Lecture 14. 270218

Example 4.1.1 (Outer product of 1-forms in 3-space)

a = oida’ o' = (x,y,2)

da = o, jda? N dax’

Also, assume that da = (0. The corresponding component equation is

a4 =0 = i — ;=0
which corresponds to
Vxa=>0

The outer product of an outer product!

d*a = d(da)
1
d’a = Eaul--mmuzdzz‘”2 Adx™ A --- ANdatr
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summation over 1 and 5 which are symmetric in oy, .., 210, and antisymmetric
in the basis we get Poincaré’s lemma (valid only for scalar fields)

d?a =0 (4.16)

This corresponds to the vector equation

V- (VxA) =0 (4.17)

Let a be a p-form and [ be a g-form. Then

dlanp) =dan B+ (=1)Pands (4.18)

4.1.2 Covariant derivative

The general theory of relativity contains a covariance principle which states
that all equations expressing laws of nature must have the same form irrespective
of the coordinate system in which they are derived. This is achieved by writing
all equations in terms of tensors. Let us see if the partial derivative of vector
components transform as tensor components. Given a vector A= Ate, =
A“’E}Lf with the transformation of basis given by
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The first term corresponds to a tensorial transformation. The existence of the
last term shows that A", does not, in general, transform as the components of
a tensor. Note that A", will transform as a tensor under linear transformations
such as the Lorentz transformations.

The partial derivative must be generalized such as to ensure that when it is
applied to tensor components it produces tensor components.

dA d dAH d
D (Afe,) = ok i+ A"di; = A" u"e, + A¥u"ey,, (6.89)
where u# = %. Hence the partial derivative A*, does only represent the

change of the vector component A*, and not the whole vector.
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where the functions I'?,,, are connection coefficients. Hence, eq.(6.89) takes the
form

% = (A", +TH A%) ue,. (6.93)

The covariant derivative, A* , of the vector components A* are defined by

dA

ﬁ = A‘f,,u”e#. (694)

Comparing with the previous equation we obtain

AB = AF 4 APTH (6.95)

This derivative represents the change of the whole vector A, not only the com-
ponents A,



4.2 The Christoffel Symbols

The covariant derivative was introduced by Christoffel to be able to differenti-
ate tensor fields. It is defined in coordinate basis by generalizing the partially
derivative A", to a derivative written as A";, and which transforms tensorially,
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The covariant derivative of the contravariant vector components are written as:

AR, = AF, + ATV, (4.22)
This equation defines the Christoffel symbols I'/,,, which are also called the
“connection coefficients in coordinate basis”. From the transformation formulae
for the two first terms follows that the Christoffel symbols transform as:
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(4.23)

The Christoffel symbols do not transform as tensor components. It is possible to
cancel all Christoffel symbols by transforming into a locally Cartesian coordinate

system which is co-moving in a locally non-rotating reference frame in free fall.
Such coordinates are known as Gaussian coordinates.

In general relativity theory an inertial frame is defined as a non-rotating
frame in free fall. The Christoffel symbols are 0 (zero) in a locally Cartesian
coordinate system which is co-moving in a local inertial frame. Local Gaussian
coordinates are indicated with a bar over the indices, giving

e, =0 (4.24)
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A transformation from local Gaussian coordinates to any coordinates leads to:
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This equation shows that the Christoffel symbols are symmetric in the two lower
indices, ie.

]_—‘(Lryr — ].—‘O;r#r (4:26)



