Lecture 24. 16. April 2018

6.2 Einstein's curvature tensor

The field equations are assumed to have the form:

space-time curvature \propto momentum-energy tensor

Also, it is demanded that energy and momentum conservation should follow as a consequence of the field equation. This puts the following constraints on the curvature tensor: It must be a symmetric, divergence free tensor of rank 2.

Bianchi's 2nd identity:

$$R^{\mu}_{\nu\alpha\beta;\sigma} + R^{\mu}_{\nu\sigma\alpha;\beta} + R^{\mu}_{\nu\beta\sigma;\alpha} = 0 \tag{6.12}$$

contraction of μ and $\alpha \Rightarrow$

$$R^{\mu}_{\nu\mu\beta;\sigma} - R^{\mu}_{\nu\mu\sigma;\beta} + R^{\mu}_{\nu\beta\sigma;\mu} = 0 R_{\nu\beta;\sigma} - R_{\nu\sigma;\beta} + R^{\mu}_{\nu\beta\sigma;\mu} = 0$$
(6.13)

further contraction of ν and σ gives

$$R^{\sigma}_{\beta;\sigma} - R^{\sigma}_{\sigma;\beta} + R^{\sigma\mu}_{\sigma\beta;\mu} = 0$$

$$R^{\sigma}_{\beta;\sigma} - R_{;\beta} + R^{\sigma}_{\beta;\sigma} = 0$$

$$\therefore 2R^{\sigma}_{\beta;\sigma} = R_{;\beta}$$

$$(6.14)$$

Thus, we have calculated the divergence of the Ricci tensor,

$$R^{\sigma}_{\beta;\sigma} = \frac{1}{2} R_{;\beta} \tag{6.15}$$

Now we use this expression together with the fact that the metric tensor is covariant and divergence free to construct a new divergence free curvature tensor.

$$R^{\sigma}_{\beta;\sigma} - \frac{1}{2}R_{;\beta} = 0$$
 (6.16)

Keeping in mind that $(g^{\sigma}_{\beta}R)_{;\sigma} = g^{\sigma}_{\beta}R_{;\sigma}$ we multiply (6.16) by g^{β}_{α} to get

$$g^{\beta}_{\alpha}R^{\sigma}_{\beta;\sigma} - g^{\beta}_{\alpha}\frac{1}{2}R_{;\beta} = 0$$

$$\left(g^{\beta}_{\alpha}R^{\sigma}_{\beta}\right)_{;\sigma} - \frac{1}{2}\left(g^{\beta}_{\alpha}R\right)_{;\beta} = 0$$

$$(6.17)$$

interchanging σ and β in the first term of the last equation:

$$\left(g^{\sigma}_{\alpha}R^{\beta}_{\sigma}\right)_{;\beta} - \frac{1}{2}\left(g^{\beta}_{\alpha}R\right)_{;\beta} = 0$$

$$\Rightarrow \left(R^{\beta}_{\alpha} - \frac{1}{2}\delta^{\beta}_{\alpha}R\right)_{;\beta} = 0$$
(6.18)

since $g^{\sigma}_{\alpha}R^{\beta}_{\sigma} = \delta^{\sigma}_{\alpha}R^{\beta}_{\sigma} = R^{\beta}_{\alpha}$. So that $R^{\beta}_{\alpha} - \frac{1}{2}\delta^{\beta}_{\alpha}R$ is the divergence free curvature tensor desired.

This tensor is called the Einstein tensor and its covariant components are denoted by $E_{\alpha\beta}$. That is

$$E_{\alpha\beta} = R_{\alpha\beta} - \frac{1}{2}g_{\alpha\beta}R \tag{6.19}$$

NOTE THAT: $E^{\mu\nu}_{;\nu} = 0 \rightarrow 4$ equations, giving only 6 equations from $E_{\mu\nu}$, which secures a free choice of coordinate system.

6.3 Einstein's field equations

Einstein's field equations:

$$E_{\mu\nu} = \kappa T_{\mu\nu} \tag{6.20}$$

or

$$R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = \kappa T_{\mu\nu} \tag{6.21}$$

Contraction gives:

$$R - \frac{1}{2}4R = \kappa T$$
, where $T \equiv T^{\mu}_{\mu}$
 $R = -\kappa T$ (6.22)

$$R_{\mu\nu} = \frac{1}{2} g_{\mu\nu} (-\kappa T) + \kappa T_{\mu\nu} , \qquad (6.23)$$

Thus the field equations may be written in the form

$$R_{\mu\nu} = \kappa (T_{\mu\nu} - \frac{1}{2}g_{\mu\nu}T) \tag{6.24}$$

In the Newtonian limit the metric may be written

$$ds^{2} = -\left(1 + \frac{2\phi}{c^{2}}\right)dt^{2} + (1 + h_{ii})(dx^{2} + dy^{2} + dz^{2})$$
 (6.25)

where the Newtonian potential $|\phi| \ll c^2$. We also have $T_{00} \gg T_{kk}$ and $T \approx -T_{00}$. Then the 00-component of the field equations becomes

$$R_{00} \approx \frac{\kappa}{2} T_{00} \tag{6.26}$$

Furthermore we have

$$R_{00} = R^{\mu}_{0\mu0} = R^{i}_{0i0}$$

$$= \Gamma^{i}_{00,i} - \Gamma^{i}_{0i,0}$$

$$= \frac{\partial \Gamma^{k}_{00}}{\partial x^{k}} = \frac{1}{c^{2}} \nabla^{2} \phi$$
(6.27)

Since $T_{00} \approx \rho c^2$ eq.(6.26) can be written $\nabla^2 \phi = \frac{1}{2} \kappa c^4 \rho$. Comparing this equation with the Newtonian law of gravitation on local form: $\nabla^2 \phi = 4\pi G \rho$, we see that $\kappa = \frac{8\pi G}{c^4}$.

In classical vacuum we have : $T_{\mu\nu} = 0$, which gives

$$E_{\mu\nu} = 0 \quad \text{or} \quad R_{\mu\nu} = 0 \ .$$
 (6.28)

These are the "vacuum field equations". Note that $R_{\mu\nu} = 0$ does not imply $R_{\mu\nu\alpha\beta} = 0$.

Digression 6.3.1 (Lagrange (variation principle))

It was shown by Hilbert that the field equations may be deduced from a variation principle with action

$$\int R\sqrt{-g}d^4x , \qquad (6.29)$$

where $R\sqrt{-g}$ is the Lagrange density. One may also include a so-called cosmological constant Λ :

$$\int (R+2\Lambda)\sqrt{-g}d^4x \tag{6.30}$$

The field equations with cosmological constant are

$$R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R + \Lambda g_{\mu\nu} = \kappa T_{\mu\nu} \tag{6.31}$$