Lecture 24. 16. April 2018

6.2 Einstein’s curvature tensor

The field equations are assumed to have the form:

space-time curvature o< momentum-energy tensor

Also, it is demanded that energy and momentum conservation should follow as

a consequence of the field equation. This puts the following constraints on the

curvature tensor: It must be a symmetric, divergence free tensor of rank 2.
Bianchi’s 2nd identity:
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further contraction of v and o gives

R%,—R 4+ R, = (6.14)
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Now we use this expression together with the fact that the metric tensor is co-
variant and divergence free to construct a new divergence free curvature tensor.

R%., - R 5=0 (6.16)
Keeping in mind that (9% R),; = g% R,; we multiply (6.16) by g JQ to get
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interchanging o and [ in the first term of the last equation:
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since g"QR%:cﬁ%R%:Rf’l. So that Ri — %diR is the divergence free curvature
tensor desired. -

This tensor is called the Einstein tensor and its covariant components are
denoted by E,3. That is
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NOTE THAT: L") = 0 — 4 equations, giving only 6 equations from £

J12a
which secures a free choice of coordinate system.
6.3 Einstein’s field equations
Einstein’s field equations:
E,u.r/ — Hirpu (620)
or
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Contraction gives:
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Thus the field equations may be written in the form
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In the Newtonian limit the metric may be written
: 2¢ . .
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where the Newtonian potential |¢| < 2. We also have Tyg > Ty and T ~ —Tyyp.
Then the 00-component of the field equations becomes

Roo ~ ;Ttlo (6.26)
Furthermore we have
Roo = R0 = Rloo
= Tl —Toig
_ U;:go . Clgv% (6.27)

Since Ty ~ pc? eq.(6.26) can be written V¢ = %M“lp Comparing this equation
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with the Newtonian law of gravitation on local form: V=¢ = 47Gp, we see that
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K= "7
In classical vacuum we have : T, = 0, which gives

Eu =0 or R, =0.] (6.28)

These are the “vacuum field equations”. Note that 7, = 0 does not imply
R0 =0.
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Digression 6.3.1 (Lagrange (variation principle))
It was shown by Hilbert that the field equations may be deduced from a variation
principle with action

f R —gd*z . (6.29)

where R\/—g is the Lagrange density. One may also include a so-called cosmological
constant A:

f (R +2A)y/—gd*x (6.30)

The field equations with cosmological constant are
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