Lecture 25. 17. april 2018

6.4 The "geodesic postulate" as a consequence of the field equations

The principle that free particles follow geodesic curves has been called the "geodesic postulate". We shall now show that the "geodesic postulate" follows as a consequence of the field equations.

Consider a system of free particles in curved space-time. This system can be regarded as a pressure-free gas. Such a gas is called *dust*. It is described by an energy-momentum tensor

$$T^{\mu\nu} = \rho u^{\mu} u^{\nu} \tag{6.32}$$

where ρ is the rest density of the dust as measured by an observer at rest in the dust and u^{μ} are the components of the four-velocity of the dust particles.

Einstein's field equations as applied to space-time filled with dust, take the form

$$R^{\mu\nu} - \frac{1}{2}g^{\mu\nu}R = \kappa\rho u^{\mu}u^{\nu} \tag{6.33}$$

Because the divergence of the left hand side is zero, the divergence of the right hand side must be zero, too

$$(\rho u^{\mu} u^{\nu})_{;\nu} = 0 \tag{6.34}$$

or

$$(\rho u^{\nu} u^{\mu})_{;\nu} = 0 \tag{6.35}$$

we now regard the quantity in the parenthesis as a product of ρu^{ν} and u^{μ} . By the rule for differentiating a product we get

$$(\rho u^{\nu})_{;\nu}u^{\mu} + \rho u^{\nu}u^{\mu}_{;\nu} = 0 \tag{6.36}$$

Since the four-velocity of any object has a magnitude equal to the velocity of light we have

$$u_{\mu}u^{\mu} = -c^2 \tag{6.37}$$

Differentiation gives

$$(u_{\mu}u^{\mu})_{;\nu} = 0 \tag{6.38}$$

Using, again, the rule for differentiating a product, we get

$$u_{\mu;\nu}u^{\mu} + u_{\mu}u^{\mu}_{\nu\nu} = 0 \tag{6.39}$$

From the rule for raising an index and the freedom of changing a summation index from α to μ , say, we get

$$u_{\mu;\nu}u^{\mu} = u^{\mu}u_{\mu;\nu} = g^{\mu\alpha}u_{\alpha}u_{\mu;\nu} = u_{\alpha}g^{\mu\alpha}u_{\mu;\nu} = u_{\alpha}u^{\alpha}_{;\nu} = u_{\mu}u^{\mu}_{;\nu}$$
(6.40)

Thus the two terms of eq.(6.39) are equal. It follows that each of them are equal to zero. So we have

$$u_{\mu}u^{\mu}_{;\nu} = 0 \tag{6.41}$$

Multiplying eq.(6.36) by u_{μ} , we get

$$(\rho u^{\nu})_{:\nu} u_{\mu} u^{\mu} + \rho u^{\nu} u_{\mu} u^{\mu}_{:\nu} = 0 \tag{6.42}$$

Using eq.(6.37) in the first term, and eq.(6.41) in the last term, which then vanishes, we get

$$(\rho u^{\nu})_{;\nu} = 0 \tag{6.43}$$

Thus the first term in eq.(6.36) vanishes and we get

$$\rho u^{\nu} u^{\mu}_{;\nu} = 0 \tag{6.44}$$

Since $\rho \neq 0$ we must have

$$u^{\nu}u^{\mu}_{;\nu} = 0 \tag{6.45}$$

This is just the geodesic equation. Conclusion: It follows from Einstein's field equations that free particles move along paths corresponding to geodesic curves of space-time.

7.1 Schwarzschild's exterior solution

This is a solution of the vacuum field equations $E_{\mu\nu} = 0$ for a static spherically symmetric spacetime. One can then *choose* the following form of the line element (employing units so that c=1),

$$ds^{2} = -e^{2\alpha(r)}dt^{2} + e^{2\beta(r)}dr^{2} + r^{2}d\Omega^{2}$$

$$d\Omega^{2} = d\theta^{2} + \sin^{2}\theta d\phi^{2}$$
(7.1)

These coordinates are chosen so that the area of a sphere with radius r is $4\pi r^2$.

Physical distance in radial direction, corresponding to a coordinate distance dr, is $dl_r = \sqrt{g_{rr}}dr = e^{\beta(r)}dr$.

Here follows a stepwise algorithm to determine the components of the Einstein tensor by using the Cartan formalism:

1. Using orthonormal basis (ie. solving $E_{\hat{\mu}\hat{\nu}} = 0$) we find

$$\underline{\omega}^{\hat{t}} = e^{\alpha(r)}\underline{d}t \;, \quad \underline{\omega}^{\hat{r}} = e^{\beta(r)}\underline{d}r \;, \quad \underline{\omega}^{\hat{\theta}} = r\underline{d}\theta \;, \quad \underline{\omega}^{\hat{\phi}} = r\sin\theta\underline{d}\phi$$
 (7.2)

2. Computing the connection forms by applying Cartan's 1. structure equations

$$\underline{d\omega}^{\hat{\mu}} = -\underline{\Omega}^{\hat{\mu}}_{\hat{\nu}} \wedge \underline{\omega}^{\hat{\nu}} \tag{7.3}$$

$$\underline{d\omega}^{\hat{t}} = e^{\alpha} \alpha' \underline{dr} \wedge \underline{dt}
= e^{\alpha} \alpha' e^{-\beta} \underline{\omega}^{\hat{r}} \wedge e^{-\alpha} \underline{\omega}^{\hat{t}}
= -e^{-\beta} \alpha' \underline{\omega}^{\hat{t}} \wedge \underline{\omega}^{\hat{r}}
= -\underline{\Omega}^{\hat{t}}_{\hat{r}} \wedge \underline{\omega}^{\hat{r}}$$
(7.4)

$$\therefore \underline{\Omega}^{\hat{t}}_{\hat{r}} = e^{-\beta} \alpha' \underline{\omega}^{\hat{t}} + f_1 \underline{\omega}^{\hat{r}}$$
(7.5)

3. To determine the f-functions we apply the anti-symmetry

$$\underline{\Omega}_{\hat{\mu}\hat{\nu}} = -\underline{\Omega}_{\hat{\nu}\hat{\mu}} \tag{7.6}$$

This gives:

$$\underline{\Omega}_{\hat{\phi}}^{\hat{r}} = -\underline{\Omega}_{\hat{r}}^{\hat{\phi}} = -\frac{1}{r}e^{-\beta}\underline{\omega}^{\hat{\phi}}$$

$$\underline{\Omega}_{\hat{\phi}}^{\hat{\theta}} = -\underline{\Omega}_{\hat{\theta}}^{\hat{\phi}} = -\frac{1}{r}\cot\theta\underline{\omega}^{\hat{\phi}}$$

$$\underline{\Omega}_{\hat{r}}^{\hat{t}} = +\underline{\Omega}_{\hat{t}}^{\hat{r}} = e^{-\beta}\alpha'\underline{\omega}^{\hat{t}}$$

$$\underline{\Omega}_{\hat{\theta}}^{\hat{r}} = -\underline{\Omega}_{\hat{r}}^{\hat{\theta}} = -\frac{1}{r}e^{-\beta}\underline{\omega}^{\hat{\theta}}$$

$$(7.7)$$

4. We then proceed to determine the curvature forms by applying Cartan's 2nd structure equations

$$\underline{R}^{\hat{\mu}}_{\hat{\nu}} = \underline{d\Omega}^{\hat{\mu}}_{\hat{\nu}} + \underline{\Omega}^{\hat{\mu}}_{\hat{\alpha}} \wedge \underline{\Omega}^{\hat{\alpha}}_{\hat{\nu}} \tag{7.8}$$

which gives:

$$\underline{R}^{\hat{t}}_{\hat{r}} = -e^{-2\beta}(\alpha'' + \alpha'^2 - \alpha'\beta')\underline{\omega}^{\hat{t}} \wedge \underline{\omega}^{\hat{r}}
\underline{R}^{\hat{t}}_{\hat{\theta}} = -\frac{1}{r}e^{-2\beta}\alpha'\underline{\omega}^{\hat{t}} \wedge \underline{\omega}^{\hat{\theta}}
\underline{R}^{\hat{t}}_{\hat{\phi}} = -\frac{1}{r}e^{-2\beta}\alpha'\underline{\omega}^{\hat{t}} \wedge \underline{\omega}^{\hat{\phi}}
\underline{R}^{\hat{r}}_{\hat{\theta}} = \frac{1}{r}e^{-2\beta}\beta'\underline{\omega}^{\hat{r}} \wedge \underline{\omega}^{\hat{\theta}}
\underline{R}^{\hat{r}}_{\hat{\phi}} = \frac{1}{r}e^{-2\beta}\beta'\underline{\omega}^{\hat{r}} \wedge \underline{\omega}^{\hat{\phi}}
\underline{R}^{\hat{\theta}}_{\hat{\phi}} = \frac{1}{r^2}(1 - e^{-2\beta})\underline{\omega}^{\hat{\theta}} \wedge \underline{\omega}^{\hat{\phi}}$$
(7.9)

5. By applying the following relation

$$\underline{R}^{\hat{\mu}}_{\ \hat{\nu}} = \frac{1}{2} R^{\hat{\mu}}_{\ \hat{\nu}\hat{\alpha}\hat{\beta}} \underline{\omega}^{\hat{\alpha}} \wedge \underline{\omega}^{\hat{\beta}} \tag{7.10}$$

we find the components of Riemann's curvature tensor.

6. Contraction gives the components of Ricci's curvature tensor

$$R_{\hat{\mu}\hat{\nu}} \equiv R^{\hat{\alpha}}_{\hat{\mu}\hat{\alpha}\hat{\nu}} \tag{7.11}$$

7. A new contraction gives Ricci's curvature scalar

$$R \equiv R^{\hat{\mu}}_{\ \hat{\mu}} \tag{7.12}$$

8. The components of the Einstein tensor can then be found

$$E_{\hat{\mu}\hat{\nu}} = R_{\hat{\mu}\hat{\nu}} - \frac{1}{2}\eta_{\hat{\mu}\hat{\nu}}R , \qquad (7.13)$$

where $\eta_{\hat{\mu}\hat{\nu}} = diag(-1, 1, 1, 1)$. We then have:

$$E_{\hat{t}\hat{t}} = \frac{2}{r}e^{-2\beta}\beta' + \frac{1}{r^2}(1 - e^{-2\beta})$$

$$E_{\hat{r}\hat{r}} = \frac{2}{r}e^{-2\beta}\alpha' - \frac{1}{r^2}(1 - e^{-2\beta})$$

$$E_{\hat{\theta}\hat{\theta}} = E_{\hat{\phi}\hat{\phi}} = e^{-2\beta}(\alpha'' + {\alpha'}^2 - \alpha'\beta' + \frac{\alpha'}{r} - \frac{\beta'}{r})$$
(7.14)

We want to solve the equations $E_{\hat{\mu}\hat{\nu}} = 0$. We get only 2 independent equations, and choose to solve those:

$$E_{\hat{t}\hat{t}} = 0 \qquad \text{and} \qquad E_{\hat{r}\hat{r}} = 0 \tag{7.15}$$

By adding the 2 equations we get:

$$E_{\hat{r}\hat{r}} + E_{\hat{r}\hat{r}} = 0$$

$$\Rightarrow \frac{2}{r}e^{-2\beta}(\beta' + \alpha') = 0$$

$$\Rightarrow (\alpha + \beta)' = 0 \Rightarrow \alpha + \beta = K_1 \quad \text{(const)}$$
(7.16)

We now have:

$$ds^{2} = -e^{2\alpha}dt^{2} + e^{2\beta}dr^{2} + r^{2}d\Omega^{2}$$
(7.17)

By choosing a suitable coordinate time, we can achieve

$$K_1 = 0 \Rightarrow \alpha = -\beta$$

Since we have $ds^2 = -e^{2\alpha}dt^2 + e^{-2\alpha}dr^2 + r^2d\Omega^2$, this means that $g_{rr} = -\frac{1}{g_{tt}}$. We still have to solve one more equation to get the complete solution, and choose the equation $E_{\hat{t}\hat{t}} = 0$, which gives

$$\frac{2}{r}e^{-2\beta}\beta' + \frac{1}{r^2}(1 - e^{-2\beta}) = 0$$

This equation can be written:

$$\frac{1}{r^2} \frac{d}{dr} [r(1 - e^{-2\beta})] = 0$$

$$\therefore r(1 - e^{-2\beta}) = K_2 \quad \text{(const)}$$
(7.18)

If we choose $K_2 = 0$ we get $\beta = 0$ giving $\alpha = 0$ and

$$ds^{2} = -dt^{2} + dr^{2} + r^{2}d\Omega^{2} , (7.19)$$

which is the Minkowski space-time described in spherical coordinates. In general, $K_2 \neq 0$ and $1-e^{-2\beta}=\frac{K_2}{r}\equiv \frac{K}{r}$, giving

$$e^{2\alpha} = e^{-2\beta} = 1 - \frac{K}{r}$$

and

$$ds^{2} = -\left(1 - \frac{K}{r}\right)dt^{2} + \frac{dr^{2}}{1 - \frac{K}{r}} + r^{2}d\Omega^{2}$$
(7.20)