o] $3
/ dr—2C +4 / e
0 (eac_l) €I—10 0 e —1

The first term vanishes in both limits while the last integral is just I3 = 7*/15
in (5.43) which gives the energy density of the black body radiation. Hence, we
have for the Debye function in this limit

3 4 47t
Fly—o00) = ——nt=—"
(y — o) ST T 5

and the specific heat at very low temperatures is

12 T\°
Ovngknr“ <> . (5.72)

It varies with temperature as Cy o< T3 which agrees very well with measure-
ments. This behavior at very low temperatures is often called the Debye T3
law.

From the general result (5.70) for the specific heat, we see that it can be
said to have an universal form in this approximation since it varies the same
way with temperature for all solids when plotted in terms of T/Tp. Since
this is experimentally found to be true also for metals, it must mean that the
contribution from the conduction electrons is negligible at these temperatures.
We will see that this is a consequence of the Fermi-Dirac statistics which govern
their thermal behavior.

5.4 Bosons at non-zero chemical potential

Comparing our results for the mean energies of photons or phonons in a mode
with wavenumber k with the expressions we derived in Chapter 2 for particles
obeying Bose-Einstein statistics, we see that photons and phonons both have
zero chemical potential p. This is due to our inability to exactly fix their
numbers in the presence of an confining enclosure at finite temperature T'. For
massive particles like mesons or bosonic atoms the situation is different. As
long as the temperature and their interaction energies are much lower than
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their masses, we can always determine their exact number. In an open system
it is regulated by the chemical potential.

We will again consider free particles without any interactions. Each can
then take an energy es which is a non-degenerate eigenvalue of the one-particle
Schréodinger equation. A quantum state of a system of many such particles
is then completely determined by just stating how many particles ns; have the
energy £5. They enter the description in a completely symmetric way done since
they are indistinguishable. We cannot say which particles take the different
energies, only how many there are in the different energy levels. The total
number of particles in the system is therefore

N=3n, (573)

and their energy is

E = Znsss . (5.74)

In the canonical ensemble we must then calculate the partition function

Z=e P = Z POIRILE (5.75)
{ns}

which give the Helmholtz free energy F(T,V). It is obtained by summing over
all the quantum states specified by the set of occupation numbers {ns} keep-
ing the total number of particles (5.73) fixed. However, this turns out to be
mathematically difficult and will not be pursued further here.

It is much simpler to use the grand canonical ensemble derived in Chapter
3. The partition function

(1]

— B2 _ Z e~ B(E—pN) (5.76)
{ns}

then gives the Landau free energy Q(7,V,u) = —PV and is the unrestricted
sum over all sets of occupation numbers {n;} taken to be independent of their
total sum. Inserting the expressions (5.73) and (5.74) for N and E, we get

=_ H Ze—ﬂ(as—u)ns ) (5.77)

For bosons the occupation number ng can take any value between zero and
infinite. The sum is then a simple geometric series giving

B — H i e Blea—pne _ H {1 _ e*ﬁ(fs*#)} ! (5.78)

s ns=0 s

as long as p < 5. Thus the chemical potential for free bosons must be less or at
most equal to the lowest one-particle energy. We then have for the free energy

Q=kT> log [1 - e*f’(sﬂﬁ} . (5.79)
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The mean number of particles follow from N = —9Q/Jdu which gives

1
N=>)" e (5.80)

This implies that the average number of particles with energy ¢, is

1
(ne) = S (5.81)

which is just the Bose-Einstein distribution (2.68). It gives the total internal
energy of the system

Es
U=>y_ e — (5.82)

which agrees with what we previously used for photons and phonons when p = 0.

In the classical limit the temperature is high and/or the density low so that
the occupation numbers (ny) < 1. This corresponds to having a large and
negative chemical potential so the fugacity A = e’* < 1. Now making use of
the expansion

n

log(1—z)=— % (5.83)

n=1

we find from (5.79) the leading terms
1
_— _B s — 2 _26 s e
Q=—kT A%e €+2)\ %e s 4 (5.84)

in this limit. The individual sums can here be expressed by the one-particle
partition function

Zy =Y e (5.85)

Keeping only the first term, we then have 52 = —A\Z; so that the grand canon-
ical partition function for free bosons in the classical limit is

E=eM = f: VAL (5.86)
2 2T :

From (3.64) we know that it can also be written in terms of the N-particle
canonical partition function Zy as

o

= E N

= = A ZN~
N=0
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Comparing with our quantum mechanical result above, we see that we must
have Zy = Z{N/N!. This is the famous N! we had to introduce rather ad
hoc in classical statistical mechanics of identical particles in Chapter 2. Here
it comes out naturally in the classical limit from the symmetric treatment of
indistinguishable bosons.

From (5.84) we see that we can evaluate corrections to the ideal gas equation
of state due to quantum effects. Expanding the particle number (5.80) in powers

of \, we get
Z1p 2 (225
=\ A2 [ 228
() ()

when we introduce the particle number density p = N/V and denote the par-
tition function (5.85) by Zis. To lowest order, this gives the fugacity A =
(V/Z15)p. Including the second term we obtain the more accurate result

)G e

The pressure now follows from (5.84) which gives
Z1p 2 (228
P = kT |\ N =2
() ()
1(V Z%) ) }
Kl'lp—=-|=— || 5 +e 5.88
[p (Zw) (Zlﬁ g (588)

when inserting the fugacity and expanding again. These are just the first two
terms in the virial expansion of the quantum equation of state. We see that the
second virial coefficient for bosons is

Bo(T) = — (ZZ) (22) . (5.89)

Since the partition functions are always positive, the pressure in the ideal gas of
bosons is reduced because of quantum effects. There is a statistical ”attraction”
between the particles because of their willingness to occupy the same quantum
states.

For free and non-relativistic particles in a box of volume V the one-particle
states can be labeled by the momentum p and have the energy ep = p?/2m.
The lowest energy is then €9 = 0 so that the chemical potential must be negative
or at most zero. In the partition function (5.85) we can replace the sum over
states by the now standard phase space integration

m 3/2 ) i
Z /%h i <h?> , ke (5.90)

when the box volume V' is macroscopically large and the particle moves in three
dimensions. We then recover the known result Z; = V/A3 where the thermal
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wavelength is

A~ <2W6h2)1/2 _ L (5.91)
B m  \2rmkT .

The virial coefficient (5.88) is then By = —A%/2%/2. We see that the quantum
correction to the pressure (5.88) is given by the quantity pA3 which is small in
the classical limit.

From (5.79) we can now obtain a general result for the Landau free energy.
Isolating the contribution from the ground state, we have

€
KT

log (1 —X\) + Z log [1 - e*’B(EP*“)} (5.92)
P

V 2m 3/2 o0 1
log (1 —\) 4+ — [ == deezlog |1 — e PE—M| (593
og ( )+47r2 (hQ) /0 ce? og[ e (5.93)

Aslong as A < 1 we can safely drop the first term, which comes from the particles
in the ground state, since we are interested in the thermodynamic limit where
N,V — oo for fixed p. A partial integration of the second term then gives

Vo [om\¥%2 [ s e Ble—m)
VD=—-—— | —= = dege? ————
472 \ h 3 Jo 1—eFle—n)
since the boundary term is seen to vanish. But this resulting integral is essen-
tially just the total internal energy

1% 2m 1/2 o 1 9

of the gas. Introducing the energy density & = U/V, we have the important
relation

p- %g (5.95)

for non-relativistic particles. This should be contrasted with the corresponding
result P = (1/3)€& for the thermal pressure of the photon gas which is relativistic.

Expanding the logarithm in (5.93) and interchanging integration and sum-
mation, we get

Q Vo om\YEPS A oo 1
— =log(l=\)— — | = - 3 "Pe
ET Og( )\) 471_2 <h2) 7;) n /0 deeze

The first term is the contribution from the particles in the ground state while
the infinite sum gives the contribution from the particles in the excited states.
The integrals are straightforward and give

9] 1)
1 _—npe 2° ﬁ 3/2
/0 deeze = B 2 (KT)>/= .
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Inserting these expressions and simplifying the sum, we can write the resulting
pressure as

P 1 1
when we make use of the poly-logarithmic function
o0 )\"
gp(N) = Zl — (5.97)

It is convergent for A < 1. When A = 1 we see that it is given by the Riemann
zeta-function as g,(1) = ((p).

We can similarly expand (5.80) for the mean number of particles in the
system. However, it is simpler to use p = dP/0u and make use of the above
expansion to obtain for the density

1 A 1

The first term gives the number of particles in the ground state. As long as
A < 1 it is negligible because it is divided by the macroscopic volume V. We
can now in principle keep any finite number of terms in the polylogarithmic
function and solve for the fugacity A as a power series in the density p. To
second order in the fugacity we have from (5.87)

1
A= pA® — 5(pA3)2 SRR (5.99)

Including higher order terms and inserting the result in the pressure (5.96), we
can then systematically obtain the higher virial coefficients in the equation of
state.

In the normal region where A < 1 we can drop the first term in (5.98) so
that the fugacity is determined by

pA% = gs(N) . (5.100)

Nl

The internal energy is given in terms of the pressure (5.96) as U = 3PV/2 and
becomes
3 kT 3 95 (V)

=-V— = - NkT —2 101

We can now obtain the specific heat in this region. From (5.97) we find that

A0 = gy 1Y) (5102)

which gives



5.5. BOSE-EINSTEIN CONDENSATION AND SUPERFLUID *HE 103

Taking now the derivative of (5.100) with respect to the temperature at fixed
density we similarly find

0 3
93Nl === g3 (V)

Combining these two results, it follows that

)\ 3) 92(A)
(aT>p -G (5.103)

1
2

We can now find the specific heat from (5.101) by direct differentiation and
obtain

3 595(A)  393(A
— SNk [ N ] . (5.104)

To lowest order in A the parenthesis reduces to 14+ A/27/2 4 ... and thus

3 1 3
CV—§Nk {1 + WPA +} . (5.105)
The specific heat is seen to increase above the ideal gas value at lower temper-
atures.

5.5 Bose-Einstein condensation and superfluid
‘He

The quantum effects in the gas depend on the quantity pA® which is small in the
classical limit. Working at fixed density p, we see from (5.99) that the fugacity
will first increase by lowering the temperature at fixed density. At even lower
temperatures A approaches the value one and it must be obtained numerically
as a root of (5.98). Since the function g3 (A) is steadily increasing with A as
shown in Fig.5.7, this is quite straightforward. At a temperature T, determined
by

pA} = g3 (1) = ((3/2) = 2.612 (5.106)

it is so close to one that we must reckon with the number of particles in the
ground state,

1 A
ePr—1" 1-2\

which now seems to diverges. This signals that a macroscopically large number
of particles will start to occupy the lowest-energy state. It is called a Bose-
Einstein condensation. The fugacity is A = 1 —1/Ny and the chemical potential
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g3/2(}\')
2612 f-------m e
pA3 """"""""""""""""""""""""""" d i
o :
0 A 1

Figure 5.7: Graphical determination of fugacity as function of density and temperature.

2.612 OA?

Figure 5.8: Fugacity as function of temperature and density in the ideal Bose-Einstein gas.

is u/kT = —1/Ny. When Ny becomes macroscopic this can safely be taken to
be zero. Below the critical temperature

727‘1’7‘7,2( p >2/3

T. = —(—— 1
km \2.612 (5.108)

we therefore have A = 1 as shown in Fig.5.8.
Below the critical temperature we will have pA3 > 2.612. Equation (5.98)
can then be written as N = Ng + N, where

T 3/2
N, =2612VA® = N(T) (5.109)
c

is the number of particles in the excited states. It goes to zero with decreasing
temperature. At the same time the number in the ground state

T\ 3/2

N (5.110)
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a) b)

Figure 5.9: Fractions of particles in the condensate a) and in excited states b).

increases as shown in Fig.5.9. Below the critical temperature we have a sepa-
ration of the gas in two phases. The particles in the excited states constitute
the normal phase while the condensed phase consists of the particles in the
ground state. In contrast to the normal gas-liquid condensation there is here
no spatial separation into phases with different properties. Since the particles
in the condensate all are in the state with p = 0 one can instead consider
the somewhat special Bose-Einstein condensation an ordinary condensation in

momentum space. At T'= 0 we find all the particles in the ground state.
In two dimensions there is no Bose-Einstein condensation at finite temperature. The
chemical potential is then determined by

d?p 1
N=V
/ (2%5)2 eBlep—n) 1

where now d?p = 2wpdp = wdp? = 2mmde. The integral then becomes
_m o 1
r= 27h? 0 ePle—p) —1

A=1-ePA" (5.111)

It increases smoothly with decreasing temperature and takes the value A = 1 at exactly 7" = 0.
Thus there is no Bose-Einstein condensation in this system except for 7' = 0 when all the
particles are in the ground state. One can prove that even with interactions between the
particles there will be no condensation in two dimensions at non-zero temperatures.

This exact solution now allows us to also find the full virial expansion of the equation of
state as shown by Susanne Viefers. Writing

which is easily done and gives

dP  OP ou
dp ~ o dp
we see that first derivative is just the density and the second is obtained from (5.111) as
Op  kTA?

ap T epA? 1
Hence, we obtain the differential equation
dP A2
i

—_ 5.112
0 A 1 (5.112)
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It can be directly integrated by using the famous expansion

oo
T z"
promi ZBn o (5.113)
n=0

where B,, are the Bernoulli numbers, Bo =1, By = —1/2, Bp = 1/6, By = —1/30, Bg = 1/42
etc. We then find

1 1
P =kTp |1 = 2pA? + = (pA?)? 5*

% (pA%)8 + .. ] . (5.114)

- (PA

3600 211680

One obtains exactly the same result for fermions except for the second virial coefficient which
then has the opposite sign.

Only the particles in the excited states will contribute to the thermodynamic
properties of the system. Everything follows from the pressure (5.96) which
equals minus the Landau free energy density. Since xlogx goes to zero when
x — 0, the first term will give nothing in the thermodynamic limit. The pressure
becomes

3/2
P="T5/0) = 1311 (2";2) (kT2 (5.115)

=13

and is shown in Fig.5.10. It is independent of the density which is typical for a
gas in equilibrium with its liquid. Thus we call the change in the gas when the
temperature is lowered through the critical temperature for a first-order phase
transition.

From (5.95) we find the internal energy in the condensed phase to be

3 kT 3 C(5/2) [ T\*?
U=3V550(5/2) = 5 NKT @) (T> (5.116)

At the critical point where T' = T, we see that this agrees with (5.95) which

Figure 5.10: The pressure is function of the temperature only in the condensed region.
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was derived from the high-temperature expansion. Finally, the entropy follows
from S = —(0Q/0T),, which gives

51 5 ¢(5/2) (T\*?
S=-Vk—=((5/2) = =Nk — . 5.117
5 VE s B/2) = 3 ¢(3/2) \T. ( )
It goes to zero when T' — 0 in agreement with the third law of thermodynamics.
The condensate is seen to make no contributions to the energy and entropy.
From the internal energy (5.116) we can now obtain the specific heat below
the critical temperature and write the results as

3/2
Cy = % Nk ggﬁ; <§> . (5.118)

It increases like T3/2 to the critical point. At higher temperatures we can use
(5.104) which is seen to give the same result at T' = T, since the last term will
vanish there, g 1 (1) being infinite. The combined results are shown in Fig.5.11
where the singular behavior of the specific heat is clearly seen at the critical
point. It has here a value

B e 13 o5 v (5.119)

Cv(Te) =5 2.612

which is significantly larger than the classical value of 1.5 Nk. This peak in
the specific heat signals a transition into the mixed phase of the gas where the
particles start to accumulate in the ground state.

Bose-Einstein statistics was first predicted by Satyendra Nath Bose in 1923. Bose submit-
ted the paper Planck’s Law and the Hypothesis of Light Quanta to Philosophical Magazine
but was turned down for unknown reasons. Bose then took his work to Einstein who recog-
nized its merit, translated it to german and had it published under Boses name in Zeifskrift fur
physik in 1924. Bose had earlier translated Einsteins work on general relativity to. Einstein
extended Boses work to include massive particles like Heq atoms, and so laid the foundation
for the theory of Bose-Einstein condensation, hence the name of this phenomenon. His paper
on this was published together with Boses paper. Seventy years later, the first gaseous con-
densate was produced by Eric Cornell and Carl Wieman in 1995 at the University of Colorado
at Boulder NIST-JILA lab, using a gas of rubidium atoms cooled to 170 nanokelvin. Eric
Cornell, Carl Wieman and Wolfgang Ketterle at MIT were awarded the 2001 Nobel Prize in
Physics.

We can now get a picture of the full equation of state for the ideal quantum
gas of bosons. Below the critical temperature we know from (5.115) that the
pressure varies as 7°/2 as shown in Fig.5.10. Since it is independent of the
density, the condensed phase will fall on this line while we have the normal gas
phase below and to the right.
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Figure 5.11: Specific heat of the ideal Bose-Einstein gas (full line) and measured values in
4He (dashed curve).

Until now we have worked at a fixed density. Varying instead the density of
the gas at a fixed temperature, we will find a behavior as illustrated in Fig.5.12.
Increasing the density from zero we fill find that the pressure with p, but will
be below the classical result when the quantum effects become non-negligible.
At a certain critical density p. again given by p.A3 = ((3/2), we will start to
have condensation into the ground state. Even higher densities will not change
the pressure which remains at its critical value P.. Solving for kT in terms of
pe we find it to be

P

i 2O (o Y (5.120

=G ¢(5/2) =1.341 — 3612

The equation of state can now be illustrated by the PVT diagram in Fig.5.13.
There is a rising, flat plateau corresponding to the density-independent pressure
in the mixed phase. It is separated by a critical ridge from a steadily falling hill
which is the pressure in the normal phase.

Bose-Einstein condensation is due to the quantum effects in the gas following
from symmetric statistics. The smaller the mass of the particles, the higher is
the critical temperature and the more easily should this quantum phenomenon
be seen. Thus it should first show up in hydrogen gas Hy;. But among these
molecules there are relatively strong, attractive forces which makes this gas
solidify instead at very low temperatures.

Helium in nature is almost pure *He and hence a boson gas. It was first
liquefied by Kammerlingh Onnes in 1908 at a temperature of 4.2 K at normal
pressure. As is typical of boiling, gas bubbles then rise to the surface and
the liquid is very agitated. When the temperature is reduced further down to
T\ = 2.2 K, the boiling suddenly stops. The liquid becomes very smooth and
one can see through it. It has made a transition into a new

phase now called He I while the liquid phase above T} is called He I. The
phase diagram is shown in Fig.5.14. It has a critical point at 7' = 5.2 K and
pressure P = 2.26 atm. We see that T), really marks a triple point where the gas
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Figure 5.12: Pressure of the ideal Bose-Einstein gas at a given temperature as function of
the density.

Figure 5.13: Equation of state for the ideal Bose-Einstein gas.

and the two liquid phases are in equilibrium. The A-line marks the transition
between He I and He I1. While the transition between the gas and the liquid
phases are of first order, the A-transition is continuous and is usually called a
second-order transition.

P
atm
4 4
He Il Hel
A~ line
liquid
2
1 3 5 T

Figure 5.14: Phase diagram for 4 He. There is also a solid phase at much higher pressures.
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In 1938 P. Kapitza discovered that the viscosity in He I became exceedingly
small when the temperature was reduced below T). It can flow through small
pores without any resistance and we say that it is a superfluid. If an empty
beaker is dipped down into He I1, the liquid will flow up along the outside walls
and into the beaker. When it is lifted up again, the liquid crawls out of the
beaker again.

The name A-transition comes from the form of the specific heat. As is
shown in Fig.5.11, it diverges at the transition temperature T). At very low
temperatures it increases from zero like T° and approaches the classical value
at high temperatures. It has the shape of the Greek letter .

One of the first to suggest that this transition could be explained as a Bose-
Einstein condensation was F. London in 1938. The zero-energy condensate
should then be the superfluid component while the particles in the excited states
compose the normal component. If we use the atomic mass m = 6.65 x 1072* ¢
for helium and the liquid density p = 2.2 x 10722 em ™3, we find from (5.108)
the critical temperature T, = 3.1 K which is surprisingly close to the observed
transition temperature Ty = 2.2 K.

But there are also many features in the observed helium system which do
not agree with the results for an ideal boson gas. First of all, since we have
neglected the weak, but non-zero interactions between the atoms, we do not find
the normal, first-order transition into the liquid phase He I and the associated
normal, critical point at 7' = 5.2 K. Second, the transition across the A-line is of
second order, while theory predicts a first-order transition. Also the transition
pressure should increase with temperature as shown in Fig.5.10, but the physical
phase diagram in Fig.5.14 shows that it actually decreases along the A-line.
Helium expands when it is cooled down into the superfluid phase as water does
when it freezes into ice. As already pointed out, the specific heat increases from
zero like T instead of 7°/2 and the specific heat diverges at the critical value
in physical helium. At zero temperature only around 10% of the particles are
found in the condensate while the Bose-Einstein theory predicts 100%.

Using modern quantum theory one can today better understand the su-
perfluid properties of interacting bosons at low temperatures. The interaction
potential will have the same form as the Lennard-Jones potential in Fig.4.1 for
real, classical gases. As in real gases one will again find an ordinary condensation
of helium into the liquid phase He I due to attractive part of the potential. It
has the hard-core repulsion which primarily gives rise to superfluidity. At very
low temperatures it will then have many properties similar to what we found in
solids. Instead of one-particle excitations with energy & = p?/2m as in the ideal
case, we can now have collective sound excitations of the system where many
particles act together in a coherent way. The corresponding phonon excitations
with energies € = vp will then explain the T2 behavior of the low-temperature
specific heat as in the Debye theory. In addition, we find that the pressure in
the condensed phase is no longer independent of the density. In Fig.5.10 the
condensed phase will then be above the plotted curve and thus in better agree-
ment with the physical phase diagram Fig.5.14. Even at zero temperature there
will be a non-vanishing pressure in the gas due to the repulsion. There are no
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longer any restrictions on the chemical potential and it becomes positive at very
low temperatures when it starts to condensate.

With interactions between the particles, we can now longer talk about one-
particle energies and condensation into the ¥p—¢ quantum state. However, it
turns out that we can instead introduce a macroscopic wave function ¢(x) which
describes all the particles in the superfluid condensate. The absolute square of
the wave function, ¢*(x)¢(x), is then no longer the probability to find one
particle in position x, but the density of particles in the condensate at this
position.

We can now construct an approximate expression for the Landau free energy
Q describing in a qualitative way the phase transition. The particles in the
condensate has a momentum p = (h/i)V. At low temperatures where we can
neglect entropy effects, we then have Q = <fI — /d/\f ) and thus

o [as [;,gw*) (V) + 5 (607 —uoo| . (5.121)

The first term is the density of kinetic energy p?/2m of the particles in the
condensate and the middle term represents the repulsion between the particles
with a strength given by the constant x. In the last term p is the chemical
potential and the integral over ¢*¢ gives the total number of particles. In
thermodynamic equilibrium, this free energy should be minimal. Since the
kinetic piece always is positive, we reduce the energy by taking |¢| = const.
The free energy is then given by the last two terms which often is called the
effective potential of the condensate,

Vers =K (8%¢)% —po*o. (5.122)

In the normal phase p is negative and it has the form shown in Fig.5.15 with
a minimum for |¢| = 0. The density of particles in the condensate is therefore
zero as expected. On the other hand, when p > 0, the effective potential has a
non-zero minimum at

m

Po=1/5; (5.123)

which gives the energy density Vesr(¢o) = —p?/4r. Since this is lower than
the energy of the normal phase with ¢ = 0, the condensed phase is now the
thermodynamically stable one. If we assume that the chemical potential varies
like p o< (T — T') near the phase transition, the modulus of ¢ varies as

p| o< (T — T)'/? (5.124)

below the critical point as shown in Fig.5.16. The number of particles ¢*¢ in
the condensate varies then with temperature similarly to what we found for the
ideal Bose-Einstein gas in Fig.5.9.

The interaction term & (¢*¢)? in 5.121) can be understood in the following way. Consider

a gas of electrons and protons. If the electrons have the wave function 1. (x), the density
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Figure 5.15: Effective potentials for *He. The normal phase is stable in a) while the
superfluid phase is stable in b).

of electrons at position x is pe = ¥}(x)1e(x). Similarly, the density of protons is pp =
1y (X)¥p(x) if they have the wave function ¥p(x). The Coulomb attraction between electrons
and protons will thus be Vep o< —€2pepp = —engweQb;wp where e is the electric charge. The
same reasoning then gives a Coulomb repulsion energy Vee o €2pepe = €2 (i1be)? which has

the form we used for the repulsion between the helium atoms.

A

]

—

Tc

Figure 5.16: Order parameter for *He as function of temperature. Above the critical
temperature there is no superfluid condensate.

The macroscopic wave function ¢ is usually called the order parameter for
the quantum liquid. We see that both the free energy (5.121) and the effective
potential remain unchanged if it is replaced by

¢ — pex (5.125)

where the phase x is independent of the position. This is called a global U(1)
phase transformation after the name for the corresponding mathematical Lie
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group. Since ¢ is complex, we see that V. looks like a Mexican hat when plot-
ted in terms of the real and imaginary components. The condensate minimum
can be any place at the bottom of the rim of the hat at position

¢ =goe.
For any choice of the constant angle « there is a minimum of the energy. We
say that we have an infinitely degenerate ground state. The system chooses a
particular value of a and the U(1) symmetry is said to be spontaneously broken.

This rather abstract phenomenon, which was first seen in the superfluid
transition of *He, plays an even more important role in unified theories of the
fundamental interactions between elementary particles. It provides a mechanism
for them to be massive by the condensation of Higgs bosons. At very high
temperatures in the early universe, the condensate goes away and all of the
particles become massless. The corresponding phase transition results in an
enormous inflation of the universe which has many welcome consequences in
cosmology.

Helium gas contains a very small amount of the isotop >He which are
fermions. When it is isolated from the main component, we have a weakly
interacting gas which condenses to a normal liquid around 3 K. But there is
now no A-transition into a superfluid phase. This clearly demonstrates that it
is the symmetric Bose-Einstein statistics which causes the condensation in *He.

However, it was discovered in 1972 that at much lower temperatures around
2mK, there is also a condensation in >He. But here it takes place because the
fermions get paired into composites which effectively act as bosons which can
condense. This phenomenon is very similar to what happens when electrons
become superconducting in metals and can only be understood by considering
interacting particles obeying Ferm-Dirac statistics.

5.6 Fermion gases at finite temperature

We will now develop the thermodynamics of particles obeying Fermi-Dirac
statistics using the grand canonical ensemble. The Pauli principle allows only
one fermion in each quantum state and the partition function (5.77) becomes

1
== 3 et =] [1 n efmsfu)} _ (5.126)

s ns=0 s

Instead of the Landau free energy expression (5.79) for bosons, it is now for
fermions

Q= kT log [1 + e—ﬁ(ss—m} . (5.127)

The mean number of particles in the system at a given temperature and chemical
potential is then

o0 1

S
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with an average number in the quantum state labeled by s given by the Fermi-
Dirac distribution
1
(ng) = el (5.129)

The internal energy

Es

S

will be a function of the chemical potential. This can be eliminated by solving
(5.128) for the fugacity A = e®#. We can then obtain the energy of the system
as a function of the number of particles it contains.

The fugacity A = e®* will always become much less than one at high enough
temperatures. We can then expand the the partition function (5.127) in powers
of A\. As in the case of bosons we then get the virial expansion for the pressure.
The leading term is given by the second virial coefficient and it turns out to
be given by the same expression as for bosons (5.89) when written in terms of
one-particle partition functions, but with opposite sign. Thus the pressure is
larger in the fermion gas than in the ideal gas because of the effective ”Pauli
repulsion” between the particles because of their antisymmetric statistics. This
should be contrasted with the pressure in the boson gas where the pressure is
lower as shown in Fig.5.17.

A
FD s

Figure 5.17: The pressure in the quantum fermion gas is larger than in the classical, ideal
g g g
gas while it is smaller in the quantum boson gas.

At low temperatures the thermodynamics is governed by the chemical po-
tential. For free bosons it must be less than the lowest one-particle energy in
the system and is thus usually taken to be negative or at most zero. This gives
rise to Bose-Einstein condensation. For fermions instead, there are no such re-
striction and the chemical potential can be positive. This will now give rise to
different macroscopic quantum effects.
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At exactly zero temperature we see from the Fermi-Dirac distribution (5.129)
that the ground state of the system consists of having all states occupied with
energies up to a maximal energy called the Fermi energy € as shown in Fig.5.18.
This will then also be the value of the chemical potential. One says that the
gas is degenerate. From (5.130) we then obtain the ground state energy of the
system as

Ey=>) .. (5.131)

Fermions usually have spin S = 1/2 and this expression must be multiplied by
a spin degeneracy factor g = 2 since there can then be two particles in each

energy level.

For the system of spinless fermions in a harmonic oscillator potential considered in the
first section of this chapter, the energy levels are just €, = nhw and the chemical potential is
determined by the equation

oo
1
N = Z e (5.132)

n=0
At low temperatures where kT < Nhw we then find approximately u ~ Nhw + O(kT/Nhw)?
and the energy (5.130) becomes to leading order
N-1 1
Eozthn: SNV = 1).
n=0
It is just the ground state energy we found in the canonical ensemble.
In the high-temperature limit k7" > Nhw we see that terms in the sum (5.132) are so
dense that we can replace it by the integral
kT [ A
N=_— iz ———0
hw o e + A\
RwN/kT

which gives the fugacity A = e — 1 ~ hwN/kET. We are now in the regime where
Maxwell-Boltzmann statistics rule and the internal energy is to leading order

o0
R kT 2
U=2x E nhw e Bhbarw ~ (—”) Nhiw (—) — NkT
kT hw
n=0

as expected. A more accurate result valid down to lower temperatures can be obtained by
using the Euler-Maclaurin summation formula for the evaluation of the fugacity.

For spin-1/2 fermions at zero energy in a 3-dimensional box of volume V' the
sum over momenta p can be done as for bosons by the phase space integral

d®p Vo o2m\*? [~ 1
90N —oy [ 2P _ T (20 de et . 1
2 V = o (F) o (5133)

The Landau free energy (5.127) is then given by

V 2m 3/2 o0 1
0= —kI'— (= dee? log |1+ e Ble=1) 5.134
27r2<h2> /0 ce og[ +e } ( )
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f(e)

=
0 €, €

Figure 5.18: The Fermi-Dirac distribution at zero temperature. There are no occupied
states above the Fermi energy.

and similarly for the internal energy (5.130) which becomes

vV o(2m\Y? [ €

As for bosons, we perform in 2 = —PV a partial integration to show that
the pressure also in the fermion gas is given in terms of the energy density as
P =(2/3)¢.

Now at zero temperature we get from (5.128) for the total number of fermions

in the gas
3/2 e 3/2
No Y (m P A O N TE
2m2 \ K2 0 3r2 \ 2 F

Solving for the fermion energy in terms of the number density p = N/V | we
find

Nl=

h2
ep = %(BWQp)Q/?’ . (5.136)
Writing it as ep = p%/2m, we see that the particles of highest energy have
the Fermi momentum pp = (372p)2/3. For the zero-point internal energy we
similarly obtain

g _V (m 3/2/”(1%- _ V(2 g
07 972 \ 2 o 572 \ h? B

The average energy per fermion & = Ey/N is therefore £ = (3/5)ep at zero
temperature. Correspondingly, for the energy density & = Ey/V we see that
our results are equivalent to

vl

h2

~ 1072m

& (3n2p)5/3 . (5.137)
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Even at zero temperature there will thus be a non-zero pressure

h2

Py =
0~ I572m

(372p)>/3 (5.138)
in the gas due to the Pauli repulsion. It is this macroscopic quantum effect

which keeps degenerate stars from collapsing.
For massless fermions with spin degeneracy g = 2 and energy € = pc the sum over
momentum eigenstates is now instead

V oo
2272 /27rh 5= T /O dee? . (5.139)

Partial integration of the expression for the corresponding Landau free energy gives then the
pressure P = (1/3)€ as for photons which also are massless.
At zero temperature we then obtain the Fermi energy from
vV 14
= ———-¢
72(he)3 3°F
which gives
F = he(3n2p)'/3 (5.140)
when expressed in terms of the number density. The ground state energy is similarly

\% 1
Ey= ————-¢%
0 n2(he)3 4 ¥

which corresponds to an average energy &€ = (3/4)ep per particle. The pressure then follows
from the energy density
he

& = o=

(3w2p)/3 . (5.141)

We notice that it goes like p4/3 for relativistic particles while it goes like p5/3 for non-
relativistic particles. This apparently small difference in the equations of state for these

two kinds of matter have important consequences in astrophysics for the stability of stars.

-fE)
fe)

Figure 5.19: The Fermi-Dirac distribution changes rapidly in an energy interval of size
Ae ~ kT around the chemical potential.
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When the temperature gets raised from zero, some of the particles at the
Fermi level will be excited to higher states and the Fermi-Dirac distribution will
get its sharp corners a little rounded as shown in Fig.5.19. In order to find the
chemical potential, it must now be obtained from

vV o(2m\*? e .1
vogm () [ et (5142)

and then used in (5.135) to obtain the internal energy. Both of these integrals
are of the general form

o0
Fy= [ der@o,e) (5.143)
0
where f(g) is the Fermi-Dirac distribution and
vVo2m\*?
(€)= 55 <h2> eP (5.144)

where we need it for the powers p = 1/2 or 3/2. A partial integral now gives

Fy= 0,05 - | e (), ()

0

where we have introduced the integrated ¢,-function

B,() = /0 “de 6, (e) - (5.145)
The first term vanishes in both limits and we are left with
F, = —/Ooode I'(e)®,(e) . (5.146)
Writing the Fermi-Dirac distribution as
fe) = % - %tanh 52;1’;‘ (5.147)
we see that the derivative
Fle)= -1 (5.148)

- 2 e—u
4kT cosh” 5tk
at low temperatures is sharply peaked around the Fermi energy er. We can

therefore approximate the integral by expanding ®,(¢) in a Taylor series around
this value,

Dy () = Byln) + (= — W) + 5 — W)PR() + -
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We then get

1
Fy = Ko®y(n) + K1 @), (1) + S K@y () + -+ (5.149)

where we have introduced the simpler integrals

K, = _/0 de (e — )" f'(e) . (5.150)

The simplest is Ko = f(0) — f(c0) = 1. In the others we change the integration
variable to x = B(e — u). Since f'(¢) is essentially zero for € < 0, we also extend
the lower limit of integration down to —oo. Then

K, = (kT)? de—————— . 5.151
1 /,m NCEL (151
Since the integrand is odd when n is odd, we get K,, = 0 for n odd. The

lowest finite-temperature correction is given by K5 which becomes after a partial
integration

o 2x 2
_ 2 _ 2T
Ky = (kT / d;vez+1 = (kT) 3

Including for completeness the next term, we then have

— 00

2 Tt
Fy = () + (TR () + oo (RT) 00 )+ (5.152)

which is called the Sommerfeld expansion.
From the definitions (5.144) and (5.145) now follows

vV o2m\*?
®p(p) =5 (FF) P (5.153)

from which /(1) can be obtained directly. In the calculation of the number N
of particles the exponent p = 1/2 which then gives

V [2m 3/2 3 72 (kT\?
vege(GE) we T () (o159

8 \ u
where we only include the leading term. Similarly, the energy becomes with

p=3/2as
v o2m\*? . 52 (kT
V=g () e () o

In the result for N we can express the density N/V in terms of the Fermi energy
er. Solving for the chemical potential, we then obtain

2 <kT>2 -
I+ —(—) +-
8 \ u

p=cp (5.156)
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which is correct to this order. We see that it starts to decrease with increasing
temperature. Eventually it will go negative and approach the classical value.
We can now also find the internal energy from combining the results (5.155)

and (5.156). It is

3 2 (kT\? 572 (KT

U = 7N€ 1 _— —_— .. 1 —_— —_— PR
5 Fl 12<u>+ +8(5F>+
3 5n2 (KT\”
- 2N 142 (2= .. 5.157

55Fl+12<€F)+ 1 ( )
from which we also can find the corrections to the zero-temperature pressure.
It is seen to increase with increasing temperature which happens when particles
gets excited to states above the Fermi level. Since the fraction of particles which
are involved in this, is kKT /e r and each gets an increase in energy of typically kT

we should actually expect an approximate energy increase AU ~ N (kT /ep)kT.
It is seen to agree with the exact result we have.

5/2

We met above one of the standard fermionic integrals of the form

Jp = dx (5.158)
o et 4+ 1

corresponding to the bosonic integral I in (5.44). They can be obtained from the bosonic

integral
* P 1 [~ 1 1
da:2$7 == dx [7 — }
o e — 1 2 0 er —1 e +1

which equals I,/2P*!. Thus we immediately have the result

1 1

VI, =(1——)p!

) o = (1= )Pl Cp+1) - (5.159)
The integral we met above was 2-2J2 = 4(1/2) (72/6) = 72/3. Similarly we get for the
integral Ky =2-4J3 =8 (1 —1/8)6 (7*/90) = 77%/15. This gives the coefficient of the third

term in the Sommerfeld expansion (5.152).

Jp=(1—

From the above results we see that the size of finite-temperature corrections
are determined by the quantity kT/ep. This makes it natural to define the
Fermi temperature Tp = ep/k. It can be obtained from the density of the
system. For temperatures 7' < Tr we then know that the corrections to the
zero-temperature results are negligible.

Taking the derivative of the internal energy with respect to the temperature,
we obtain the specific heat for the gas of fermions. We can write the result as

w2 T
Cy = Nk 5 Ty (5.160)
It should be compared with the corresponding bosonic result which goes like 73
at very low temperatures. The linear increase with temperature of the specific
heat for 3He has been confirmed by experiments.
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5.7 Degenerate electrons in metals

We will now consider a typical metal like copper. It has atomic weight 63.5 g/mole
and a mass density of 9 g/cm?, i.e. a number density of p = 9/63.5 mole/cm3.
Avogadro’s number is Ng = 6.022 x 10?3 /mole so that p = 8.6 x 10%2/cm3.
There is one conduction electron per copper atom so this will also be the den-
sity of electrons in the metal. From (5.136) we then obtain the Fermi energy
erp = 7.3 eV. It is of the same order of magnitude as the energies of electrons
bound in atoms. Most metals have Fermi energies of this size.
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Figure 5.20: The specific heat Cy /T of a solid as function of T2 has an intercept determined
by the electrons and a slope determined by the phonons. This specific heat is measured for
Chromium and Magnesium by S. A. Friedberg, 1. Estermann, and J. E. Goldman 1951.

It is now convenient to convert the Boltzmann constant k = 1.381x10723 J/K
to more appropriate units where k = 8.617 x 107° eV/K. Then we see that
1eV is equivalent to 11605 K degrees. The Fermi temperature for copper is
thus Tp = 85000 K. At room temperature 7' = 300 K and below we will the
have T/Tr < 1 and the electrons are very degenerate. Copper will melt long
before it reaches its Fermi temperature.

The small finite-temperature corrections can be seen in the specific heat for
copper. From (5.160) we see that the electrons will give a contribution of the
order of 1dominated by the contribution from the lattice vibrations which we
have calculated in the Debye approximation. The small, electronic contribution
can however be seen at very low temperatures. Writing the specific for the metal
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as Oy = aT + bT? where the first terms comes from the electrons and the latter
from phonons, we see that when Cy-/T is plotted against T2, one should obtain
a straight line as shown in Fig.5.20. It is slope given by the constant b which
is obtained from Bose-Einstein statistics and an intercept which follows from
Fermi-Dirac statistics. By extrapolating the line to 7' = 0 one can measure the
intercept and thus determine the Fermi temperature for the metal.

5.8 White dwarfs and neutron stars

When a star has exhausted its nuclear fuel which keeps it at a temperature T',
the radiation pressure going like 7% is no longer sufficient to stand against the
gravitational force trying to pull it together. If its mass is not much larger than
the solar mass Mg = 1.99 x 1033 ¢, it will then collapse to a white dwarf star
with a radius much smaller than the solar radius R = 696 000 km and with an
internal pressure now due to degenerate electrons.

The best known white dwarf is Sirius B which is a companion to the nearby
star Sirius. It has a radius of R = 5300 km and a mass of M = 1.05My. Its
density is thus very large. If my = 1.67 x 10724 g is the mass of a proton, it
contains Ng = M/mpy = 1.25 x 10°7 nucleons. There will be approximately
two nucleons per electron and assuming a constant density, we then have an
electron density n, = (Np/2)/(4nR3/3) = 1.0 x 103°cm=3. We will in this
section denote the mass density by p. It corresponds to a Fermi energy of

2
ep = n (372n.)?/3 = 5.9 x 107 J = 0.37 MeV
2Me

and hence a Fermi temperature of T = 4.3 x 10° K. The temperatures in white
dwarfs are typically of the order of 107 K or less so that we can safely neglect
all finite-temperature corrections for degenerate electron gas.

We will try to estimate the mass and radius of such a degenerate star. When
the star is in equilibrium, we must have that the pressure from the electrons
balance the inward force per unit area due to gravity, in particular at the center
of the star. The electronic pressure in the non-relativistic case is 2/3 of the
energy density (5.137), i.e.

2

Pyp= —
NE = I5r2m,

(37%n.)%/3 . (5.161)

Since the mass density is p = 3M /47 R3, we will now take n. = p/my since the
calculation will just be approximate anyhow. Thus we find

3R /9 \?2 7 M\
Pyvp=—— = a— R7P. 5.162
N 20mm, ( 4 ) <mN> (5.162)

We can obtain the pressure from the gravitational energy Ug. If we define

" 4
m(r) = / drp = gﬂpr‘?’ (5.163)
0
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as the mass inside a radius r, then we have the potential energy

Gm(r)

AUg = — 4 pr? Ar

of a radial shell of thickness Ar. Integrating this up from r =0 to r = R gives

_soar
5 R

1 ;
Uc = fl—ng%?Rd = (5.164)

The inward, gravitational pressure at R = 0 may be calculated by assuming a
small volume is added in the centre of the sphere and gives then

b, _ s __ 1 dUs
¢ T 79V T 4nR? dR
AT o 5 3G M?
= — = —— 1
5 Cr°RY =" (5.165)

Setting this equal to the electronic pressure, we get the relation

2/3 2
rR=1 <9”> _n (@)1/3 . (5.166)
5\ 4 Gmem3 \ M

It shows the surprising result that the larger the mass is, the smaller the radius of
the star will be. This means increasing densities and the electrons will eventually
be relativistic when the mass of the star is sufficiently large. In the extreme
relativistic limit we can ignore the mass of the electrons. Their pressure is then
follows as 1/3 of the energy density (5.141),

C(3n2n)Y3 . (5.167)

P =
ER ™= qor2

Expressing the electronic density is terms of the mass density and equating this
pressure to the gravitational pressure (5.165), we see that the radius now cancels
out. The mass of the degenerate star in this extreme limit becomes

3/ he \*/?

Its size is given by the nucleon mass and the dimensionless number

e X 10 (5.169)
Gmy
Inserting the above value for my, we find that the limiting mass is M = 1.8 Mg,
when we neglect the numerical constant in front. It is roughly of the same size
as the mass of Sirius B. No white dwarfs have been found with larger masses.
So in this sense we can say that our model calculation is surprisingly good.
From (5.166) we can now also estimate the size of such a degenerate star as
long as the electrons are non-relativistic electrons. Dropping again the numerical
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constant in front, we then find with our result for M/my a value R = 5100 km
which also is very good. We would expect the radius to be smaller for a rela-
tivistic star.

We can relate the number (5.169) to the ratio of the electric Fg = —e?/4megr? and the

gravitational force Fg = —Gm?\l/r3 between a proton and an anti-proton. Then
he (47reohc) Fg
Gm?, e? Fo '

The dimensionless number in front is the inverse fine-structure constant o = e?/4mweghc =
1/137 used in atomic physics and quantum electrodynamics. Thus we have Fg/Fg =
137 x 1.71 x 1038 = 2.34 x 1040.

One can make the calculation much more realistic by giving up the main
assumption about the density being constant in the star. It will actually vary
from a very high value in the center of the star to almost zero at the surface.
This implies that the Fermi energy will also vary with the distance from the
center and thus also the pressure. One can then formulate the stability problem
as two coupled differential equations which in general can be solved numerically.
Different stars are then parameterized my the value of the density in the center.
When this goes to infinity, the mass of the star does not diverge, but approaches
a limiting value M = 1.4 M. It was first discovered by S. Chandrasekhar in
1931.

An initial star with a mass somewhat higher than the Chandrasekhar mass
can get rid of the excess through nova explosions and end up as a white dwarf.
If the initial mass is much higher, the star will become a supernova with a
remnant which is a neutron star. It consists purely of neutrons since electrons
have combined with the protons. They stabilize the star by the same mechanism
as in a white dwarf. By the same arguments we can then conclude that there
also is an upper limit of the order of Mg for the mass of a neutron star. The
radius, however, will be much smaller because it is now set by the neutron mass
and not by the electron mass as is seen from (5.166). Since my/m. = 1838, we
expect the typical radii of neutron stars to be a few kilometers. Neutron stars
are primarily observed as pulsars and have these characteristic sizes.

If the the mass of the initial star is even higher, the neutron pressure is not
strong enough to prevent the collapse and it will end up as a black hole with a
size given by the Scwarzschild radius R = 2GM/c? where M is the mass of the
hole. S. Hawking discovered in 1973 that quantum effects make the black hole
into a black body with temperature T = he3/87GM. According to the Stefan-
Boltzmann law, it will thus radiate energy by an amount 4rR20T* oc M 2.
There are yet no observations to confirm the existence of this Hawking radiation.



Chapter 6

Magnetic Systems and Spin
Models

Statistical mechanics was historically developed to gain a microscopic under-
standing of the physical properties of gases and liquids. With the introduction
of quantum mechanics this goal was to a large extent achieved. But there was
one area which for a long time defeated all attempts by conventional statistical
mechanics to reveal its inner secrets. This was second order phase transitions
and the critical exponents. In many ways these were easier to study in magnetic
materials than in the gas/liquid systems. With Onsager’s exact solution of the
2-dimensional Ising model one also had for the first time a detailed theoretical
prediction for the behaviour of a ferromagnetic system near the critical point.
But it was first in the last twenty years with the introduction of the renormal-
ization group that one obtained a complete understanding of critical systems in
general. The concepts and insight gained from the study of magnetic systems
permeates today many other branches of modern physics.

6.1 Thermodynamics of magnets

The First Law of a thermodynamical system was established in Chapter 1 and
can be formulated as in (1.5). It involves the work AW the system can perform.
For a magnetic system it can be found from considering a piece of material in an
external, magnetic field created by many windings of a current-carrying wire as
shown in Fig.6.1. When we turn on the battery, a current I will go through the
wire. It creates a magnetic field which will be constant in the material when the
solenoid is long and thin. If the total number of windings is N, the magnitude
of the field is

H=— 1
L (6.1)
where L is the length of the solenoid.
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When the magnetic flux ® through the solenoid is changing, it will generate
an electromotive force £ = —9®/9t. The work done by the battery in a short

/

Figure 6.1: Magnetization of material by external current.
time interval At is therefore
AW, = EIAt = TAD . (6.2)

Since the total flux is ® = NBA where A is the cross-sectional area of the
solenoid and B the magnetic induction, we can write the work as

AW, = VHAB (6.3)

when if express the current I in terms of the magnetic field (6.1) and introduce
the volume V = AL of the material in the solenoid. Using now the general
relation

B = po(H+ M) (6.4)

expressing the magnetic induction B in terms of the external field H and the
magnetization M, we finally have for the work done by the battery

AWb = VﬂoH(AH+A|MD

1
VA(iMOHQ) + Vo HAM| (6.5)
The first part is the increase of the energy in the magnetic field and would
also be the same in the absence of the material. The last term represents the
magnetic work done by the field on the material. We know that it contains
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many microscopic or atomic magnets and work has to be performed in aligning
them with the external field. This work is equal and opposite to the magnetic
work done by the material which is therefore

AW,, = —V g HA[M] . (6.6)

It is this term we will need in the First Law for a magnetic system.

At this stage it is convenient to change the notation a bit. In (6.4) the mag-
netization M is really the magnetic moment density, i.e. an intensive quantity.
When it is multiplied with the volume V in (6.6), it gives the total magnetiza-
tion of the material. We will in the following denote this extensive quantity by
the symbol M. In addition, we will denote the magnetic induction pgH of the
external field by B. This relabeling of variables will in the following not cause
any difficulties.

In this new notation (6.6) can be written as

AW =—-BAM . (6.7)
The differential form of the First Law (1.9) takes then the form
dU =TdS + BdM (6.8)

when we replace the gas work dW = PdV with the magnetic work dW =
—BdM . Both P and B are intensive while the variables V and M are extensive.

It follows that
oU oU
r=(%), &= (o), (09

and we can establish new Maxwell relations exactly as in Chapter 1 for the
gas-liquid system.

We can now by analogy also write down all the thermodynamic potentials.
While the internal energy is U = U (S, M), the enthalpy

H(S,B)=U — BM (6.10)

is a function of the external field. The last term represents the interaction energy
of the total magnetization of the system with the field. By a corresponding
Legendre transformation one obtains the Helmholtz free energy as

F(I,M)=U—TS . (6.11)
Using (6.8) we have the differential version

dF = —SdT + BdM (6.12)

s () () o3

with
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Performing the similar Legendre tramsformation on the enthalpy (6.10), one
finds the Gibbs free energy

G(T,B)=H-TS (6.14)
with
dG = —-SdT — MdB (6.15)
which gives
oG oG
s=-(31), (52), (619

by inspection.

In all these relations the magnetization M is the component along the exter-
nal field B. But the work term (6.7) is really dW = —B-dM and we should have
kept the thermodynamic variables as vector quantities throughout. Some of the
thermodynamic derivatives would then be vector derivatives. The equation for
the total magnetization in (6.16) would for example be replaced by

- (2). o)

for the component in the i-th direction where now G = G(T, B).
The change in magnetization with respect to a change in the magnetic field
is measured by the the susceptibility. When the magnetization is along the field

it is
oM
= — 1
Y (8B)T (6.18)

as first used in (6.14). But in the more general case it measures the response of
the magnetization in the i-th direction with respect to a change in the magnetic
field in the j-th direction, i.e.

oM %G
w=(an,), = (aar;),- 619

It is then a symmetric tensor. However, in most cases the magnetization will
be completely along the external field and there will be no need for this gener-
alization.

A complete undewrstanding of the magnetic properties of a system can only
come from quantum mechanics. For the simplest case of one electron with
electric charge e in a magnetic field B = V x A, the Hamiltonian is

~ 1 ~
H=_—(Pp—-eA)?—-pupc-B (6.20)

2m
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where pup = eh/2m is a Bohr magneton and & = (04,0,,0.) is the Pauli
spin vector. The eigenvalues of this operator gives the allowed energies for the
particle. They will depend on the value of the external field B.

In the general case the magnetic system will have energy eigenvalues Fs =
E,(B) where the quantum number s denotes the corresponding quantum state.
The partition function will then give the Gibbs free energy,

Z(T,B) =Y e PFB) = =G B) (6.21)

since the energy eigenvalues depends on the magnetic field. This is to be ex-
pected since the one-particle Hamiltonian (6.20) describes both the internal
effects of the field plus the external coupling via the magnetic moment. The av-
erage energy is therefore not the internal energy of the system, but its enthalpy

H = (E(B))
% > B (B)e PP = —% log Z (6.22)

We have already seen an example of this in (6.17) where the average energy
of one particle is just the average magnetic moment times the field. This is in
agreement with (6.10) for the case when the internal energy is zero.

The response of the enthalpy with respect to changes in the temperatures,

o (2) o2

is the specific heat at constant external field in analogy with the constant-
pressure specific heat C'p in (1.22) for the gas-liquid system. It will be calculated
for several different systems in the following.

6.2 Magnetism

Magnetic materials were historically divided into three classes according to their
behaviour in a magnetic field. A piece of material which was attracted to a
magnetic field, was called paramagnetic. On the other hand, if it was repelled,
it was said to be diamagnetic. Some paramagnetic materials even turned into
permanent magnets themselves in external magnetic fields. When they were
heated up, the induced magnetic moment went away. This very special and
important class is called ferromagnetic.

For weak, external field, the induced magnetic moment in the material is
M = xB. The interaction energy Up = —M-B will therefore be lowered when a
material with positive susceptibility moves into stronger fields. A paramagnetic
material has therefore y > 0. Ferromagnets also have positive susceptibilities
which become very large near the phase transition to the non-magnetic state.
Similarly, diamagnetic materials have x < 0.
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Both paramagnetic and diamagnetic behaviour follow from the simple Hamil-
tonian (6.20). In a constant magnetic field, the vector potential is A = %B Xr
which satisfies V - A = 0. Inserting this, we can rewrite the Hamiltonian as

2
[ ﬁﬁﬂg—m(#w?w? O (6.24)
when we measure spins in units of 7 and take the magnetic field along the z-
axis. The angular momentum operator is therefore L = T x p/h and the spin
S = %3’. The first term is the kinetic energy of the electron in the absence of
external fields. When the field is turned on, the particle will change its motion
in the orbit to counteract the field according to Lenz’s law. This change in the
energy is described by the second term in the Hamiltonian. Since it is positive
and increases with the square of the field, it will give a negative susceptibility
typical of diamagnetic behaviour.
Paramagnetism is due to the third term in the Hamiltonian (6.24). For
weak fields it gives a contribution to the energy which can be obtained from the
effective Hamiltonian

H=-m- B (6.25)

where the magnetic moment operator is

~ ~

m = (L+gS)up . (6.26)

with Lande’s g-factor, g = 2.

In many paramagnetic crystals the interaction between the magnetic mo-
ments on different atoms or ions is very weak. When such a material is placed
in a magnetic field, each atom gives a contribution to the energy which follows
from (6.25). With the B-field along the z-axis, the energy eigenvalues are

Em = —gip Bm (6.27)

where m = —J,—J+1,---,J—1,J are the possible values of the spin projection
operator J,. The free energy follows from the partition function

J
Z =Y ePomnBm = hG (6.28)

m=—J
This is a geometric series
Z=a7+a T+ +a’
with @ = */7 and « = BgupBJ. Since aZ = Z —a~7 + a’*', we have

P a’tl —q=7  sinh 2‘£j1x
= = N T
a—1 sinh 23

(6.29)
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From the Gibbs free energy G = —kT log Z now follows the magnetization with
the use of (6.16). In this way we obtain the magnetization from one atom or
ion. The result can be written as

. oG
m= (m,) = 3B = gupJBy(x) (6.30)

where

_ 2l coth 20+ 1:0 _ L coth — (6.31)

By(x) = =57 27 27 2J

is known as the Brillouin function. It is plotted in Fig.6.2 for several values of

Bj

1.0 7T

Figure 6.2: Scetch of the Brillouin function for two different values of the spin J.

the spin quantum number J. For small values of z it increases linearly,

J+1
T 3J

Bj(x) x + O(x?) (6.32)
as follows from the expansion cothz = 1/z+ 2/3 + O(2®). When the argument
is large, it approaches one for all values of J. In very strong fields the magnetic
moment gets completely aligned with the field and attains it maximum value
p=gusdJ.

When the spin J is very large the Brillouin function becomes

1
Bj(x)|ys1 = L(z) = cotha — - (6.33)

when x is kept finite. This limiting expression is called the Langevin function
and is the result for the magnetization in the classical limit.
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The classical energy of a magnetic moment g in a magnetic field is E = —p - B. It gives
rise to the classical partition
27 ™
S inh BuB
Z= / d¢/ 0 sin g ePuB cos0 _ 4 SULOLE (6.34)
0 0 BuB

when we measure the polar angle 6 from the direction of B. The same result is obtained
if we for large J replace the summation in (6.28) with an integration. Calculating now the
magnetization from the corresponding free energy, we find

m = pL(BuB) (6.35)

where L(z) is the Langevin function (6.33). It has the same general shape as the Brillouin

function in Fig.6.2.

Figure 6.3: Variation of the susceptibility with the temperature 7' for a paramagnetic
material.

In the other limit when the spin J = 1/2 the Brillouin function simplifies to

Bi(z) = 2coth2z —cothx (6.36)
1 + coth?

_ SO T otha = tanha (6.37)
cothx

and the magnetization becomes m = pptanh SupB since g = 2. This agrees
with what we already in (6.21) obtained for spin-1/2 particles in a magnetic
field.

The Brillouin function in Fig.6.2 changes from the linear regime to the
asymptotic regime for x ~ J, i.e. when gupB ~ kT. Since the Bohr mag-
neton is pup = 9.274 x 10724 JT~1, Taking g = 1 this corresponds to a field
of the order B = 4507 at room temperature 7' = 300 K and B = 1.57T when
T =1 K. Remember that all magnetic fields above a few Teslas are very strong.
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Figure 6.4: The susceptibility diverges at the critical temperature T, for a ferromagnetic
material.

So except for very low temperatures, we will be in the linear regime where we
can approximate the Brillouin function with (6.32). The magnetization (6.30)
varies then linearly with the magnetic field giving the susceptibilty

_ PppJ(J+1)
kT

It decreases at higher temperatures as shown in Fig.6.3 in agreement with the
experimentally established Curie’s law x = C/T. This also follows from the
classical result (6.35) giving x = p?/3kT. Comparing with (6.38) we find for
the classical magnetic moment pu = gupg+/J(J + 1).

A similar behaviour of the susceptibilty is also seen in ferromagnets at very
high temperatures when they no longer have any permanent magnetization. It
is then approximately given by the Curie-Weiss law

. C
T —-Tc
where T is the Curie temperature. When T' < T the induced magnetization

becomes permament. More accurate measurements reveal that the susceptibility
varies like

(6.38)

X (6.39)

X < |T —T.|™" (6.40)

where the critical temperature T, is slightly below the Curie temperature T as
shown in Fig.6.4. It diverges when the temperature approaches T.. The value
of this critical exponent is found to be around v = 1.4. Both this qualitative
behaviour of the susceptibilty and the value of 7 is very similar to what we
found in Chapter 2 for the gas-liquid critical transition.

At the critical temperature and in zero magnetic field it is also found that
the specific heat Cp diverges like

Cp o [T — T~ (6.41)
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When the critical exponent a > 0, it has a variation with temperature of the
same form as the susceptibility in Fig.6.4. For most magnets « has a value near
Zero.

Figure 6.5: Magnetization is zero above the temperature 7. for a ferromagnetic material.

In zero external field the magnetization varies with the temperature as shown
in Fig.6.5. When the ferromagnetic material is cooled down from temperatures
T > T,, where the magnetization is zero, it suddenly develops a spontaneous
magnetization when T goes through the critical temperature. The resulting
magnetization can be positive or negative, depending on local conditions in the
experiment. For temperatures near T, it is found to vary as

T.-T)%, T<T,
M (T ’ ¢ 42
O‘{o, T>T, (6.42)

where the new critical exponent is found to be near 8 = 0.35 which is very close
to the corresponding exponent in the gas-liquid transition.

Neutron scattering experiments reveal that the atomic spins are strongly or-
dered over long distances when a ferromagnet is below the critical temperature.
They point roughly in the same directions and thereby create a macroscopically
observable magnetization. On the other hand, in antiferromagnets the spins are
also ordered but in opposite directions so to give no net observable magnetiza-
tion. Antiferromagnets are much more theoretically interesting than practically
useful.

6.3 Models of magnetic systems

The atomic magnets or spins in a paramagnet are so weakly coupled to each
other that when the external magnetic field is turned off, they cease to be aligned
by thermal fluctuations and there is no longer any macroscopic magnetization.
On the other hand, in a ferromagnet there must be strong forces between the
spins which keep the spins ordered as long as the temperature is below T.
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The force aligning the spins can not be an ordinary dipole interaction between the atomic
magnets. Two such magnets separated by the distance r have an interaction energy of
Ho
U= 7 [m1 - my — (my - n)(my - n)] (6.43)
Amr
where n = r/r. Taking for the atomic magnetic moment m = up, we find for a typical
separation of r = 2A that U ~ p,o/.l,%47T/T‘3 ~ 10724 J which is 5 x 10~6eV. When kT

exceeds this energy, i.e. "> 0.1 K, the thermal fluctuations will dominate over the ordering

force and there will be no alignment of the magnets. But ferromagnets exhibit permanent
magnetization up to typical critical temperatures between 100 K and 1000 K. THus the spin

interaction must be more than a thousand times stronger and cannot be of magnetic origin.

The explanation was found from quantum mechanics by Heisenberg and is
due to the indistinguishability of the electrons. To illustrate the effect, consider
two electrons moving in the potential of two nearby ions and having no explicit
spin interactions. Their wave function can then be taken to be the symmetric
combination

Ys(r1,r2) = ¢1(r1) P2(r2) + P1(r2) P2(r1) (6.44)

where ¢;(r) is the wave function of one electron in the potential from ion i.
The combined wave function v, is non-zero in the middle between the two
ions. Both electrons have then a finite probability to be found there and their
negative charges will bind the two positively charged ions. Since the total wave
function of the two electrons must be antisymmetic, it means that their spin
wave function must be antisymmetric since the orbital part (6.44) is symmetric.
They will therefore form a spin singlet

Xo\/g[TiiT]- (6.45)

But even if this singlet state binds the ions together, it gets a higher energy
from the Coulomb repulsion between the electrons when they are near each
other in the region between the ions. In order to reduce this energy, one must
also consider the antisymmetric wave function

Ys(r1,r2) = d1(r1) P2(ra) — d1(r2) P2(r1) (6.46)

which has zero probability for the electrons to be found simultaneously in the
middle between the ions. This orbital wave function must now be combined
with one of the symmetric triplet spin wave functions

11 S, =+1
X1 = ﬁ[ﬁﬂﬂ ?iol (6.47)

in order to give again a totally antisymmetric wave function for both electrons.
Which of the two states, the singlet with total spin S = 0 or the triplet with
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S =1, gives the lowest energy for the combined system can now only be decided
by a detailed quantum mechanical calculation based on the explicit form of the
two orbital wave functions (6.44) and (6.46).

The total spin of the two_electrons is given by the operator S = §1 + §2.
Since both of the operators S7 and S3 have the eigenvalues 3/4, we find that
the singlet and triplet states are characterized by the the operator

& & -3, 8=0
Sl-SQ:{_’_?“ S_1 - (6.48)
It can be used to describe the energy difference between these two states by the
effective Heisenberg Hamiltonian

H=-JS;-S,. (6.49)

When the so-called exchange constant J, which can be calculated from the
knowledge of the atomic wave functions, is positive, the spins prefer to align
in a triplet state. If it is negative, the spins form a singlet and are paired
in opposite directioons as in an antiferromagnet. Its magnitude is set by the
Coulomb interaction between two electrons in a solid which is of the order
1eV. This coupling is therefore strong enough to explain the high transition
temperatures in ferromagnets.

The Heisenberg Hamiltonian (6.49) can be generalized to describe the in-
teraction between all the spins in a crystal lattice coupled together by electron
exhange. If the spin operator at lattice site x is Sy as in Fig.??, the Hamiltonian
can be written as

H=-J Y S¢Sw—pd> By S (6.50)

where we have assumed that only nearest neighbour spins are interacting as in-
dicated by the bracket in the first sum. We have here also included the coupling
to an external magnetic field By through the magnetic moment operator as in
(6.25). In general there could be also couplings to spins with larger separations.
The spin operator §x is now supposed to be the total spin angular momentum
operator for all the electrons in the atom or ion at site x. It was denoted by J in
(6.26). When the exchange constant J is positive, the Hamiltonian will describe
spins which will tend to align and we have a model for a ferromagnet. On the
other hand, when J < 0 the Hamiltonian gives a model for an antiferromagnet.

__ The variables in the quantum Heisenberg model are the operators Sy =
(Sxas Sxy» Sx=) with the standard spin commutator

[§xw7 §x’y] = idxx’ §xz . (651)

In order to investigate the detailed, magnetic properties of the model, we need to
find the energy eigenvalues of the Hamiltonian. Because of these non-commuting
spin operators, this is in general extremely difficult or impossible for macroscopic
systems. Only the ground state and the first excitations in the 1-dimensional
Heisenberg model with spin S = 1/2 have been obtained exactly. In this model
the spins are all situated along a chain.
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6.4 The Ising model and spin correlation func-
tions

In the Ising the spins can only be in two directions which are usually said to be
up or down respectively. The Hamiltonian (6.50) can then be written as

H=-J Z Ox Ox! — Z Byoyx (6.52)

<x,x'> x

where ¢ = + are called Ising spins. Here is also the coupling to an external
field Bx which in general can vary over the different lattice sites. We could have
included an explicit magnetic moment, but it is now convenient to take it to be
@ = 1 since its magnitude is irrelevant.

The model was invented by Lenz before the Heisenberg model was estab-
lished. Ising was Lenz’s student and was asked to investigate the model. He
was able to calculate the partition function exactly in the special case when the
spins where on a chain, i.e. in d = 1 dimensions. Lars Onsager solved the much
more difficult case in d = 2 dimensions for zero external field. Since it involves
commuting spin variables, one says that it is a classical model even if the spins
can only point in two quantized directions. It can also be derived from the spin
S = 1/2 quantum Hamiltonian (6.50) by keeping only the interactions between
the z-components of the spins.

In addition to the thermodynamic properties, one also wants to study how
the spins are ordered on the lattice for different temperatures and fields. This
information can be obtained from the spin correlation functions. As for the
gas-liquid system, the simplest of these is the one-spin correlation function in
the Ising model

1
my = (0x) = - > oy e ] (6.53)
{o}

which is just the magnetization on lattice site x. When the external field is
constant, the system is invariant under translations and my will be the same on
all the sites. We say that the magnetization is permanent if it is non-zero when
we first take the termodynamic limit where the number of lattice sites goes to
infinity, and then let the external field become zero. When that is the case,
the Z; symmetry of the Hamiltonian is said to be spontaneously broken since
m = (0x) is not invariant under the group. This phenomenon is very important
in modern condensed matter physics.

While the magnetization tells if the spins are ordered or not, it is the two-spin
correlation function

1
(ox Ox/) = 7 Z Oy Oy € PH] (6.54)
{o}

which contains information about how the spins are ordered with respect to
each other. If it is large, there is a high probability to find the spins on the
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two sites in the same direction. The spins are said to be strongly correlated.
Correspondingly, when it is small, the probability to point in the same direction
is also small and we say that the spins are uncorrelated. It can be measured by
neutron scattering experiments in the same way as the pair correlation function
was measured in gas-liquid systems.

When the field at lattice site By is varied, one will in general see that the
magnetization at some other site x will also vary. This response is measured by
the position-dependent susceptibility

Omy

) = . 6.55
) = o7 (6.59
Taking the derivative of (6.53) we get
om 1 07 1
x - 7= —BH[o] 4 — —BH|[o]
0D, ~ 79Dy 2% tz P2 oxone '
{o} {o}
If we then use
07 _ B3 0w e M1 = ZB(oy)
8Bx/ X X

{o}

we see that the generalized susceptibility is then given by the much more trans-
parent expression

x(x,x') = BC(x,x') . (6.56)
Here we have introduced the so-called irreducible spin correlation function
C(x,x') = (ox 0x/) — (0x)(0x’) (6.57)

which always will go to zero for large separations of the spins, even in the
magnetized phase. When the external field is constant or zero, we again have
translational invariance so that x(x,x’) — x(x —x’) and C(x,x’) — C(x — x')
only depend on their mutual separation. The thermodynamic susceptibilty

‘= (%)T (6.58)

is then obtained as the sum of the generalized susceptibilty over all the lattice
sites, i.e

N = B3 Cx—x) = B3 (0% — m)(o —m)) - (6.59)

It provides a new example of a fluctuation-dissipation theorem connecting the
macroscopic susceptibility to the microscopic fluctuations of the lattice spins.
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The thermodynamic susceptibility x is always positive. It is here defined per spin in the
system. Previously we defined it as the response of the system magnetization M = Zx< ox )
to variations in the external field, i.e. x = (OM/0B)r. By tracing through the same steps as
in the above derivation we find

107 (1ozy:
7 0B2 Z 0B

Defining o = 8 Zx ox, we can then rewrite this as

X=kT[(0?) = (0)}]| =B Clx—x).
x,x’
Since it is given by the square of the spin fluctuation, it is positive. Comparing with (6.59),

we see that these two expressions just differ by the number of spins in the system.

Correlation functions for other spin models are defined similarly to (6.57).
Experimentally or by numerical methods, they all found to fall off with the spin
separation |x — x’|. In the critical region one can parametrize these functions
by the general form

const R
T € [x—x'|/¢
=T

Clx—x')= (6.60)
for separations much larger than the lattice spacing. Here d is the dimension of
lattice and 7 is a new, critical exponent which is usually quite small. The spins
are correlated within distances set by the correlation length £. It becomes very
large near the critical point where it is found to vary with the temperature as

€ [T —T.|™" . (6.61)

At the critical point it diverges similarly to the susceptibility in Fig.6.3 and the
correlation function falls off as a power of the spin separation instead. Spins at
all length scales are then influenced by each other in a cooperative phenomenon.

6.5 Exact solutions of Ising models

We will first investigate the 1-dimensional Ising model with N spins. In zero
field the Hamiltonian (6.52) becomes

N-1
H=-J Z 0;0i+41 - (662)
i=1

It can be considered as the sum over N — 1 bonds between pairs of nearest
neighbour spins. Each bond contributes an energy —J if the spins are parallel
and +J if they are antiparallel. Assuming that J > 0 we find the lowest energy
state when all the spins point in the same direction. The model has therefore
two ground states, 7111 --- 11 and JJ]] --- ]|, each with the energy
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Ey = (N —1)J. At exactly zero temperature all the spins are ferromagnetically
ordered with a magnetization per spin of m = (o;) = 1 in the up state.

When the temperature is slightly increased, the next higher states are ex-
cited. For an open chain with free ends, these are of the form 1] --- ] with
energy By = (N —3)J. The excitation energy AE = 2J for all these degenerate
states and comes from the bond in the chain where the spins change direction.
This kind of elementary excitation is sometimes called a kink.

In a cyclic chain where spin oy is coupled back to o1, the first possible excitation is the
turn of one spin, i.e. 11171 -+ 11 with excitation energy AE = 4J since it involves two
excited bonds. The lowest excitation will here always involve two kinks with some arbitrary

separation, T1J]J] --- ] 1, because of the circle topology.

Since these excitations can occur anywhere along the chain, we expect them
to wash out any tendency to spontaneous magnetization at finite temperature.
More formally, we see this from the free energy cost AF = AE —TAS of creat-
ing one kink excitation. Since it can occur at N different places in the chain, it
has the entropy AS = klog N. The corresponding cost in free energy is there-
fore AF = 2J — kTlog N < 0 when N — oo and the temperature is not zero.
Thus, the kinks will be created spontaneously and destroy the magnetization as
soon as T' > 0.

The probability for a fluctuation that costs an energy AE is
P =We PAE
if it can take place in W different ways. This can be written as
P = BAF (6.63)

where AF = AE — kT'logW. When AF < 0 the probability P > 1 and the process will take
place spontaneously.

In the 2-dimensional Ising model the first excitations are islands of turned spins in the
background of ferromagnetically ordered spins as shown in Fig.is. The energy of such an
island with L excited bonds along the periphery has an energy AE = 2LJ. For a given length
of the periphery, the island can have very many different shapes. When we go around the
periphery, we can at any bond move in three different directions which will not take us back
again. The number of different shapes of such an island is therefore W = 3L. Tts free energy is
AF = L(2J — kTlog 3) and becomes negative when T' > T, = 2.J/klog3. The magnetization
should therefore be washed away above this temperature which shold be a reasonable estimate
of the critical temperature. Using different arguments, Kramers and Wannier found in 1941
the exact value

KT 2
J log(V2+1)

which is quite close to the above estimate.

=2.269... (6.64)

One can use similar arguments to show that for the Heisenberg models which have the
continuous symmetry group O(N), there can be spontaneous magnetization at non-zero tem-

peratures only when the dimensions of the spin systems d > 2. The 2-dimensional Heisenberg
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Figure 6.6: Magnetized island in the 2-dimensional Ising model. Spin up = z and spin down
= o.

model has only a magnetization at T' = 0.

We will now calculate the exact partition function for the 1-dimensional Ising
model (6.62). The sum over the 2V spin configurations simplifies to

Iy = Z Z Z eBI(o10240205FoN_10N) (6.65)
c1=tlos=+1 on=x1
Summing first over the last spin oy, we find the recursion relation
ZNn = (2coshK) Zn_4 (6.66)
where K = 3J. Iterating, one gets
Zn = (2cosh K)N=27, .

The 2-spin partition function Z5 invloves the four spin configurations 17, 1,
$1 and | | which gives Z5 = 4 cosh K. In this way we find

Zn =2V cosh™ 1K . (6.67)
When the number of spins N > 1, the free energy per spin G/N becomes
g = —kTlog (2cosh5J) . (6.68)

It is a smooth function of the temperature and there is as expected no phase
transition in this model. For all temperatures 7' > 0 the magnetization is zero.
The internal energy per spin is

U 1 0

vT__19 - h .
N N 35 og Zn J tanh 5.J (6.69)
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U/NJ

kT/J
0

1 4

Figure 6.7: Internal energy per spin in the 1-dimensional Ising model as function of tem-
perature.

and varies smoothly with the temperature as shown in Fig.6.7. Taking the
derivative with respect to the temperature, gives the spesific heat

_ 87\

In Fig.6.8 it is seen to go to zero when the temperature decreases. The Ising
model is in agreement with the third law of thermodynamics because its classical
spins are quantized.

CB/Nk

05 T

0 1.0 kT/J

Figure 6.8: Specific heat in the 1-dimensional Ising model as function of temperature.
It should be obvious that the method which allowed the simple solution

(6.64) for the Hamiltonian (6.62) can also be used to solve the somewhat more
general model

N-1
H=-— Z Jz 0; 0441 (671)
=1
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where the couplings between neighbouring spins are different. The partition
function is now
N—-1
Zy =2~ [ cosh K; (6.72)
i=1
with K; = J;. This solution can be used to obtain the spin correlation function
(6.57). We first calculate the correlator between neighbouring spins,

1
<g’10'2> = E Z 0109 e*ﬁH[U]
{o}
0
= 9K log Zn = tanh K3 (6.73)

Now since 02 = 1 we have (0103) = (01020203) which in the same way gives

0 0
<0'10'3> = aTa?lOgZN = tanhK1 tanth .
1 2

In this way we find for the correlation function

C(r)

Figure 6.9: Correlation function in the 1-dimensional Ising model at a given temperature.

(050;) = tanhl "I K (6.74)

when the couplings become equal. Since tanh K < 1, it decreases rapidly for
increasing spin separation r = |i — j| as shown in Fig.6.9. The result can be
written as

Clry=e /%, (6.75)
It decays to a value 1/e at a separation equal to the correlation length

1 {;ew, T 0

= = .76
¢ log coth 8J log (kT/J), T — o0 (6.76)
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At small temperatures the correlation length is seen to grow exponentially. This
is consistent with T"= 0 being a special kind of critical point.

When we next try to calculate the partition function by the same method
for the 1-dimensional Ising model in an external field,

N—-1 N
H=-J]Y 00041—BY o (6.77)
=1 i=1

we find that it doesn’t work. But looking back at the form (6.65) of the partition
sum, we see that it can be written as

Zy = Z Z Z VigroaVasos =+ Vo ron Vonor (6.78)
o1=%102=%1 on==1

when we assume that the spins are on a cyclic chain. V is a 2 X 2 matrix
BJ —-BJ
, = eflod’ — [ € ¢
Vo-o- (& ( e_ﬂJ 6’8‘] ) (679)
called the transfer matrix. The partition sum (6.78) is then just
Zy= > Vi, =TxvV. (6.80)
0’1::|:1
We can now diagonalize V by a matrix A. Since Tr VN = Tr AVN AL, the
trace is given by the eigenvalues Ay = 2cosh 5J and A_ = 2sinh J, i.e.
Zy =AY+ 2\Y = (2cosh BJ)N (1 + tanh™ BJ) . (6.81)

In the thermodynamic limit N — oo it agrees with the previous result (6.67).
With this method we can now find the partition function in an external field.
From the Hamiltonian (6.77) we construct the transfer matrix

BJ+BB -BJ
o'+ BB (oig! e e
Voo = e8I’ +57 (040") — < -y BI—BB > (6.82)
with eigenvalues
Ay = e/ cosh BB + \/6—2/“ + 287 sinh? 3B . (6.83)

In the thermodynamic limit, the partition function is again dominated by the
largest eigenvalue so that the Gibbs free energy per spin becomes

g = —kTlog\;

—J — kT log <cosh BB + \/e—‘mJ + sinhzﬁB> (6.84)

The external magnetic field will now induce a magnetization in the spin chain
0 inh 8B
e (9/) S, L L — (6.85)
OB )1 \/e=187 + sinh’BB

Calculating the zero-field susceptibility, one finds that it diverges like the cor-
relation length (6.76) in the limit 7" — 0.
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6.6 Weiss mean field theory

All the different spin models can be solved approximately by different methods.
One of the oldest, simplest and still quite accurate method is mean field theory.
The name stems from the replacement of the interactions between different spins
by the interaction of free spins in the mean magnetic field created by the other
spins in a self-consistent way.

It is easiest to demonstrate the method for the Ising model with the Hamil-
tonian (6.52) and a constant magnetic field. The first term can be rewritten

as
H=-J]Y ox Y ow—BY ox (6.86)

x'eEx x

where the sum over x’' goes over the nearest neighbour positions to the lattice
site x. On a d-dimensional lattice this is the coordination number which for a
cubic lattice is z = 2d. The mean field approximation now consists in replacing
these neighbouring spins by their average value m = (o) which is just the
constant magnetization,

Z Ox/ = ZM .

x'ex

The Ising Hamiltonian (6.86) is then changed into the approximate Hamiltonian

Hyr = —Beffszx (6.87)

where the Weiss mean magnetic field is
BeffZB—‘r-sz. (6.88)

It consists of the external field plus the field due to the magnetization of its
nearest neighbours.
The exact Hamiltonian is then transformed into the approximate form

Hyp = —NJzm? — BNm (6.89)

where N is the total number of spins in the system.
The magnetization of the mean field Hamiltonian (6.87) is m = tanh fB.y
or

m = tanh ((zJm + B)/kT) . (6.90)
We solve this equation first when the external field B is zero,
zJm
= tanh 6.91
m = tanh —— (6.91)

Plotting both sides of the equation as in Fig.6.10, we see that there will be two
non-zero solutions in addition to m = 0 when the derivative of tanh at the origin
is larger than one, i.e. when

T<T.=z2J/k. (6.92)
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When the temperature increases, the magnetization m = £mg becomes smaller
and eventually becomes zero when T = T.. For higher temperatures we only

m

+1 T

Figure 6.10: Self-consistent solutions for the magnetization in the mean field approximation.

have the paramagnetic solution m = 0. The spontaneous magnetization has a
dependence on the temperature which is very similar to that observed experi-
mentally in Fig.6.5.

A more detailed description of the magnetization near the critical point

follows from using the expansion tanhz = x — 23/3 + ... in (6.91). Keeping
only the leading terms, it gives
T.-T  1(T.\> , (6.93)
T m=3\l7) ™ .

The left hand side is negative when T' > T, and we have only the m = 0 solution.
Below this temperature we find the permanent magnetization

m=+V3 (;;)3/2 (1 — g) : (6.94)

Comparing with the general form of the magnetization in (6.42), we the critical
exponent § = 1/2 in the mean field approximation.

From (6.89) we can now also obtain the internal energy U = (H) in the
mean field approximation. It is simply

U/N = —Jzm? (6.95)

and thus zero above the critical temperature. When the temperature is just
below T, it becomes U/N = —(3/2)k(T, —T). It is plotted in Fig.6.11 together
with the exact Onsager result in d = 2 dimensions. The agreement is rather
poor around the critical point. In d = 3 dimensions it is somewhat better. But
in all dimensions d > 2 the mean field approximation predicts a specific heat
with a finite jump at the critical point instead of a divergence as experimentally
observed.
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Figure 6.11: Internal energy per spin in the 2-dimensional Ising model. Full line is the
result from the Mean Field Approximation and the dashed line is the exact Onsager result.

When the magnetic field is non-zero, we must solve (6.90). Near the critical
point, both B and m are small. Expanding again the right hand side, we then
obtain

B T-T, 1 4

o e

(6.96)

to leading order in T' — T,.. If we now solve for the magnetization, we will
find a variation with temparture as shown in Fig.6.12. It is non-zero for all
finite temperatures, but becomes small when T becomes very large as in typical
paramagnets. When T = T, it is seen from (6.96) to depend on the field
according to the simple relation

B o |m|° . (6.97)

where the critical exponent § = 3. In the 2-dimensional Ising model it has the
value § = 15, while in d = 3 dimensions it is around § = 4.8. Again we see that

Figure 6.12: Variation of the magnetization with temperature. There is no phase transition
when the external field is non-zero.

the MFA result is better in higher dimensions.
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Plotting the magnetization as function of the field as in Fig.6.13, one finds
that the susceptibility should diverge at the critical point since the curve is
tangential to the m-axis when T' = T.. This follows directly from (6.96) by
taking the derivative with respect to m on both sides and then letting m — 0,

x = <8B) =k(T-T,). (6.98)
om )

According to (6.40) this implies that the susceptibility exponent v = 1 in the

mean field approximation. Below the critical temperature, the magnetization

is non-zero with the magnitude (6.94), but the exponent is easily found to be

the same. This mean field exponent compares quite well with the d = 3 value

which is v = 1.24.

The mean field theory naturally explains the existence of a phase transi-
tion in the Ising model. It predicts a second order phase transition between a
paramagnetic high-temperature phase and a ferromagnetic phase at low temper-
atures and most of the critical exponents are typically within 50 This is really
quite impressive when one takes into account the crudeness and simplicity of
the approximation. Also comparing the critical temperature with the exact re-
sult (6.64) for the 2-dimensional Ising model for which the coordination number
z = 4, the agreement is rather poor. It even predicts a phase transition at
finite temperature for the 1-dimensional model which is disasterous. In d = 3
dimensions, however, the agreement is better. This can be explained by the
smaller fluctuations we expect to find in higher dimensions where each spin is
surrounded by more neighbours. Away from the critical point, the fluctuations
are generally smaller as is demonstrated by the behaviour (6.60) of the spin
correlation function (6.57). We would then expect this method to give more
accurate results.

/ B

/

Figure 6.13: Magnetization as function of the external field for different temperatures.

The strong fluctations which ruins the accuracy of the mean field approxi-
mation in low dimensions are due to the short-range interactions we have here
assumed between the spins. With long-range interactions more spins are cou-
pled and the fluctuations would be strongly damped. In that case we would find
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that the mean field approximation becomes both qualitatively and quantitavely
very useful for the understanding of phase transitions even in 1-dimensional
systems.

6.7 Landau mean field theory

Other spin models of magnetic systems besides the Ising model can be investi-
gated using the Weiss mean field theory. Again we will find critical exponents
which are independent of the dimension of the system. But, perhaps even more
surprising, they are exactly the same for all the different models. This must
mean that the critical behaviour in the mean field approximation must follow
from more general principles in a framework which is common for all such mag-
netic systems. It was found by Landau and can easily be generalized to give a
detailed description of phase transitions in many other systems as well. It is a
phenomenological theory which is basically constructed to contain the essential
physics of the system near the critical point. In most cases it can be derived
from the more fundamental spin Hamiltonian.

The main idea behind this mean field approximation is the assumption that
the Helmholtz free energy density f(m,T') is a regular function near the critical
point. Since the magnetization m is very small here, we can make the Taylor
expansion

Flm) = folT) + 5r(T) m? + Su(T) m? (6.99)
when we drop higher terms. The first term is the non-critical part of the free
energy and the coefficients r(T") and u(T') are assumed to be smooth and analytic
functions of temperature. Only even powers of the magnetization have been kept
for the Ising model. It has the symmetry group Zs which requires invariance of
the free energy under the spin inversion, i.e. when m — —m. For the Heisenberg
model with the symmetry group O(3) the expansion would be slightly different
since then would the magnetization be a vector m.

f(m) f(m)

-m g +m

a) b)

Figure 6.14: Landau free energy as function of the magnetization above and below the
critical temperature.

Thermodynamic equilibrium in an external magnetic field B is given by the
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condition (0f/0m)r = B, i.e.
rm+um® = B (6.100)

When the field is zero, this corresponds to the minimum of the free energy (6.99).
When T > T, we want this to be at m = 0. This we can achieve by having both
r(T) > 0 and u(T") > 0 at these temperatures. On the other hand, when T' < T,
we want the minimum to be at a non-zero value for the magnetization. This
can be obtained if r(T) has the form »(T) = « (T — T.) and u(T) is positive.
Without loss of of the essential physics, we can then take u(T") to be constant.

The thermodynamic potential (6.99) will then vary with the magnetization
as shown in Fig.6.14 for temperatures above and below the critical temperature.
From (6.100) with B = 0 follows the values of the magnetization at the minima
of the potential,

= 1
m={ /e (T-T)2, T<T. (6.101)
0, T>T,

The non-zero magnetization below the critical is not invariant under the symme-
try group Zs. In the thermodynamically stable state of the system it is hidden
or spontaneously broken. As in the previous section, we find the critical expo-
nent 3 =1/2. When B > 0 and T = T, it gives B = um?® so that the exponent
0 = 3. Taking the derivative of (6.100) with respect to m gives

0B\ ,

Above the critical temperature where m = 0 this implies that the zero-field
susceptibility exponent is v = 1. It is also obtained below T, when we use the
result (6.101) for the magnetization.

From (6.13) we find the entropy s = —(9f/0T)m = —am?/2 + f3(T). The
specific heat ¢ = T(0s/0T) will therefore show a finite jump of magnitude
Ac = o?T,/2u at the critical temperature above a continuous background. In
terms of the corresponding critical exponent (6.41) one says that @ = 0 in the
mean field approximation.

In this approach the correlation exponents can also be found by extentending
the theory to include a magnetization myx = (o ) which varies slowly from site
to site. In the same spirit as above, we can then write the free energy density
as as

Flms) :fo(T)JngmiJr%miJr% 3 (e — ma)? (6.103)

x'€Ex

where the last term includes the deviation from the magnetization on the neigh-
bouring sites. The complete free energy is then

Flm] =Y f(mx) . (6.104)
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A small variation in the magnetization myx — myx + dmy, gives a corresponding
small change

SF = By dmy (6.105)

in the free energy when By is the magnetic field on this site.

When we now restict ourselves to a description of the system only on large
scales where the microscopic details are not observed, we can replace the lattice
magnetization my by the continuum magnetization m(x). The last term in
(6.103) becomes then the square of the gradient of the magnetization and the
sum (6.104) becomes an integral over the whole system

Flm] = Fy(T) + / diz [; (Vm)? + L+ S| (6.106)
It is now a functional, i.e. a function of the function m(x). The gradient term in
the integral is the lowest order contribution coming from the non-constant mag-
netization. Higher derivatives will not be important when we are only interested
in the behaviour of the magnetic systems at large scales.

For a given magnetic field B(x) we can now derive the corresponding equi-
librium magnetization m(x) by finding the minimum of the Landau free energy
(6.106). It is obtained by subjecting the magnetization to an infinitesemal vari-
ation m(x) — m(x) 4+ dm(x). The resulting change in the free energy is then

0F[m] = /dd:n [(Wm) - 6(V'm) + rmém + um>sm] .

Now §(Vm) = (Vdm) and after a partial integration where we can throw away
the surface terms, we get

§F[m] = / dz [-V2m + rm + um®] om(x) . (6.107)

From the continuum version of (6.105) we then see that the magnetization must
be a solution to the differential equation

—V2m(x) 4+ rm(x) + um®(x) = B(x) . (6.108)

Similar equations always appear in the Landau mean field approximation for
non-constant order parameter as one often calls the magnetization in this ex-
ample. In the special case when it is constant, the equation simplifies to (6.100)

One can derive the differential equation for m(x) in a more systematic way using the
functional derivative. For a system in one dimension, consider the functional

F[m] = Z am;’

i
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where m; is the magnetization at lattice site 7 and a is the lattice spacing. Then we have
the ordinary partial derivative OF/0m; = anm?_l. In the continuum limit it is replaced by
F[m] = fdac m™(z). The corresponding functional derivative § F//dm(z) is defined by analogy
so that §F/dm(z) = nm™~1(z). It is seen to be obtained from the partial derivative in the
limit

SF[m] I 1 OF

= - . 6.109
om(x;) al—I&) a Om; ( )
As a first consequence we have the useful result
om(x;)
=0(z; —x; 6.110
sm(z;) (z; — ) ( )

since dm; /Om; = §;;. It also follows directly from the definition ém(z’) = fd:c d(xz—z') dm(x)

of the d-function. If the functional has the more general form F[m] = fdxf(m), we now obtain

5F[m}_ 2 (mla 5m(z):/mx‘
ot [ g e 28 = )

from the resulting integral of the §-function.
If the functional involves a gradient term like

1
Flm] = 5 /dﬂﬁ (Vm)? = Za(mi —miy1)? /202,
1
we first find the partial derivative

OF 1
=—(2m; —mip1 —mi—1) = ——|
om; a a

(mit1 —m;) — (my —m;i—1)]

in the discrete case. Going to the continuum limit, we see that it becomes the derivative of

the derivative, i.e. the double derivative
0F[m]
dm(x)

Taking now the functional derivative of the free energy (6.107) and using the local equilibrium
condition

= —V2m(z) .

dF[m]
om(x)
we immediately get the result (6.108).

B(x), (6.111)

We can now also derive the correlation function in the Landau approx-
imation. Using (6.56) we can obtain it from the generalized susceptibility
Xx(x,x") = Om(x)/0B(x’) which measures the response of the magnetization
at point x to a change in the magnetic field at point x’. It follows from (6.111)
by taking the functional derivative on both sides of the equation with respect
to B(x’) using (6.110). One then obtains the differential equation

[-V? 47+ 3um?] x(x,x') = d(x — x') . (6.112)

When the magnetization m is constant we recover translational invariance and
X(x,x") will only depend on the separation x — x’). Introducing the Fourier
transform

d 7
xx—x) = [ (e



6.7. LANDAU MEAN FIELD THEORY 153

the differential equation becomes
[® +743um?|x(q) =1.

The corresponding Fourier component of the correlation function is therefore

T
@2 +r+3um?’

C(q) (6.113)

Just the the Fourier transform of the density-density correlation function for a
gas-liquid system gave directly the angular distribution of scattered light or X-
rays, this spin-spin correlation function can be measured in neutron scattering
on the magnetic system.

Assuming first that T > T, so that m = 0, we now obtain the correlation
function in the most important case of d = 3 dimensions from the integral

d3q kT i
= — ', 114
) / @n? @ +r© (6.114)

It can easily be done using complex contour integration. The result has the
same form as the Yukawa potential,
kT
C(x) = e~Ixl/¢ (6.115)

o 47|x|

where the correlation length

€ = \/Eoc (T—T,)"% . (6.116)

Below the critical temperature one must use the result (6.101) for the magnetiza-
tion but the correlation length is still found to have the same critical behaviour.
Comparing with the standard form (6.60), we see that the two correlation ex-
ponents are n = 0 and v = 1/2. For the Ising model in d = 3 dimensions solved
by numerical methods one obtains n = 0.04 and v = 0.63.

The definition of the critical exponents and their values in the mean field
approximation can now be summed up in the following table:

Specific heat: Cpx|T—T.7 a=0
Order parameter: M o (T.—T)# g=1/2
Susceptibility: x x |T =T v=1
Critical isotherm: B o |M° =3
Critical correlation function:  C(q) o< q=2%7 n=0
Correlation length: Ex |T =T, v=1/2

All of these exponents are not independent of each other. From (6.113) we
see that the correlation function for q = 0 and above the critical temperature
is C(q = 0) = kT/r. Writing (6.55) in the continuum limit as

X = B/ddm C(x)=pBC(q=0) (6.117)
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we have Yy = r~! = £2. For the corresponding critical exponents this implies
v=2v. (6.118)

It is called a scaling relation for reasons which will be clear later. It is obviously
satisfied by the mean field exponents. But more surprisingly, it is also approxi-
mately satisfied by the exponents in other models. In Chapter 4 it was derived
within the Ornstein-Zernike theory which is a mean field approximation for the
gas-liquid system. One should therefore be able to derive it from more general
principles. In the next chapter we will see that such scaling relations between
the critical exponents follow from the renormalization group.

The magnetization m in the free energy (6.99) is the order parameter for
the magnetic system described by the Ising model. Its value tells us in which
thermodynamic phase the system is. It is here the smoothed out average m =
(o) where the Ising spin o is really the component S, of the spin S. We therefore
say that this order parameter has N = 1 components. On the other hand, in
the full Heisenberg model we will have an order parameter m = (S) which has
N = 3 components. Since this system is invariant under the 3-dimensional
rotation group O(3), the Landau free energy must be rotational invariant. It
must therefore have the form

Flm,T) = Fy(T) + /dd:v [; (Vm)? + gmz + %m4 (6.119)
with m? = m - m. Although it has a more complicated structure, the critical
exponents are found to be exactly the same as for the Ising model as long as we
are in the mean field approximation.

Monte Carlo simulations of the Ising model give results that are different
from the mean field values. They can also be approximately calculated by other
numerical methods. The corresponding Landau free energy will be given by
(6.119) where now the order parameter m has N = 2 components. In d = 3 it

will have a phase transition with critical exponents which are different from the
Heisenberg values.

Exponent Ising Ising MFA
d=2,N=1|d=3,N=3

o 0 (log) 0.11 0 (step)
B 1/8 0.32 1/2
v 7/4 1.24 1
] 15 4.90 3
7 1/4 0.04 0
v 1 0.63 1/2

Table 6.1: Critical exponents in different spin models for magnetic phase transitions.

In the above table the known values for critical exponents in the different
spin models are given. We see that the exponents take different values depending
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on the dimension d of the spin model and the the number of components N of
the order parameter. Since the introduction of the renormalization group for
critical phenomena, one can now actually calculate their values from the Landau
free energy by properly taking care of the fluctuations which are ignored in the
mean field approximation.
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Chapter 7

Stochastic Processes

The methods of statistical mechanics we have developed so far are applicable to
systems of many particles in equilibrium. Thermodynamic variables measured
at different times have the same values. There is similarly no time dependence in
the average values of microscopic variables. But this stationary state is almost
always the result of an evolution of the system through a continuous set of
states from an initial, non-equilibrium state in which the system is prepared.
This evolution is a very complex process governed by the dynamics of all the
particles involved. At appears to be quite random and is called a stochastic
process. It is first when one compares the non-equilibrium evolution of many
identical systems from the same initial state that one discovers that they also
obey simple laws which accurately describe their behavior. The most important
of these new statistical methods will be developed in this chapter and applied
to a few illustrative and important physical examples.

7.1 Random Walks

Probably the simplest and most important stochastic process is the random
walk. It plays the same role in non-equilibrium statistical mechanics as the
hydrogen atom does in atomic physics. Most of its basic properties are obtained
by considering the walk in one dimension. We then have a system which can
be a particle or a person who at given, separated times takes a step to the right
with probability p or to the left with probability q. We then obviously have
p—+q = 1. After N steps there will be R to the right and L = N — R to the left.
The net displacement to the right is S = R — L. If these walks are repeated a
large number of times, the net displacement will vary from S = +N to .S = —N.

There is only one walk which gives the maximal displacement S = N. It
corresponds to having all the steps taken to the right. Since the probability
for each such step is p, the probability for having this walk is Py(N) = p™v.
When there is one step to the left among these N steps, the net displacement
is S = N — 2. It can occur at any of the N different times with the probability
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q. Thus the overall probability of finding such a walk with R = N — 1 steps to
the right, is Py(N — 1) = NpN—1q.

In this way we see that the probability to find a walk with R steps to the right
among which all the N steps is given by the Bernoulli probability distribution

Pe(r)= ()" (7.1)

where (g) = N!/R! (N — R)! is the number of such walks. The total probability

for N steps irrespective of the number taken to the right, is then

N
Y Pv(R)=(p+qN =1 (7.2)
R=0

as it should be.

We can now use this normalized probability distribution to calculate dif-
ferent, average properties of a walk with N steps. For instance, the average
number of steps to the right is

(R) =3 RPx(i) =3 () Rota¥ . (739

R=0 R=0
The sum is easily done by writing Rp® = p (d/dp)p®. We then have
N N
d N d N
(R) = prRqN‘R< )=pz< )quN‘R
R=0 dp R dp R0 \ I
d _
= pdfp(p+q)N:Np(p+q)N L= Np. (74)

This result is to be expected since of N steps, a fraction p is taken to the right.
Since the displacement in one walk is S = 2R — N, we find for the average over
a great many walks

(S)=2(R)-N=2Np—-N(p+q)=Np-q) . (7.5)

The symmetric walk has the same probability going to the left as to the right.
Then p = ¢ = 1/2 and the average displacement is zero as expected.

It is easy to generate these random walks oneself. For symmetric walks one can just toss
a coin. Head means a step to the right and tail mains a step to the left. One full walk is then
generated by N tosses. In order to calculate statistical averages, one needs a large number M
of such walks. They form together a statistical ensemble which can be used in the same way
as ensembles were previously used for systems equilibrium. If the final displacement of walk
number m is S,,, we can then numerically obtain the average displacement from

M
<s>=$ZSm (7.6)
m=1
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in the limit M — oco. Other averages are similarly defined.

When the walk is not symmetric, it can not so easily be generated by a tossing a coin.
Sometimes one can make use of a die. If, for example, the probability for a right step is
p = 2/3, it is taken every time one of the numbers {1,2,3,4} comes up. In the two other
cases one jumps to the left. When p has some arbitrary value, one must use a random number
generator. They furnish random numbers r evenly distributed between zero and one. If r < p,
one jumps to the right, if not, one jumps to the left. Repeating the operation, one generates
the full walk. It is easy to program a calculator or small computer to rapidly produce these
walks.

These methods of generating random walks are the simplest examples of what is called
Monte Carlo simulations. A real walk is simulated on a piece of paper or on a computer
screen. The Monte Carlo name comes from the use of the random processes generated by a
coin, die, computer or roulette wheel. We will discuss such simulations of stochastic processes

in greater detail later in this chapter.

In many cases we are interested in just the magnitude of the displacement
irrespective of which direction it is. It can be obtained from the average ( R?).
Using the same trick as above for ( R), we find

(R*) = Rz]i:ORQPN(R) - <p;;>2§: (J]\%f)quNR

R=0

= <pCZ)> p+a)N =pN@p+ N T+’ NN - 1)(p+ )V 2

= pN+p?N(N —1) = (Np)®> 4+ Npq . (7.7)

Since the absolute displacement is given by S? = (2R — N)?, we obtain for the
average

(5%)

4(R*) —4N(R) + N?
N?(4p® —4p +1) 4+ 4Npg = N*(p — q)® + 4Npq . (7.8)

The first term is just the square of the average displacement (7.6). Hence we
can write the result as

AS? = (5%) — (S)* =4Npq (7.9)

which gives the fluctuation around the average, final position of the walk. For
the symmetric walk, we have (S) = 0 and thus

(S*)=N. (7.10)

We see that displacement increases with time as |S| = N'/? where the expo-
nent is characteristic for random walks. For an ordinary, directed walk we know
that it is one. The random walk is for obvious reasons much more inefficient in
covering a given distance.
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It is easy to derive the central result (7.10) more directly. If the position of the walker
after IV steps is Sp, it will be at Sy4+1 = Sy + 1 with probability p at the next moment of
time or at Sy4+1 = Sy — 1 with probability q. Squaring these two equations and taking the
average, we obtain the recursion relation

($*)nvp1=(8)v+1 (7.11)
in the symmetric case p = ¢ = 1/2. Starting at the origin with (52 Yo = 0, we then obtain
(S82)1 =1, (S?)2 =2 and so on.

When the number N of steps is very large, we can approximate the Bernoulli
distribution (7.1) by a Gaussian distribution. This is most easily shown in the
symmetric case when p = g = 1/2. The probability for a net displacement of S
steps to the right is then

P(S,N) = (;) R]% . (7.12)

Using Stirling’s formula n! = v/27nn""e™", we then get

/| N
P(S, N) _ SR 6N log N—Rlog R—Llog L—N log2
_ N eleog (2R/N)—Llog (2L/N)
V 27 RL

where 2R/N = 1+ S/N, 2L/N =1 — S/N and RL = (1/4)(N? — S?). Now
expanding the logarithms to second order in S/N, we find

[ 2 >
P(S,N) = me_s /2N (7.13)

In the prefactor we have made the approximation 1 — S?/N? ~ 1. This is due
to the exponent which forces S? to be of the order N. Thus N2/S? oc 1/N and
can be neglected when N is very large. The result is seen to be an ordinary
Gaussian distribution with average value (S) = 0 and width (S?) = N as we
already have found.

The approximate Gaussian formula is in practice quite accurate also when
S is of the same order as N and N is rather small. This is illustrated in Table
7.1 where we have compared the approximate probability (7.13) with the exact
Bernoulli distribution (7.1) for a walk with N = 10 steps.

When the number N of steps in the walk gets very large, we can assume
that each step is very small of length a. If the walk takes place along the z-
axis, the final position of the walker will then be x = Sa which we now can
assume is a continuous variable. Similarly, it the time interval 7 between each
consecutive step is also very small, the walk takes a time ¢ = N7 which also will
be a continuous variable. The probability for the walker to be at position x at
time ¢ is then from (7.13)

1 277- e—$27/2a2t ]

P(J?,t) = % Tt
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S 0 2 4 6 8 10
Pip(S) | 0.246 | 0.205 | 0.117 | 0.044 | 0.010 | 0.001
Gauss | 0.252 | 0.207 | 0.113 | 0.042 | 0.010 | 0.002

Table 7.1: Probabilities for a random walk with ten steps.

The factor 1/2a in front is needed to normalize this continuous probability
distribution since the separation between each possible final position in walks
with the same number of steps is Az = 2a. Introducing the diffusion constant

D=— (7.14)

we can write the result as

[T ..
P(l’7t) = m & /4Dt . (715)

At any given time it is a Gaussian distribution which is very peaked around
x = 0 at early times and gets flatter at later times. Physically, this just reflects
the fact that the probability to find the particle away from the origin increases
with time. The area under the curve, however, remains constant. This is due
to the normalization of the probability distribution which in the discrete case
was given by (7.2). Now it becomes

oo
/ dx P(z,t) =1 (7.16)
— 00
as is easy to check by direct integration.

Equipped with this normalized probability distribution, we can now calculate
different properties of the continuous random walk. The mean position of the
walker at time ¢ is

o0

(z(t)) = / dxxP(x,t) =0 (7.17)
— 00

as we already know. Again it must be stressed that this average of the final

position x is taken over a large number of symmetric walks, all starting at

position z = 0 at time ¢ = 0 and lasting a time ¢. The absolute displacement is

similarly given by the average

(22(8)) = / dea? Pz, 1) = 2Dt (7.18)
which is just the continuous version of the discrete result (7.10).

Random walks can easily be generalized to higher dimensions. For example,
in two dimensions the walker can move in four direction at ever step in time,
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up or down, right or left. In the symmetric case the probabilities for these four
possibilities are equal to 1/4. If we let a random walk go on indefinitely, we will
discover that it eventually comes back to the initial point one or more times and
that the curve completely covers the two-dimensional plane. Random walks in
three dimensions have neither of these properties.

The continuous probability distribution in three dimensions can be obtained
from the product of three probabilities (7.13), one for each direction. On the
average every time step will involve a step in each direction. The probability
density for finding the walker at the position x = (x,y, 2) is thus

N2/ 2 N2
P _ 7 —X /2Na
(1) (2&) <7rN/3) €

1 \*?* .
= (4 Dt) e X /4Dt (7.19)
T

where D = a?/27 is the diffusion constant in three dimensions. With the unit
normalization

/ d*z P(x,t) =1 (7.20)

we now find the mean position of the walker at time ¢ as
(zi(t)) = /d?’x x; P(x,t) =0 (7.21)

while the squared displacement follows from the average
(22 ()5 () = / P w3, P(x,) = 205, Dt (7.22)

It gives as expected
(x*(t)) = (2(1)) + (y?(t)) + (£*(t)) = 6Dt (7.23)

which also follows directly from the one-dimensional result (7.18).

In a Monte Carlo simulation one can again obtain these averages by starting
a random walker in the initial position x = 0, measuring his final position at
time ¢, repeating this for a large number of identical walkers and then calculating
the different averages over the accumulated data. Obviously, this is equivalent
to starting off a large number of identical walkers at time t = 0 at the origin
x = 0 and then measure the different averages at a later time ¢. We then have
a process where a large number of particles are slowly spreading out from the
origin so that the mean distance to the particles increases like t'/2. In this way
we see that the random walk of one particle gives a microscopic description of
diffusion which is basically a process involving a very large number of particles.

Diffusive processes are abundant, giving rise to heat conduction in solids,
the spreading of momentum in a viscous fluid or the statistical behavior of
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stock prises. However, in order to have a simple, mental picture of a diffusive
process, consider a very small drop of colored dye in stationary water. After
some time we will see it spreading out over a larger area and thinning out in
concentration. The central limit theorem is a natural basis for a more general
discussion of diffusion.

7.2 The central limit theorem

In the previous chapter a random walk was shown to have a Gaussian distri-
bution. The central limit theorem generalizes this result to a sum of steps of
random length as well as direction. We will use this result to describe diffusion
in terms of the diffusion equation.

Gaussian distributions are highly common and may be found everywhere in
nature, politics and economy. For that reason we should look for an explanation
that does not rely on physical law.

Very often a variable X of interest is the sum of a large number of increments,
so that

N
X =Y u (7.24)

i=1
where the x; are random variables with a distribution p(z) and zero mean (r) =

0. This distribution may have any form, but the variance of x must be finite,
so that we may define

o? = /dwap(x) . (7.25)

The question now is what the distribution for X is. The probability of finding
a given X is the sum of the probabilities of all the sets {z;} that sum up to X.
This sum may be written

N
P(X)= /dl‘ldl‘g....dl‘Np($1)p(IQ)....p($N)5(X - sz) . (7.26)
i=1
To progress we take the Fourier transform of P(x)
_ 1 —ikX
P(k) = 5 /dXe P(X)
1 : al
= 5 dXelkX/d$1d$2....d$N5(X—le'i)p(xl)p(l'g)....p(mj\l)
1 SN
= g/dxldzg....d:mve LA ‘p(x1)p(x2)...p(xN)

LN
= ﬂn/dxie_lk”"p(xi)
i=1

N
= @Y LA = 5 @) (7.27)
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where p(k) is the Fourier transform of p(z) The above result is a generalized
convolution theorem. We then invert the transform to get back to P(X):

/ dke™* X P(k / dke™ XN 2mp(k' /N )N (7.28)

where we have made the substitution k¥’ = Nk. We may write p(k) in terms of
p(x) as

p(k) = % / dwe™ " p( Z Zk (7.29)

where we have used the Taylor series for the exponential. Since (x) = 0, the
linear term in p(k) vanishes. The 0’th order term is 1/(27) and the second order
term is —(ko)?/(47). For that reason we may make the following approxima-
tions

rp(k/N)N ~ (1 - (ka)*) " —y gK*o?/N) (7.30)
2N?2 '

when N — oco. In the above we have used the formula (1 + 2/N)Y — e with
= —(ko)?/2N. Using the above approximation in equation (7.28) we get

/ dke™ X P(k)

i /dkeikX—k2N02/2
2w

T = (7.31)
V21 No?
where, in the end, we have performed the Gaussian integral. This result is
the central limit theorem. It shows that X has a Gaussian distribution with
variance (X?) = No2.

The central limit theorem will be used in the context of diffusion and the
Langevin equation. However, it is also a usefull tool to understand many of the
random processes we are surrounded by. Fluctuations are everywhere, and the
theorem will sometimes let you distinguish between a fluctuation and a trend.
If, for instance, a newspapers reports that the total tax income in the city of
Oslo is dramatically decreasing, it may be a simple calculation to find that the
decrease is within the expected year-to-year variation.

P(X)

7.3 Diffusion and the diffusion equation
We start in one dimension and consider the particle, or molecule, as it performs

a random walk due to molecular collisions. If the molecule starts out at z = 0
at t = 0 we may write for its position

No
= Z Ay(t;) (7.32)



7.3. DIFFUSION AND THE DIFFUSION EQUATION 165

where the step-length Ay(#;) has a finite variance 02 = (Ay?). For this reason we
may apply the central limit theorem and immediately write down the probability
of finding the particle at some other position at a later time:

— 22

P(z,t) x e2Noo? | (7.33)

We will not need the microscopic information of o2, and we observe that Ny o<
t, so we can make the replacement 2Ngo? — 4Dt, where D is the diffusion
constant. Writing things like this equation (7.33) may immediately be used to
show that (22) = 2Dt. By normalization we then get

2

—x

e Dt
P(x,t) = , 7.34
0= i (734
which is just equation (7.15) again. Note that
2
e Dt
P(z,t) = — 6(x) (7.35)

when ¢ — 0. This is just the mathematical statement that we initially know
where the particle is located. If we have N > 1 particles, initially all at the
position xg, their concentration

AN

Clz,t) = Ar

NP(z,t), (7.36)
and we note that their number is conserved as
/dmC(m,t) =N. (7.37)

It is always possible to consider an arbitrary concentration profile at some time
t = 0 as a sum of delta-functions through the identity

C(x,0) = / daoC (o, 0)5(x — 20). (7.38)

If the particles do not interact with each other, their evolution is independent,
so that each delta-function evolves independently according to equation (7.34).
This means that the concentration at some later time ¢ is

—(z—=g)?
e

VarDt
(z—=0)?

where the probability function e#/ V4w Dt is usually reffered to as the
Green’s function for diffusion.

Figure 7.1 illustrates a one-dimensional system populated with particles and
the net current J, (number of particles per unit time) passing a given point

Clx,t) = /dccoC(xo,O) (7.39)
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[

Figure 7.1: Diffusive current J, along the z-axis.

x > 0. Since particle are neither created, nor destroyed, this current equals the
rate of change of the particle number to the right of z. Taking all particles to
start out at = 0 this statement of particle conservation may be written

d o0
Jy = &\/x dl’NP(:C,t)
d o du 2
- = hatt —u®/4
it | . amle
VDt

a2
x lN@4Dt
v Dt2t 4w
T 0
= —NP(z,t)=—-D—NP(x,t A
2 NP(a.t) = D2 NP(a,1), (7.40)

where we have made the substitution v = x/+v/ Dt. The relation

oC (x,t)

Jy=—-D o (7.41)
is known as Ficks law, and since it is linear in C, it must hold for any sum of
initial delta-function shaped initial concentrations, and therefore, for any initial
concentration profile.

In 3D we can locally align the z-axis with VC. Then there are locally
no variations in the transverse directions, and by symmetry, the diffusive flow
must be in the direction of the gradient. This implies that the equation (7.40)
generalizes to

J=-DVC. (7.42)

In 3D C(x,t) is a particle number per volume, rather than length, and J is
the number of particles per unit time and area that flows through space. The
diffusion constant has, as always, dimensions of length2 /time.

Ficks law holds, as we have seen, for particles that do not interact with
each other. For small gradients it may be generalized to the case of interacting
particle by the introduction of a C-dependent diffusion coefficient D(C).

The fact that particles are not created or annihilated may be stated by saying
that inside a given volume V in space, the particle number change is entirely
due to flow across the surface of that volume, or in mathematical terms:

%/ dVC(x,t):—/dS-J:D/dS-VC:—/dVDV2C (7.43)
14
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where Ficks law and Gauss’ theorem have been used to re-write the surface
integral. By simply moving the right hand side to the left, and taking the
time-derivative inside the integral, this equation becomes

/dv(mj—pv%ozo, (7.44)
v ot

which holds for any integration volume V. Therefore the integrand must be
zero and
oC

—— = DV?3C. 4
o viC (7.45)

This equation is known as the diffusion equation and results from the combina-
tion of Ficks law and local mass conservation.

Figure 7.2: The evolution of 60 000 random walkers. Time increases from left to right.

Figure 7.2 shows the evolution of a finite set of random walkers that spread
diffusively. Note that, even though each random walker has no preference to
move either way, their density spreads out irreversibly. Figure 7.3, which dis-
plays the result of a density variation only in the z-direction, shows how their
collective behavior confirms to equation (7.36).

For a spatial delta-pulse of concentration in 3D equation (7.45) has the
solution

P(x,t) = P(x,t)P(y, t)P(z,t), (7.46)

which is easily checked by writing the equation in the form

( o 02 0? 0?

at_axz+8y2+822>p(x7t):0. (7.47)

By the same arguments of linearity as above the concentration in 3-dimensional
space may be written

67(x7x0)2/4Dt

D (7.48)

ﬂxﬂszmﬂmﬁ)

This is formally the general solution to the initial value problem given by the
diffusion equation and a given initial condition C'(x,0).
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Random walkers density

Density

Position x

Figure 7.3: Density profiles corresponding to the same random walker algorithm as in
Figures 7.2. However, the random walkers are initialized as a strip with translational symmetry
in the y-direction, and a Gaussian density profile in the z-direction. The density profiles are
averaged in the y-direction which extends 200 sites. The full lines show the solution of the 1d
diffusion equation. Note the noise in the measured graphs.

7.4 Markov chains

Random walks and diffusion are two of the simplest examples of a much larger
class of stochastic processes called Markov chains. They are all characterized by
the fundamental property that whatever happens at any instance is independent
of what happened at earlier times. It only depends on the state of the particle
or system. For the random walker, the state at any time was just its position.
From any given state the system can then jump to another state with a certain
probability. When these transition probabilities are independent of time, we say
that the process is stationary. We will here consider only such Markov processes.

A.A. Markov (1856-1922) was a Russian mathematician who worked at the University in
St. Petersburg. He did important work in number theory, limits of integrals and convergence
of infinite series. Later he moved to probability theory where he proved the central limit
theorem, i.e. that the sum of many random variables will approach a Gaussian distribution in
the limit where the number of independent variables goes to infinity. The idea about chained,
stochastic events came from his study of how vowels and consonants appeared in the poem
”Yevgeny Onegin” by Pushkin. He received an honorary degree from the University of Oslo
in 1902 at the Abel centennial that year.
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In order to introduce the concepts and formalism needed in this chapter,
let us first consider a simple problem from elementary probability theory. We
are going to draw numbers from two boxes. Box A contains the numbers {1,
2, ..., 9} and box B contains the numbers {1, 2, ..., 5}. We now ask for the
probability to draw an even (E) or an odd (O) number from one of the boxes
selected at random. The probability to draw an even number from box A is
obviously P(E|A) = Wga = 4/9, while an odd number has the probability
P(OJ|A) = Wpa =5/9. Similarly, Wgp = 2/5 and Wpp = 3/5. Since one box
is chosen at random, the probability to choose box A is P4 = 1/2 and thus also
Pg = 1/2. The probability Pg for drawing an even number is now given by the
probability to draw an even number from box A times the probability that this
box is chosen plus the same for box B. We thus have the probabilities

Pp = Wga Pa+Wgp Pp
Po = Wopa Pa+Wop Pp

which gives Pg = 19/45 and Pp = 26/45. As a check, we notice that P+ Po =
1.
These equations obviously invites to be written in matrix form as

Pg Wga Wegs Py
= . 7.49
< Po ) ( Wes Wos Pg (7.49)
In a more compact notation we can write this as P/ = ) ; Wi Pj or simply
P’ = WP. The column vectors on both sides have the property that all their
components are positive, i.e. P; > 0. In addition, the sum of their elements are

one,
Y Pi=1. (7.50)

They are said to be probability vectors. Similarly, all the elements of the matrix
W are positive, i.e. W;; > 0. Also, the sum of the elements in any column is
one,

> Wi=1. (7.51)

Such matrices will in the following be called probability or stochastic matrices.

We can now define a stationary Markov processes. We consider a system
which at some time has a probability P; to be in a state j of aset {...,4,7,k,...}.
These probabilities form a probability vector P = (P;). In the next moment of
time it can make a jump to any other state in this set via a stochastic transition
matrix W = (W;;). The resulting state probability vector is then given by
P’ = WP. If we denote the initial vector by P = P(n) and the final one by
P’ = P(n + 1) where the argument n measures the step in time, we have in
general

P(n+1)=WP(n). (7.52)
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The subsequent time development can then be read off from the probability
vectors P(n+2) = WP(n+1) = W2P(n), P(n+3) = WP(n+2) = W3P(n)
and so on. It is obviously of interest to find out what we can say about the state
of the system after a large number of such stochastic transitions.

Before we consider this problem in general, let us first consider a simple
example of a Markov process. It involves a student who can be in only two
states. He is reading or he is sleeping. If he reads one day, he sleeps for certain
the next day. If a sleeps one day, he will sleep or read the next day with equal
probability. His transition matrix is thus

W= ( 0 %; ) (7.53)

Let us now calculate the probability for finding this student reading after a few
days if he sleeps on the Oth day. His probability vector the first day is then

(U ()-(8)

This is just what follows from the definition of the transition matrix. He has a
50% chance of reading the first day. The following day his state is given by

(0 1/2 12\ [ 1/4
P(Q)—(1 1/2)(1/2)‘(3/4) (7.55)
so he has only a 25% chance of reading. However, on the third day the proba-
bility for reading jumps up to Pr(3) = 3/8 while on the fourth day it is down
to Pr(4) = 5/16. It seems to settle down to value around Pgr = 0.33 in the long
run.

These probabilities must be understood in the ordinary sense of probability
calculus. A single student is always certainly reading or sleeping. But if consider
a large ensemble of students, let’s say 480, with the same work habits, then
on the first day 240 of these will be sleeping and 240 will be reading. The
next day 120 will be reading, while on the fourth day 180 are reading. A few
days later approximately 160 are reading and 320 are sleeping. At subsequent
times the numbers of reading and sleeping students don’t change anymore. The
distribution of students over the two possible states has become stationary and
the system is in equilibrium. But if we follow one particular student, we will
still see that he reads and sleeps from day to day as he always has done.

If the Markov chain ends up in a stationary distribution, i.e. is given by the
probability vector P* = P(n — o), it follows from the definition (7.52) that it
must satisfy the eigenvalue equation

P*=WP*. (7.56)

This fixed-point vector is obviously attained independently of the initial state
P(0) of the system.
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In the case of the student two-state problem, we can write P* = (x,1 — ).
With the transition matrix (7.53) the eigenvalue problem becomes x = (1/2)(1—
x) which gives immediately x = Pj; = 1/3 as obtained approximately above.

The long-time development is given by W™ = WW"~!. In the limit n — oo
we therefore have W = (P*P* ... P*) or in more detail

We=1pr P ... P; . (7.57)

Whatever initial state we start from, the system will attain the same equilibrium
state at late times. An obvious question is if such a fixed-point vector P* exists
for any Markov chain. It can be shown that it does provided the transition
matrix W doesn’t have any zero elements. W is then said to be a regular
stochastic matrix.

We stated in the beginning that random walks can be described as Markov
chains. In the simplest example of one dimension the state space is infinite and
given by the lattice sites on the open line, i.e. {...,—-2,—-1,0,1,2,...}. The
transition matrix is thus also infinite and thus not so easy to write down in
general. But when we only have transitions between nearest neighbor sites with
p for the probability for a right jump and ¢ for a left jump, it t takes the simple
form with zeros along the main diagonal, ¢’s along the upper bi-diagonal and
p’s along the lower bi-diagonal, all other matrix elements being zero. The state
evolution equation (7.52) for one-dimensional random walk is thus

Pi(n+1)=pP;_1(n)+qPit1(n). (7.58)

It’s content is obvious. In order to arrive at site i at time, the particle as to
make a right jump from a previous position ¢ — 1 or a left jump from a previous
position i + 1. If it starts at site ¢ = 0 at time n = 0 so that we have the initial
probability distribution P;(0) = d;0, the above recursion relation can be solved
for P;(n) to give the standard result obtained in the beginning of this chapter.

Instead of writing down all the elements of the transition matrix W, which
can be rather cumbersome in many cases, it is much more convenient to draw
the corresponding transition diagram containing the same information. All the
states of systems are denoted by small circles. If a transition between two
states is allow, these two states are connected by a line carrying an arrow giving
the direction of the transition and the corresponding matrix element. A state
can thus be connected with a transition line to itself. In Fig. 1 we show the
transition diagram for the previous student problem and in Fig. 2 it is shown
for the infinite random walk.

In a Markov chain there is a finite time difference 7 between each transi-
tion. When 7 — 0, we have a continuous time development. Defining now
W™ = W (t,0) where the time lapse t is given by ¢t = n7, we have then for
the corresponding probability vector P(t) = W (¢,0)P(0). Since the transition
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matrix is assumed to be stationary, we must have W (s —¢,0) = W(s,t) and
thus P(s) = W(s,t)P(t) when s > t. Now P(t) = W(t,u)P(u) when ¢t > u,
so that W(s,u) = W (s, t)W (t,u). This is the Chapman-Kolmogorov equation.
On component form, it gives

Wij(s,u) =Y Wi(s, ) Wi ; (£, u) (7.59)
k

which are non-linear constraints the transition matrix elements must satisfy.

As an example we can consider diffusion in d-dimensional space. Then the
state space is given by the continuous coordinate x and the transition matrix
W becomes W;;(t',t) — W(x',t/;x,t). The probability distribution P(x,t)
which is proportional with the particle concentration C(x,t), will then evolve
according to the basic equation

P 1) = / e W (s %, 8) P(x, 1) (7.60)

which is just the same as the previous diffusion evolution equation (7.48). The
transition matrix must still satisfy the basic requirement (7.51) which now is

/ddaz’W(x’,t’;x t)y=1. (7.61)
In addition, it must satisfy the Chapman-Kolmogorov equation (7.59)
W(x" t";x,t) = /ddz’W(x",t”;x’,t')W(x',t';x,t) . (7.62)

From the beginning of this chapter, we know that it is just the diffusion kernel
In d dimensions is

W', t';x,t) = (Ml)é/_t))d/g exp <4(§(;f);> (7.63)

when ¢ > t.

7.5 The master equation

In most cases it is impossible to construct the finite-time transition matrix
W (s,t). The situation is similar to quantum theory where the time evolution of
state vector or wave function is given by the Schrodinger equation. This differ-
ential equation expresses the change in the wave function over an infinitesimal
time interval in terms of the Hamiltonian operator. By integration one can then
obtain the development of the state vector in a finite time interval.

A similar approach to stochastic process will be to consider the limit of the
evolution equation P(s) = W(s,t)P(t) in the limit s — ¢. First of all, when
s = t we must have that W just becomes the identity matrix, i.e. W; ;(¢,t) = d;;.



7.5. THE MASTER EQUATION 173
For an infinitesimal time evolution s =t + 7 with 7 < t, we have then to first
order in T,
Wij(t + 7,t) = 6ij + TW; . (7.64)
Separating out the diagonal elements of W/, by writing
Wi/j = Ci§ij + wyj, (765)
it follows that
Wij(t-i-T, t) = (1 +Ci7—)5ij + Tw;; - (766)

However, the diagonal ¢; and non-diagonal w;; elements are not independent
since they stem from a stochastic matrix. It implies the condition (7.51) which
gives

ZWij(t+T7t):1:(1+Cj7—)+7-zwij (767)
After a relabeling of indices we obtain

C; — — Zwﬁ . (768)
J

The infinitesimal evolution of the state vector is thus given by

Pit+1) = (Q+gr)Pi(t)+7 Zwijpj(t)
= Pz(t) + TZ(’Ujiij — wﬂPl)

In the limit 7 — 0 we then have the differential equation

dP;
J

It has the same form for all stochastic processes given the infinitesimal transition
elements w;; in the same way as the Schrodinger equation has the same form for
all quantum processes given in terms of the corresponding Hamiltonian. Since
it applies in principle to all continuous Markov processes, it is called the master
equation inspired by the function of a master key which in principle will open
all doors.

The physical content of the master equation is easy to describe. If we picture
the probabilities P; as the fraction of systems in an ensemble being in the state
i, the first term on the right-hand side of (7.69) is just the number of systems
in other states jumping into this particular state. Similarly, the last term is
the number of systems jumping out of this state and into other states. It thus
decreases the number of systems in state ¢ and comes therefore with a minus
sign.
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As a simple example of what the equation gives, let us again consider random
walk in one dimension. If we assume that there are only microscopic jumps in
and out of neighboring sites, it follows directly from (7.69) that the probability
to find the system at site ¢ changes with time according to

dP,
dt

= wn,n+1pn+1 + wn,n—lpn—l - wn+1,7zpn - wn—l,npn . (770)

Assuming first that the microscopic transition probabilities in the right and
directions are constant along the chain, ie. wppn41 = wp—1, = wr and
Wn,n—1 = Wpt1,n = WR, the master equation takes the form

dP,
W :wL(Pn+1 7Pn)+wR(Pn_1 7Pn) . (771)
Denoting the separation between the lattice sites by a, we have P,+; = P(z+a).
In the limit where a — 0, we can therefore write

OP a®? 0P

Poy1—-P,=ta—+ —— 7.72
£1 ey + 2 Ox? (7.72)
when we drop higher terms in the Taylor expansion. The difference equation

(7.72) then becomes the differential equation

oP oP  a? 9?P
= a(wy, —wr)— + —(wg, +w3)ﬁ .

5 T 3 (7.73)

This equation is known as the Fokker-Planck equation for asymmetric random
walk. In the symmetric case where microscopic jump probabilities to the right
and left are the same,w; = wr = w, it simplifies to the diffusion equation with
the diffusion constant D = a?w.

One of the most fundamental stochastic processes in Nature is radiative
decay of atoms or radioactive decay of atomic nuclei. To be specific, let us
consider N unstable nuclei with a decay constant A. This means that any
nucleus, independently of how long it has lived, has a probability of At to
decay in a short time interval §t. If the total number of particles which has
survived to the time ¢ is n = n(t), the number decaying in the time interval
Ot is o0n = —Andt. In the limit 6t — O this gives the differential equation
dn/dt = —An. It has the solution n = N exp(—At) since n(0) = N. However,
since each individual decay is not a deterministic, but a stochastic process, we
expect this standard decay law only to hold in the mean, ie. for (n(t)). In
practice, when continuously monitoring the original number of N nuclei, one
will find the their number fluctuates in general around the mean value'

(n(t)) = Ne . (7.74)

LA more mathematically consistent notation for the average of n at time ¢ would be (n )(t),
but we will here stick with more convenient (n(t) ) used in previous chapters and most physics
texts.
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The characteristic time 7 = 1/A is called the radioactive lifetime of the nuclei.
Only when observing a large ensemble of systems, each containing N nuclei,
will the mean number of surviving nuclei be given exactly by this exponential
decay law.

The stochastic nature of radioactive decay can be brought forward by using
the master equation (7.69). P, (t) will then denote the probability for having
exactly n survived nuclei at time ¢. This number can decrease by having a decay
of one of the n nuclei or it can increase by having a decay from the state with
n + 1 nuclei. The master equation thus takes the form

dP,
T A(n+1)Pyt1 — AnP, . (7.75)
It will now be solved with the boundary condition P, (t = 0) = J,,n. At very late
times there should be no surviving nuclei and we expect to find P, (t = 00) = dp0.

Before we solve this equation for the N unknown functions P, (t), we will
first show how the average number of particles

N
(n(t)) =Y _ nPu(t) (7.76)
n=0

changes with time. Taking the time derivative on both sides and using (7.75),
we have
d

N
a<n> =\ Z n[(n + 1)Pn+1 - nPn] (777)
n=0

In the first sum on the right-hand side we change summation variable from n+1
to n. Using that Pyy1 = 0, it follows that

N
d 2
£<n) = )\T;)[(n —1)nP, —n°P,] = —-X(n) (7.78)
which just proves the expected result (7.74). But we can now also obtain the
fluctuation around this mean value. It is given by (n2(¢)) which can be calcu-
lated as above. From

d

N
%<n2 y=2A Z n?[(n+1)Pyy1 —nP,] (7.79)

n=0
we again redefine the summation variable in the first term on the right-hand

side and thereby get

d, o, 2
() = Al —17nP, —n®P,]

= Aln) —2(n2)]. (7.80)
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2Xt

Multiplying both sides with e“* and reordering terms, the equation can then

be written as p
pn [e2M(n?)] = e2MA(n) = ANe (7.81)

After a direct integration
eM(n?) — N2 = N(eM - 1) (7.82)
we then have the final result
(n2(t)) = N?e 22 £ Ne (1 — e M) . (7.83)
The fluctuation ( An?) = (n?)—(n)? in the number of surviving nuclei is thus
(An%(t)) = Ne (1 — e ) (7.84)

and is plotted in Fig. 3. It is seen to vanish at times ¢t = 0 and ¢ = oo, in both
cases because the number of nuclei at those times are fixed. The function has a
maximum at ¢;/5 = In2/X which is just the half-life time.

One of the simplest methods of finding the decay probabilities P, (t) is
through their generating function defined by

N
=3 Put) (7.85)
n=0

for s < 1. Its partial derivative with respect to time follows directly from the
master equation (7.75) as

N

The first term on the right-hand side can now be expressed by the partial deriva-
tive

N

%—C: Z n=lp, —Zns P, (7.87)

(n +1)s" Poyy (7.88)

Il MZ |

while the second term is similarly expressed by s(0G/9s). Thus we have the
differential equation

aG oG

= A1— 85 (7.89)

satisfied by the generating function. Introducing the new variable z = In (1 — s),
it takes the form (0G/0t)+ A(0G/Ox) = 0 which means that G(s,t) = g(z— At).
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The unknown function g(z) can now be determined from the boundary condition
G(s,0) = s which follows from P,(0) = d, v in the defining equation (7.85).
Since s = 1 — €, we then have that g(x) = (1 — e®)" and thus in general

Gis,t)=(1—-e ) =[1-(1-s)e " . (7.90)
Using the binomial expansion and comparing with (7.85), we obtain the result

N
n

Pu(t) = ( > et (1 — e )" (7.91)

for the decay probabilities. When n = N this gives simply Py (t) = e~V which
could also obtained directly from integration of the master equation (7.75). All
the other probabilities can then be obtained by successive integration of the
remaining first-order, inhomogeneous differential equations, thus confirming the
result (7.91).

From the result (7.91) it is now easy to calculate different expectation values.
From (7.87) we have for instance that (0G/0s)|s=1 = (n). The derivative of
(7.90) with respect to s with s = 1 gives then immediately the result (7.74).
Similarly, we get

(?15)8_1 = (n?)—{(n) (7.92)
= N(N—-1)e M (7.93)

which reproduces the result (7.83).

The probabilities (7.91) are seen to be given by simply the binomial dis-
tribution function. A deeper understanding of this problem should then have
allowed us to write down this result without explicitly solving the master equa-
tion. This follows from the realization that p = e~ is the probability for a
nucleus to have survived until time ¢. Then ¢ = 1 — p is the probability for the
nucleus to have decayed in this time. In order to have exactly n nuclei left at
time ¢, then n out of the initial number N must have survived and N —n must
have decayed. Thus we have

P, = (ﬁf ) (1= p)¥ (7.94)

which is just the result (7.91).

7.6 Monte Carlo methods

Casinos have a predictable average income, even though their winnings are based
on random processes. Monte Carlo methods have their name for a similar reason:
They too are based randomness, yet they have systematic average outputs.
The starting point for Monte Carlo methods is the master equation equation
(7.75). Many systems satisfy, what is known as detailed balance,a condition
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T=1.88T, T=T, T=0.12T,

Figure 7.4: Snapshots of Ising model simulations using the Monte Carlo method at various
temperatures.

which says that the s — s’ transition rate is directly balanced by the s’ — s
transition rate,

’LUS/SPS/ = wss/Ps . (795)
In steady state, when OP(s)/0t = 0, equation (7.89) then becomes

’LUS/SPS/ = wss/Ps . (796)
The particular method known as the Metropolis: algorithm is derived by setting

—BAE,, ,
Wewt = { e when AF e >0 (7.97)

1 otherwise

where AFE,, = Ey — FE, is the energy increase in the s — s’ transition. Note

that for any sign of e #2Fs the relation
Weer
28— ¢ BAB. (7.98)
Ws's

holds. Detailed balance then implies

Wss! Py
— = 7.99
.~ D (7.99)
or equivalently
I
BBy ~ o PF: (7.100)

Since the left hand side is s-independent, this must be the case also for the right,
hand side, or, in other words

P, < e PEs (7.101)

which is just the Boltzmann distribution. The Metropolis algorithm is therefore
a way of producing the canonical distribution.
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The transition probabilities of equation (7.97) may be realized in the follow-
ing way: First, a random state s’ is chosen, and AF,, computed. The actual
chose of s’ may be done in many ways, as long as it doesn’t exclude any parts
of the state-space that we need to average over. Then the transition is accepted
if AEge < 0. If AE,e > 0 a random number 0 < x < 1 is picked from
a flat distribution, and the state is accepted if x < e #AFss' | In this way a
series of states {s;}, i = 1,...N will be generated that samples the Boltzmann
distribution.

Figure 7.4 shows the result of a Monte Carlo simulation of the Ising model
at different temperatures on a 50 by 50 lattice. For T' = T, it is instructive to

Figure 7.5: Snapshots of a Monte Carlo simulation of an Ising model at critical temperature
on a 500x500 lattice.

look at a somwhat bigger lattice: Figure 7.5 shows a Monte Carlo simulation
of a 500 by 500 lattice at T = T.. Note that the sizes of magnetic domains
range from the scale of a single lattice site to the size of the whole lattice. This
means that the average domain size will always reflect the system size. When
the lattice size diverges, so will the average domain size and the correlation
length, in agreement with the equation (6.61).

Since the Metropolis algorithm samples the Boltzmann distribution, any
equilibrium average may be computed. Since fluctuations are also computed
through equilibrium averages, these are available too. If G is a variable of the
system, its average is given as

1 N
(G =+ > G, . (7.102)
i=1
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If for instance you want to simulate the equilibrium state of a liquid the energy
FE; must correspond to the interaction energies of the liquid molecules. Such a
simulation will give the density fluctuations in the liquid, but it will not give
the time evolution of the liquid. The time evolution is given by Newtons second
law, or the Scrodinger equation, and the Monte Carlo transitions do not capture
this. The Monte Carlo method is suited for simulations of equilibrium averages,
and not the dynamics of the system. As such it is very efficient as it allows for
the discontinuous motion between states. The molecular dynamics technique,on
the other hand, which integrates Newtons second law for every molecule in the
fluid, is very slow because the molecules can only be moved a small fraction of
the mean free path for every time step. The Monte Carlo technique does not
have this restriction and is therefore much faster.

The average computed from equation (7.102) is an average over the most
likely states of the system. However, the states that are separated from the
most likely energy values will have a vanishing probability of being visited for
any macroscopic N-values. The number of microstates is so enormous (like
2N where N is the number of particles) that only a tiny fraction of them will
ever be visited. This is in a sense the same situation as for a real system in
the canonical ensemble, where the probability of having an energy substantially
away from the average is vanishingly small.

In some cases though we would like to know the full probability distribution,
even for unlikely values of the thermodynamic quantities. Such a case is the
probability P(My, T, N) of seeing a magnetization M in an N-spin Ising magnet
at temperature T and zero external field B. This probability may be written

1
P(My,T,N)= > P.= 7 > et (7.103)
S,MS:MO S,MS:MU

Here we may replace Z = e‘ﬂF(M’T’N), since, when B = 0 the Gibbs and
Helmholtz free energies are equal, G = F'. Since the energy may be taken as a
function of M, T and N, that is, E = E(M,T, N), the sum

Z 6_’6ES ~ e—,BE(M,T,N)+S(M,T,N)/k _ e—ﬁF(M,T,N) . (7104)

s,Ms=Mj
Combined with the expression for Z this gives
P(My,T,N) ~ e PAF(Mo,T.N) (7.105)

where the free energy deviation is AF (Mg, T, N) = F(My,T,N)— F(M,T,N).
Note that since AF(My, T, N)/(kT) ~ N, P(My, T, N) ~ e~ for any value
where AF (Mg, T, N) is of the order of F(My,T, N). Since this probability is
too small to be reached by the standard Monte Carlo algorithm, a modification
is called for.
For this purpose define Gy = ©(Ms — My) where ©(M; — My) = 1 when
M, = My and 0 otherwise. The average computed from equation (7.102) is then
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exactly the desired probability:

N
Z O(M,, —My)) = Z P,O(M,—M,) = Z P, = P(M,,T,N) .
i=N s s,Ms=Mj

(7.106)
However, there is a catch to this computation. If we use the algorithm of equa-
tion (7.97) we will again never get into the My < My < My + AM regime. We
may, however force the computation to stay in this regime by the modification

[ e PABr when AEsy > 0and My < My < Mo+ AM

Wss! = { 1 when AFE,y <0 and My < My < Mg+ AM
(7.107)
Whenever M, is outside the interval, the transition is not made. This means
that the number Ny, of transitions that are carried out is much, much smaller
than the number N of transitions that would have been necessary in order to
arrive spontaneously in the right regime. The algorithm of equation (7.107)

then gives the following

N

Z @(qu - MO)

i=1

N

N1 Z@M& My) . (7.108)

Pu(M()aTaN): NM N

Mo

This kind of restricted sampling as is defined by equation (7.107) is usually
referred to as umbrella sampling. From equation (7.105) we see that

AF(My,T,N) = —kTIn P,(My,T,N) — kT In (N]i[”°> (7.109)
where the additive constant In(Nyy, /N) is hard to calculate. But we are able to
calculate AF(My, T, N) as a continuous function within each interval from M
to Mo+ AM. Having such a piecewise continuous function, it is always possible
to patch the pieces together to a fully continuous function.

This is what has been done to create the graph in Figure 7.6. Here the
lattice is fairly small, only 30 by 30 sites. Within each window of width AM the
simulations can only efficiently cover the regime of the spontaneously occurring
fluctuations, and therefore the window width AM must be limited. In this
case AM = 40 for each run. Also, since it is known that AF(My,T,N) =
AF(—M,,T,N), only the My > 0 part is shown. Figure 7.6 should be compared
with the Landau mean field ansatz which is shown in Figure 6.14.
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Figure 7.6: The free energy F(M,T) as a function of magnetization M for different temper-
atures around 7.. The F' = 0 value is arbitrary. The simulation was done with 900 spins, and
the window of allowed M values had a width AM = 40 for each run of 8 million iterations of
the Monte Carlo algorithm. The coupling had the value J/kT = 0.64 for the critical state.



Chapter 8

Non-equilibrium Statistical
Mechanics

Non-equilibrium statistical mechanics deals with the evolution of systems toward
the equilibrium state, as opposed to equilibrium statistical mechanics, which
more properly, is sometimes referred to as statistical statics. Only systems
which are close to equilibrium may be captured by non-equilibrium statistical
mechanics. In this case the term ’close’ requires that equilibrium will be reached
through a process that is described by a linear set of equations. If this is not the
case, no general formalism exists, and far-from-equilibrium statistical mechanics
remains an open, challenging and interesting domain of contemporary research.

The theories we shall develop in this chapter rest on an amazing property
of equilibrium systems: They spontaneously generate out-of-equilibrium states,
the fluctuations, and the average evolution of the fluctuations coincide with the
evolution of much larger perturbations to the system. This is the content of
the fluctuation-dissipation theorem, and it is an important part of the basis for
the Onsager theory. This property shows up already in the Langevin equation,
which describes the rich phenomenon of Brownian motion.

8.1 Brownian motion and the Langevin equa-
tion

In 1827, while examining pollen grains and the spores of mosses suspended in
water under a microscope, Brown observed minute particles within vacuoles in
the pollen grains executing a jittery motion. He then observed the same motion
in particles of dust, enabling him to rule out the hypothesis that the motion
was due to pollen being alive. Although he did not himself provide a theory to
explain the motion, the phenomenon is now known as Brownian motion in his
honor.

Before we embark on the analysis of the detailed motion of a Browian particle

183
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Figure 8.1: The robust appearance of Robert Brown (1773-1858) and Paul Langevin (1872-
1946).

it is instructive to derive the Einstein relation — a formula that relates the
mobility of a Brownian particle to its diffusivity. This relation may be derived
using the Boltzmann factor of equilibrium statistical mechanics, or the Langevin
equation.

In 1905 A. Einstein was the first to explain diffusion in terms of random
walks of individual particles. Einstein’s microscopic derivation of the diffusion
equation opened up a new chapter in the understanding of diffusion, Brownian
motion and other stochastic processes. He showed that the diffusion constant
may be related to the mobility p of the diffusive particles. The mobility is
defined as the ratio u = v/F where v is the velocity by which the particle moves
through its surrounding fluid in response to an external force F'. The observation
that Einsteins derivation is based on is the following. If a system of diffusing
particles is subjected to gravity, the equilibrium state may be considered a
balance between a downward flux due to gravity, and an upwards flux due to
diffusion:

aC

HC(x, hmg = —D—, (8.1)

where mg is the gravitational force acting on individual particles, and z is
the vertical coordinate. In equilibrium the probability of finding a particle at
a given height z is given by the Boltzmann factor e #™9% and therefore the
concentration has the same dependence:

C(x,t) o e~ Pmoz (8.2)
and we find the ratio 1 80

When inserted in equation (8.1) this result immediately gives the relation

D = ukT, (8.4)
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which is the Einstein relation. It has the remarkable feature that it relates the
mobility, a quantity that may be measured, or computed, in the absence of
fluctuations, to a quantity D/kT, which is a direct measure of the thermal fluc-
tuations in the system. Since p determines the amount of (viscous) dissipation
when the particle is moved, and D measures the magnitude of the fluctuations,
the Einstein relation is also reffered to as a fluctuation-dissipation relation. It
is a direct consequence of the so-called fluctuation-dissipation theorem, which
will be derived in chapter 8.2.

Figure 8.2: Fluid molecules hitting a suspended particle

The Langevin equation is Newtons second law for a Brownian particle, where
the forces include both the viscous drag due to the surrounding fluid and the
fluctuations caused by the individual collisions with the fluid molecules. In order
to describe the statistical nature of the force fluctuations we restate the Central
limit theorem, which we have already proved:

When a variable AP is a sum of independent increments,dp;, like a random
walk

N
AP =Y "op; (8.5)
=1

where (dp;) = 0 and (6p?) = 02, then, when N is large, the random variable
AP has a Gaussian distribution with (AP?) = No2.

Now, take dp; to be the z-component of the momentum transfer to the Brow-
nian particle from a molecular collision, and let N be the number of collisions
during the time At. Then AP is the z-component of the momentum received by
the Brownian particle during the time At, and (AP?) oc At. The corresponding
force AP /At will have a variance

(AP2) 1

(F7) =

x
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In a computer simulation of a Brownian particle one would have to integrate
Newtons second law for the particle picking a random force F' (t) from a Gaussian
distribution at every time-step At. Will this force be correlated from time
step to time step? No, not as long as At is larger than the correlation time
of the forces from the molecules, and we shall assume that these correlations
may be neglected. In the next chapters we shall obtain the corrections to this
approximation.

When this requirement is fulfilled we may hence write the correlation func-
tion as

0 when |t| > At/2
where the constant a could in principle be determined from the variance of Ap;.
In stead we will determine it from the equipartition principle. In the At — 0
limit the above equation becomes

{Aat when  [t| < At/2

(Fo(t)F2(0)) = ad(t) (8.8)

and likewise for the other spatial components of the force which will all be
independent of each other.

Since (F) = 0 the fluctuating force by itself will cause no average decay of
the velocity. The macroscopic decay we need is the one caused by viscosity,
i.e. m¥v = —awv where m is the particle mass, v is the velocity relative to the
surrounding fluid, and « is a constant coefficient, which for a sphere which is
small (but larger than a Brownian particle), has the exact form oo = 67nr, where
71 is the viscosity, r is the spheres radius. This friction law is known as Stokes
law, and it is valid when the sphere moves at moderate speeds relative to a
viscous fluid.

A version of Newtons 2. law which combines the effects of the fluctuations
in the force and the hydrodynamic drag, is the Langevin equation

m% = —av+F (8.9)
where each component of F has a Gaussian distribution of magnitudes, and
a correlation function given by Eq. (8.8). Both forces on the right hand side
above come from the molecular fluid. The drag force —av represents the veloc-
ity dependence, and it is therefore reasonable to postulate that F is velocity-
independent, and therefore

(Fyu;) =0 (8.10)

where ¢ and j are Cartesian indices.

The first thing we compute from equation (8.9) is the velocity autocorre-
lation function. For simplicity we will start out in one dimension, since the
generalization to higher dimensions is straightforward. Multiplying equation
(8.9) by e*/™ /m we can then write it as

% (v(t)e%) =em FTS) (8.11)
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which can be integrated from ¢ = —oo to give

t (4!
—a=t) F'(t')
t) = dt/e—m  — 2~ 12
U( ) / € m (8 )

— 00

where e~/ plays the role of a response function. The velocity auto-correlation
function now follows directly as

t 0
wt(0)) = [ d / " e=ot=t' =V m BB fm? (8.13)

t 0 / "
’ 1" 5t 7t
= / dt’ / dt' et =t W% (8.14)
0 1 t—2t" a a t
= / dt" e (= WW =5 —e " /m (8.15)

where we have used equation (8.8) and the fact that the average (...) commutes
with the integration. Note that the first integration above is over ¢'. Assuming
t > 0 this guarantees that the ¢ = t” at some point during the integration and
the a non-zero value of the d-function is sampled.

We may combine equation (8.15) with the equipartition principle to fix a.
Since

kT

—m(v?) 5

1
5 (8.16)
we get

a=2akT . (8.17)

In other words, the magnitude of the fluctuations increase both with tempera-
ture and friction.

We may integrate the velocity over time to get the displacement x(¢), and the
diffusive behavior linked to the variance (x(t)). Note that this is a refinement
of the random walker, since now the step length is governed by the integration
of Newtons 2. law.

Starting from equation (8.12) and using equation (8.8) we get

' ! v d —11
(@) = /dt’/ df// dt”/ df”e—a(t/—t”-i-?—?,)/m%t:_t)
0 0 oo e

m

20kT [* bt i} bt o
= a2 /dt’/ dt’/ dt"O(T — t")e~ oW+t 2" /m (8.18)
0 0 —00

m

where the Heaviside function ©(t), which is 1 for ¢ > 0 and zero otherwise,
appeared because the integration over the d-function is nonzero only if its ar-
gument passes 0. The O-function will be 0, however, only if T < t, so we

get
20kT [t t  pmin(t'7) L,
a2 / dt// dt’/ dt" et =20 /m (8.19)
m 0 0 —0o0

(@*(1)) =
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The three remaining integrals are straightforward and gives

@2(t)) = 25T (t _ (1 - e—at/m)) . (8.20)

(&% «

When ¢ > m/a only the t-term survives and (z%(t)) = 2Dt with

kT
D=—. (8.21)
o
This relation is again the Einstein relation, now with @ = 1/u. Like the

fluctuation-dissipation theorem it relates quantities related to spontaneous fluc-
tuations, D and kT, with a quantity that describe macroscopic decay, «.
When t < m/a we use the Taylor expansion 1 — e~ ~ x — 22/2 for z < 1

to get
2 KT
(x=(t)) = - te (8.22)
that is \/(22(t)) = vint where v, = kT /m is exactly the thermal velocity that
follows from the equipartition principle. Having a finite correlation time m/«
for the velocity the Langevin equation thus describes the crossover between the
ballistic regime +/(22(t)) o t to the diffusive regime \/(z2(t)) o v/t.

The Langevin equation is based on the approximation that the friction force
has the instantaneous value —av and does not depend on the history of the
motion. However, the amount of momentum given off by the Brownian particle
does depend on the motion-history, and this momentum will change the velocity
of the surrounding fluid, which in turn changes the force on the Brownian par-
ticle. A correct description then does take the history dependence of the force
into account, and this changes the velocity correlation function: In the long
time limit the correlation function changes from the e~* behavior to an 1/t%/2
behavior, where d is the dimension. This was discovered in the late 1960’s, first
through computer simulations, then analytically.

Langevin equations show up also outside physics. Stock prices for instance
are often described by a Langevin equation.

8.2 The fluctuation dissipation theorem

It is often easier to generalize a particular result than it is to apply a general
result to a particular situation. In the following we shall therefore consider
the Brownian motion of a particle that is submerged in a thermal fluid and
connected to a spring, as illustrated in Fig.8.3. We may subsequently keep in
mind that the position variable x could also denote the center of mass position
of electric charge or a Fourier component of a fluid interface wave.

In a rough sense the fluctuation dissipation theorem states that a sponta-
neous equilibrium fluctuation decays like an externally imposed perturbation.
To make this statement more precise consider a small perturbation h < kT to
the system Hamiltonian H. For ¢t < 0 the system is governed by H + h while
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Figure 8.3: Particle submerged in a fluctuating fluid and connected to a spring.

at ¢ > 0 it is governed by H. For concreteness, take h = —Fx where F' is an
external force, i.e. F' = QF where @ is an electric charge and F an electric
field.

For brevity we introduce the trace notation, which applies both to classical
and quantum systems

TrX = /de = > (n|X|n) (8.23)

quantum states n

where dw represents an infinitesimal phase space volume. Then the equilibrium
average may be written

ryx e PH
(z) = Te{z(p,q)f(p.q)} = I ’I(‘fe,i];H ) (8.24)

where f(p, q) represents the probability distribution in phase space, and « may
in fact be one of the ¢’s. The origin of x is defined so that (z) = 0. Let the
correlation function ¢(t) be defined in the normal way

o) = (#(02(0) = [ desltp@eOpfpa)  (52)

where z(t;p, q) is the value of x at time ¢ given the initial values (p,q). Note
that the Hamiltonian of the system fixes the evolution of all the variables from
a given initial condition.

The mean value of x after the external force is turned off may be written

—ipy = Drfa(tp, q)e PUF)}

(1) e (8.26)

where the average is taken with the Boltzmann factor e~ #(H=F%) gince the initial
condition is defined with F turned on. Now, since SFx < 1 we may expand
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the numerator to linear order in Fx

Tr {z(t;p,q)e PH-F)}

~ Tr{z(t;p,q)e P (1 + BFz(0;p,q)}

= Tr{z(t;p,q)e” '} + Tr{a(t; p, )z(0; p, q) BFe P}

= BF(x(t)z(0))Tre PH (8.27)

where we have used that Tr{z(t;p,q)e ?H}/Tre PH = (x(t)) = (z) = 0 is
independent of ¢. Likewise, the denominator may be written

1 1— F(x) 1
Tre—B(H-Fxz) = Tre—BH ~— Tre—AH - (8.28)
Combining the numerator and denominator gives
T(t) = BF(x(t)z(0)) , (8.29)
for t > 0. This equation has the form of the fluctuation dissipation theorem.
However, the perturbation h = —Fx is not macroscopic as it is smaller than

kT, and therefore T is not larger than a spontaneous fluctuation. However, if
the system is linear so that T « F even when h >> kT, then T = Fr(t) for some
response function r(¢) and all F within the linear regime. But this relation must
also hold for small F, so that r(t) = S{x(¢)z(0)). This means that holds for all
F' as long as the macroscopic perturbation remains linear, which means that F'
must be so small that it does not exceed the linear regime of the spring, nor
cause any non-linear hydrodynamics when the external force is relaxed. The
fluctuation dissipation theorem is then given by equation (8.29).

x(_t) —

Figure 8.4: Relaxation of () when a constant force is set to zero at ¢ = 0. The full line
represents the ensemble average.

Figures 8.4 and 8.5 give an interpretation of the theorem of equation (8.29).
In Fig. 8.5 the subset of spontaneously occurring time series with z(0) = zg
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x(1)

Figure 8.5: Relaxation of z(t) in equilibrium when the average is taken over all time-series
with (0) = zg. The full line represents the ensemble average.

is selected. Since equilibrium averages are invariant under time translation
(x(t)x(0)) = (x(—1t)z(0)) and the curves in Fig. 8.5 are (statistically) symmetric
around ¢t = 0. The fluctuation dissipation theorem states that for ¢ > 0 the
averaged relaxations of Figs. 8.4 and 8.5 are identical provide the systems are
linear in the sense stated above. This is not obvious at all, since the system
arrives at its t = 0 state with different histories, and the further evolution will
in general depend on history.
Dividing equation (8.29) by its t = 0 form we may write it as
w(l) _ (#(t)2(0) 30
z(0) (22 7 '
where we have extended the time domain by inserting an absolute value of time
on the left hand side. If the energy dependence on z is quadratic, as in the
present case E = (1/2)kox?, the equipartition theorem holds, (x2?) = kT/ky,

and we get
z(|t]) _ ko(z(t)z(0))
= 8.31
Z(0) kT ’ (8:31)
which is the form we shall apply in the following.
The fluctuation dissipation theorem may also be derived more directly by

splitting the average in the correlation function in the following way:

(x(t)2(0)) = (Ta, (£)2(0))o (8.32)

where T )(t) is the average over all time-trajectories x(t) that start at xo at
t = 0, and the average ( )o is over all initial values zo. By applying as a
hypothesis that the average of microscopic fluctuations, such as T, (t), decay
as macroscopic perturbations, we may immediately write equation (8.30). This
hypothesis is known as the regression hypothesis, and we see that the content of
the above proof is to show this hypothesis, and under what conditions it holds.
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We shall now specialize to a description that is coarse grained in the sense
that it is closed on the level of the variables x and t. We shall only use the
linearity in the relation between x and F', and the most general relation we may
then write is o

Z(t) :/ dt'k(t —t")F(t") (8.33)
—0o0
where the response function x(t) = 0 for ¢ < 0, since = can only depend on past,
and not future, force-values, i.e. k is causal.

We shall now switch to Fourier space, and before we proceed , it is useful to
write down a few basic relations of Fourier transforms. We define the Fourier
transform of a function f(t) the only reasonable way as

f = o [ ae

) = /_oo dw f(w)e™ . (8.34)

In the following we list some useful, and easily proven, properties of the Fourier
transform, which are shown in the appendix. .
First, the convolution theorem: If §(w) and h(w) are two transforms and

f(w) = §(w)h(w), then
1) = % /_Z di’g(t)h(t —1') . (8.35)

The next result is relevant for response functions like x(¢): If a function fo(¢) = 0
for ¢ < 0, then we may extend it to an even function f(t) = fo(|t|) with the
Fourier transform R R

f(w) = 2Re(fo(w)) . (8.36)
Finally, we need a theorem that also has a physical content, and is known as the
Wiener-Khinchin theorem. It relies on ergodicity, the postulate that time and
ensemble averages give the same result. Introducing the finite time transform

. 1 /T ,
frw) =5 [ dese (8.37)
mJ-T
we may define the power spectrum
— 1 T 2
Sy(w) = lim | fr(w)”. (8.38)

t is shown in the appendix that ergodicity gives
G5O = [ desglre, (8.3

which means that finding the auto-correlation function and the power spectrum
amounts to the same thing.
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Taking the Fourier transform of equation (8.33) and using the convolution

theorem gives .
Z(w) = 2mh(w)F(w) . (8.40)

The Fourier transform of equation (8.31) has the form

2Re(T(w))  kS.(w)
=T (8.41)

In order to get a well defined expression for F (w) it useful to assume that it
decays slowly to zero as t — —oo, and write

F(t) = FoO(—t)eM | (8.42)

where it is understood that, at the end of the day, the A\ — 0 limit is taken.
This force has the Fourier transform

- 1Fy
Flw)=——. 4
@) 27m(w + i) (843)
Combining this expression with the above gives
~ ’LI%(OJ)FO
= ;. 44
Hw) = T (5.44)
Now, equation (8.41) may be written
kT N
- = —2 T
S:0) = oy 2ReEw)
= 2kTRe < () )
w+ QA
2T | F) (8.45)
= - m .
w + A

where we have used that Fy = kZ(0).
Now, since the Fourier transform of the particle velocity 4(w) = iwZ, the
velocity power spectrum S, (w) = w?S,(w) and equation (8.45) gives

Sy(w) = —2kTIm(wk(w)) , (8.46)

in the A — 0 limit.
The velocity autocorrelation function

(u(t)u(0)) = /dweMSu(w) = ikT/dwei“’t(w/%(w) — whk*(w)) , (8.47)

where R*(w) = R(—w), since k(t) is real. This means that we can make the
substitution w — —w in the second term of the integrand to get

(u(t)u(0)) = ikT / duwo(€ + =N i(w) | (8.48)
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where it is now explicit that (u(t)u(0)) is even in ¢. Let us therefore assume
that ¢ > 0, and make the following observation: By definition

K(t) = /dwei‘”t/%(w) . (8.49)

Since [, dtr(t) is finite (a finite constant force will produce a finite response),

f(w) o [dte™™tk(t) — 0 as w — oo. For this reason we may close the w-
integral along the contour C' shown in Fig. 8.6. Since

Cr

Figure 8.6: Closed integration contour C in the w-plane. The circular part of the contour
is denoted Cg.

k(t)=0fort <0. (8.50)

we may deduce that &#(w) has no poles in the lower half plane: This also means
that the e~ ™*-term in equation (8.48) will give zero contribution when ¢ > 0
(we assume that wi goes to zero as well), and we may simply write

(u(t)u(0)) = ikT / dwe™twiz(w) (8.51)

when t # 0. Note that the above argument fails when ¢ = 0, since, as we will
observe, the contribution from the C'r contour vanishes only when ¢ # 0.

8.3 Generalized Langevin Equation

A description of Brownian motion, that includes the fluctuation (not just the
average, as in equation (8.33))is given by the generalized Langevin equation

mi = — /t dt'y(t —t)i(t') + R(t) — kx + F(t) (8.52)
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where m is the mass, v is a hydrodynamic response function, R(t) is a fluctuating
force of zero mean, and F' is the external force as before. Taking first the average,
and then the Fourier transform of equation (8.52) we get

—mw?T = =214 (w)iwT — kT + F(w) , (8.53)
or, equivalently, R .
T(w) = 2mk(w)F(w) , (8.54)
with 12
A(w) = /(2r) (8.55)

—mw? + 279 (w)iw + ko ’
which, indeed satisfies wik — 0. This result for #(w) may be used to derive the
correlation function for R(t).

Writing the Langevin equation in terms of the velocity u, and setting both
F=0and k=0, we get

miwi(w) = —4(w)2ri(w) + R(w) , (8.56)
" R(w)
. _ R(w
w) = imw + 279 (w)

This equation describes a free Brownian particle with both the spring force and
the external force. Taking the modulo square of this equation we obtain

_ SR(W)
limw + 2m4(w)|2

(8.57)

Sy (w)

(8.58)

Using the expressions equation (8.46) and equation (8.55) to write Sy, (w) we get

kT limw + 274 (w) |2
Spw) = T Re ( imw + 275 (w)

= 2kTRe(¥(w)), (8.59)

where we have written the real part as the sum of the expression and its complex
conjugate in order to pass from the first to the second line. It follows from this
that the correlation function

(R(t)R(0)) = ET(|t]) - (8.60)

The force correlation function is, in other words, directly given by the hydro-
dynamic response function. When there is a memory in the response function,
i.e. when there is a finite hydrodynamic relaxation time, there is also a memory
in the correlations of the thermal force R. The fact that v(¢) has a finite decay
time is linked to momentum conservation in the fluid: If the Brownian particle
increases its momentum, there must be a corresponding momentum decrease
in the surrounding fluid. This momentum change in the fluid will spread out
hydrodynamically, and this process will take a significant time. The momentum
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of the Brownian particle will thus be affected by this process as long as it goes
on, as is reflected in the response function -y.

It is instructive to note that the equipartition theorem is reproduced. Setting
t = 0 in equation (8.48) gives us

(u2) = 2ikT / duwit(w) . (8.61)

Substituting from equation (8.55) with k& = 0 gives

(u?) = izl /dw ! : (8.62)

imm w —2mid (w)/m

This integral has no poles in the lower half plane. However the integral along
Cpr will not vanish. Instead we get that

T 1
(W?) = —L/ dw———F—————
imm Jo, w—2miY(w)/m
kT d kT
= —,—/ == (8.63)
imm Jo, w m

or, in other words ((m/2)u?) = kT /2, which is just the equipartition principle.
In the above argument we have used the fact that (w)/w — 0 when w — 0, so
that the last term in the above denominator could be neglected.

If we neglect the hydrodynamic memory, we may set

~v(t) = 26 () (8.64)

where « is the friction coefficient of equation (8.9). Then equation (8.52) be-
comes
mi = —ax + R(t) — kx + F(t) (8.65)

with the force correlations
(R(t)R(0)) = 2kTad(t) . (8.66)

This is just the good old, Markovian, Langevin equation. Note the factor of 2
in equation (8.64). This factor reflects the fact that the integration domain in
equation (8.52) only extends to the point where the argument of the j-function
is 0. Since the §-function should be considered the limit where some smooth
function becomes very peaked, this means that the integration of the d-function
only gives 1/2, and not 1, as usual.

A more careful hydrodynamic analysis shows that the Markovian Langevin
equation is a good description when the mass density of the Brownian particle
is much higher than the mass density of the surrounding fluid. It is also clear
that the standard Langevin equation is accurate when there is no momentum
conservation in the fluid, as is, for instance, the case when the fluid is a thin
film on a substrate.
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8.4 Green-Kubo relations

Earlier we showed that the Markovian Langevin equation gives rise to diffusion
in the long time limit. How does diffusion emerge from the non-Markovian
equation? We shall answer this question by going via so-called Green-Kubo
relations. These are relations between a transport coefficient, like the diffusivity
D, and an equilibrium correlation function.

In order to obtain the diffusivity we may always write the mean square
displacement as

t t
(22(t)) = / ' / dt" (u( Yu(t")) (8.67)
0 0
where may apply the fact that since the average is over a stationary state

(wu()) = (u(t — t")u(0)). Writing f(¢t) = (u(t)u(0)) the above expres-
sion takes the form

(@2(8)) = /O "t /0 S — ) = /O v [ tt/t/ drf(r)  (8.68)

if we substitute 7 = ¢t — ¢. Doing the t’-integration by parts gives

(xQ(t)):t/O de(T)Jr/__ A (fE—t) — F(F)) (8.69)

t

where we have used that f(¢) is an even function in ¢. By adding an subtracting
t to t' in the second integral and doing a trivial substitution, we get

x? = tT’T— t’T’T ). .
(#2(1)) 2t/0df() 2/0d £() (8.70)

Now, if these integrals converge in the ¢ — oo limit, the behavior is diffusive as
(r2(t)) o t, and we may define the diffusivity as usual as

D - g &0

t : i I
Jim :tl_lglo (/0 drf(r) — ;/0 dTTf(T))

/OO drf(r) . (8.71)
0

Q

The relation

D= /O dr (u(7)u(0)) (8.72)

is a Green-Kubo relation. When the integral of the velocity correlation function
converges, it defines the diffusivity from measurements on the equilibrium state
of the system. Such a formulation is useful in computer simulations, since the
simulation may be carried out in equilibrium and no external perturbations are
required. It also quantifies how fast the velocity correlations must decay in order
for the process to be considered a (diffusive) random walk. The Markovian
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Langevin equation gives (u(t)u(0)) = (kT/m)e=®*/™ so the integral clearly
converges and gives D = kT /«, which is again the Einstein relation.

But the Markovian Langevin equation does not take into account the fact
that the overall momentum of the Brownian particle and the surrounding fluid is
conserved. The velocity autocorrelation function (u(¢)u(0)) will indeed reflect
this fact, and it will only decay as fast as a momentum perturbation in the
system will propagate away to infinity. To get an idea of how this will happen
it is instructive to consider a velocity perturbation u, = upd(z) that is one-
dimensional in the sense that it is constant along a plane that is perpendicular
to the z-direction. For such a perturbation the equation of fluid dynamics, the
Navier Stokes equation, reduces to the one-dimensional diffusion equation

Ouy, R

ot 022

(8.73)

where v is the kinematic shear viscosity that describes the shear forces in the
fluid. The solution is the well-known diffusive Greens function

22

e 4vt

R (8.74)

Uy (2,t) = ug

In three dimensions, or more generally d dimensions, the flow field becomes
more complex, if the momentum perturbation is only introduced at a single
point, but it still has the diffusive time-dependence 1/ t4/2 at the point where
the perturbation was introduced. Since, by the fluctuation-dissipation theorem,
the correlation function decays as a macroscopic perturbation we get that

(utyul0)) x 17 (5.75)

for long times. This means that in 3D the Green-Kubo integral [ dt(1/t3/?)
converges in the long time limit, and all is well with the diffusive behavior of a
Brownian particle.

In 2D on the other hand, equation (8.70) would give

(@2(t)) o t1n(t) (8.76)

and the mean square displacement increases faster than linearly in time. This
means that in Flatland, a two-dimensional world, normal diffusive behavior does
not exist— thanks to momentum conservation.

Only in 1991 was such anomalous diffusive behavior actually observed. M.
van der Hoef and D. Frenkel did this by means of a new simulation technique,
known as hydrodynamic lattice gases, that deals effectively with large scale
hydrodynamic systems that also has the fluctuations of real fluids. Of course,
truly two-dimensional systems do not exist in our three-dimensional world. But
two-dimensional descriptions may still apply, and one might imagine that the
odd bacteria, living in the fluid of a soap bubble for instance may experience an
enhanced availability of nutrition due to the enhanced diffusion there.
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Assuming convergence of the Green-Kubo integral, the velocity power spec-
trum from the Langevin equation may be used to solve the integral. Since the
velocity autocorrelation function is even in time

D= /0 ~ dr(u(r)u(0)) = % [ o; dr (u(7)u(0)) = % [ O; ir [ o; et S, (w) |

(8.77)

and we may interchange the order of integration and use fix;o dre™t = 278 (w)
to write

D = 75,(0) = —27kT lim Im(wk(w)) , (8.78)

w—0

where we have inserted our velocity power spectrum equation (8.58). From
equation (8.55) with kg = 0 we have got

N 1/(27) . 1

W) = e A | @A) (8.79)
and T
D=ty (8.80)

which looks very much like the Einstein relation, only that « is replaced by
274(0). What does this mean? By definition, the Fourier transform is

274/(0) = /_ "t (t) | (8.81)

The force caused by the fluid on a particle moving steadily at the velocity ug
may be written

—/ dt'y(t —t"ug = uo/ dt'~v(t') = agug (8.82)

where aq is now the steady state drag coefficient. This means that

kT
&%)

D , (8.83)
which is yet again the Einstein relation. However, the interpretation is new.
The present version of the Einstein relation tells us that D is only sensitive to
the asymptotic, long time, or small frequency, behavior of the response function
4(w). All the dynamic memory effects contained in the finite frequency depen-
dence of 4(w) is somehow averaged out in D, unless of course, it causes the
Green-Kubo integral to diverge so that the behavior becomes super-diffusive.

8.5 Omnsager relations

Consider two containers connected by a small hole through which gas may flow.
If the width and length of the hole is of the order of the mean free path of
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Figure 8.7:
Lars Onsager (1903-1976)

the gas, non-hydrodynamic effects set in. In particular, it may be observed that
temperature differences may drive mass flow and, vice versa, pressure differences
will drive heat flow. This is known as the thermomechanic effect and represents
an example of a cross phenomena where the driving force of one current drives
the other, and the other way around. Onsager reciprocity relations state that
these cross-couplings are equal— or, reciprocal— in a certain quantitative sense.
Another example involves the cross-coupling between liquids like oil and wa-
ter, that flow through a porous medium and are forced by individual pressure
differences.

Lars Onsager first studied the cross-coupling between a heat flow in one
direction and a temperature gradient in another direction in an anisotropic
crystal. In 1931 he published a much more general result that relates the flows
and forces in thermodynamic systems out of equilibrium, but where a notion of
local equilibrium exists. This result deals, which proves reciprocity in macro-
scopic, irreversible phenomena, is, surprisingly, based on the observation that
the underlying micro-dynamics is time reversible. For this he was awarded the
Nobel Prize in chemistry (!) in 1968.

Let us denote the quantities that are coupled in our system as z;. For
simplicity we would like these quantities to appear linearly in the Hamiltonian,
so that the Fluctuation dissipation theorem applies. This may often be achieved
by imagining external springs or other external forces, for instance, in the case
of two phases flow, the fluid flow velocity may be identified with the position of
a piston subjected to a constant, external force.

A key concept in this context is the entropy production, which we may write
as

S = fii; (8.84)
where Einsteins summation convention is understood and

0

fi= oz,

() (8.85)
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in general is taken at some non-equilibrium value of . The quantity f; is known
as a thermodynamic force and &; as the conjugate thermodynamic flux.

We shall take the system to be isolated, so that the probability of finding the
system at some particular z-values is proportional to the number of microstates
compatible with those values:

oS(@)/k

P(z) = [ dzeS@)/k

(8.86)

where the integration goes over all the z;’s. A particularly practical relation
holds between x; and f;: Computing the equilibrium average, using the above
distribution, gives

drz, feS@/K
(wify) = LGmlen
[ dzeS@)/k
fdzxig—ies(m)/k
[ dzeS@)/k
|2 wi e @k — k5, [ dxeS@)/k
[ dzeS@)/k
N (8.87)

where we have partially integrated and discarded the boundary term, since the
extreme values of x; may be considered of vanishing probability.

We will assume that there is a linear relationship between the fluxes and
the forces. For a spring, for instance, a linear force—displacement relationship
follows if the spring is within the Hooks law regime, i.e. when z < V¥, where
VL is the displacement where the spring starts to behave non-linearly. In
general, when fluctuation< = < ™V linearity implies a relation like

;i = Lik fr (8.88)

which are macroscopic, linear laws.

In the following we want to say something about the coefficients L;; from
the nature of the correlation functions (z;(t)z;(0)). The key observation is
that in a microscopic description the time evolution of z;(t) and all the mi-
croscopic degrees of freedom are governed by a Hamiltonian that guarantees
time-reversibility. Hence, if a measurement of z;(t) were run backwards in time,
it would represent a solution of the equations of motion just as well as the
forward moving signal. For that reason

(zi(t)z;(0)) = (zi(—t)2;(0)) . (8.89)

Using time-translational invariance of an equilibrium average, we get

(i (t)a;(0)) = (zi(=t)a;(0)) = (zi(t = t)z; (1)) = (z:(0)z; (£)) . (8.90)
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Splitting the above averages, as in equation (8.32), we can write

(Ts(t);(0))o = (2:(0)7;(t))o , (8.91)

where T;(t) is the average over all time evolutions that start out with x; = 2;(0).
Subtracting (z;(0)x;(0)) on both sides of these equations, replacing ¢ — 7, and
dividing by 7 we get

(=0, ) (B8O, 0N s

T T

where we shall take 7 to be a time that is much larger than the molecular mean
free time, and smaller than the macroscopic decay times. Then we may identify
(Z;(1) — z;(0))/7 = Z;, and substitute the linear laws of equation (8.88) to get

Lir(frxj) = Ljr(fewi) - (8.93)
Applying the relation of equation (8.87) then gives
Li; = Lyj; (8.94)

which are the celebrated Onsager reciprocity relations. The perhaps most strik-
ing feature of these relations is that they link a symmetry of macroscopic, irre-
versible responses to the reversibility of the underlying microdynamics.

In order to apply the Onsager relations the fluxes and forces must be identi-
fied, and this is most conveniently done by determining the entropy production
in the form of equation (8.84). Since this equation involves only the products
fix; a certain amount of freedom exists when defining the fluxes and forces.



Chapter 9

Appendix

9.1 Fourier transforms

Say that you were listening to someone playing the piano, and you were able
to hear exactly the combination of keys that were hit. If you could also hear
how hard they were hit your ear and brain would, roughly speaking, be doing
a Fourier transform. Fourier transforms quantify how much there is of every
single frequency in a signal. This is true if the signal is something that varies
with time. If the variation is over space, like a set of waves on the sea, the
Fourier transform gives you an amplitude for every wavenumber.

To make all this mathematical we start out with a function of time f(t),
that we have sampled at a given rate over a certain time interval 27 so that
we know f(¢,) at the times ¢, = Tn/N, where n = —N,—-N +1,...N — 1.
This is a practical situation, and we will subsequently make the mathematical
idealizations of (1) a continuous time (N — oo) and (2) an infinite measurement
interval, T' — oco. We define the Fourier transform as

Flen) = 5z S flta)ements (91)

where the discrete frequency wy = wk/T, and k = —N,—-N +1,.....N — 1
takes just as many values as t,. Note that the Fourier transform is linear,
in fact, it is just a matrix multiplication by a matrix that has the elements
Ejp = e witn = ¢=imkn/N = Thig matrix is non-singular, and we can invert the
transform as

F(tn) = %Z Flwp)ertn (9.2)
k

To prove this we need to compute the sum

N-1 N-1
E eiwktn — § : eiﬂkn/N

k=—N k=—N

203
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2N—-1

. . k
— Z e*ﬂrn/N (627rn/N>
k=0
—inn/N _1—€?™"
_ e [ oww  whenn #0 7 9.3)
2N when n =0

where we have made the replacement k& — k + N, and used the formula for a
geometric sum. Using the fact that e2™" = 1 we may therefore write

N-1

D et = NG, . (9.4)

k=—N

If we insert equation (9.2) in equation (9.1), or the other way around, and use
the above formula, we may indeed verify that equation (9.2) holds. Note also
that, by the n <> k symmetry, we get

N-1

D ek = 2NGy (9.5)
n=—N

Now, assume that we take ¢ to be continuous, so that N — oo, while T is
kept fixed. Then the time-increment At = T/N — 0 and we may replace the
sum in equation (9.1) by an integral:

i 1 : 17 ,
flwe) = - ZAtf(tn)e‘“”’vtn =5 /_T dif(t)e “nt (9.6)

with the inverse

F0) =% 3 fleet. (9.7)

k=—o0

Equation (9.4) takes the form

N—o0

. 0no
’L(J.)kt _ . _ . n _
gk e = lim 2N, = %mo ZT—t =2T6(t) , (9.8)

where (%) is the Dirac delta function, and equation (9.5)
/ dte™ "kt = 2T6 . (9.9)
Finally, we take the T" — oo limit, and this makes the results even simpler, as

now, the frequency as well becomes continuous. Since the increment Aw = 7/T
we get from equation (9.7) that

f(t) = / T Flw)e™t (9.10)

—0o0
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and the inverse

~ 1 o0 it
= — dtf(t)e™ ™" . 9.11
flw) =5 [ _aurioye (9.11)
Equation (9.4) and (9.5) take the common form
/ dwe™*t = 275(t) and / dte™™" = 216(w) . (9.12)

In the following we derive some standard relations given in the main text.

9.2 Convolution theorem
If §(w) and h(w) are two transforms and f(w) = §(w)h(w), then how may we

write f(¢) in terms of g(¢) and h(t)?. The convolution theorem answers this
question, and is easily proven by insertion:

f(t)

| dsgpe

— 00

]_ b . ’ 1"
_ (2 )2 / dwdt/dt/lg(tl)h(t//)ezw(t—t —t'")
™ —00

1 o0

= 2—/ dt’dt" g(t"\h(t")o(t —t' —t")
™ — 00
1

= 5 - dt'g(t")n(t —t'), (9.13)

— 00

which proves the relation.

9.3 Even extension transform

The next result is relevant for response functions, that is, functions that vanish
for negative arguments: If a real function fy(t) = 0 for ¢ < 0, then we may
extend it to an even function f(t) = fo(|t|) with a Fourier transform given by
fo. The transform of the even extension of fo(t) is simply

e
0 e}
— % 7oodtf0(—t)e*iwt+%/o dt fo(t)e™ ™t
— i Dodtfo(t)(e_i“’t—‘,—ei“’t)
2m Jo
= 2Re(fo(w)), (9.14)

where we have used the substitution ¢ — —t for the integration over the negative
domain.
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9.4 Wiener-Khiniche theorem

The Fourier transform contains information both on the amplitude and the
phase of a given frequency, so that the analogy with the ear and piano is not
strictly correct. If we only want the information on the amplitude, we take
the modulo square of the transform. This gives the power spectrum, which we
define as

Sp(w) = Jim Z|fr@w)?, (9.15)

where fT(w) is given by equation (9.6) but where we have now equipped the
transform with a 7 subscript to highlight the T-dependence. Below we will show
that the above limit is in fact finite for a signal that respects the physical prop-
erty know as ergodicity. Ergodicity is the physical postulate that in equilibrium
a time-average amounts to the same thing as an ensemble average, i.e.

(9(0)) —Th_rgO QT/ dtg(t) (9.16)

for any function g of the dynamical variables in the system. Now, insert the
definition of fr(w) as given by equation (9.6).

Si(w) = lim —/ dt/ dt" e = £ () F ()

T—oo 47T
T4t/
_ li - 7zw‘r !/ . 1
T / v [ e T =) @17
Identify the g-function as
T+ qr
o) = [ e e ). (9.18)
T+t 7T
This gives
> dT —iwT
Siw) = [ e OA() (9.19)

where we have also used that the correlation function is even in 7, since equi-
librium averages are invariant under time-translation: (f(—7)f(0)) = (f(—7 +
7)f (7)) = (f(7)f(0)). From this equation it also follows directly that

GOy = [ s, (9.20)

— 00

a result which is known as the Wiener-Khiniche theorem. Note that since
(f(0)f(7)) is in general a finite, integrable function equation (9.19) shows that
S¢(w) is finite and well defined too.
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9.5 Solution of 2d Ising models

In 1944 Onsager solved the 2-dimensional Ising in zero magnetic field using the
transfer matrix method. It is still one of the most impressive mathematical
achievements in omodern theoretical physics. He found that the free energy per
spin is
J log (2cosh 2K) — = [ dn 1 1(1+\/1 2'29) (9.21)
— = —log(2cos - — og = — Kk?sin .
kT & or J, &9
where the coupling constant only appears in the parameter

_ 2sinh 2K
~ cosh? 2K
with K = BJ. The result can be simplified by expressing it in terms of elliptic
integrals. When the argument of the log in the integral is zero, a singularity

arises which is the critical point. It happens when x = k. = 1, i.e for sinh 2K, =
1. The critical coupling is therefore given by tanh K, = v/2 — 1 or

(9.22)

1 1
K. = 3 log (\/5 + 1) = 3 cot % =0.4407. .. (9'23)

confirming the earlier Kramers-Wannier result (6.64).
The internal energy follows now from the free energy (9.21). It gives rise to
a specific heat which diverges near the critical point like

8
Cp~ —Nk—K?log|K — K_| (9.24)
™

corresponding to a critical exponent a = 0.
In 1948 Onsager announced that he had calculated the spontaneous magne-
tization in the model. It is given the by apparently simple formula

i J[1—sinh™2K]5, T <T.
0, T>T.,

Near the critical point it varies like (6.42) with the exponent 5 = 1/8. The actual
calculations behind this result were published four years later by C.N. Yang
who also later got the Nobel prize. From this result for the magnetization now
also followed the zero-field susceptibility which was found to have the critical
behavior (6.40) with exponent v = 7/4. Finally, the correlation function at the
critical point decayed like

(9.25)

(0x Oxr) o |x — x| 77 (9.26)

for large spin separations. Comparing with the standard form (6.60), we find
the correlation spin index n = 1/4.

In the last few years there have been several attempts to find exact solu-
tions of the 2-dimensional Ising model in an external field with no success yet.
The 3-dimensional Ising model has not allowed any exact solutions and is to-
day being investigated by numerical methods, Monte Carlo simulations and the
renormalization group.



