Lecture 25. 17. april 2018

6.4 The “geodesic postulate” as a consequence of the
field equations

The principle that free particles follow geodesic curves has been called the
“geodesic postulate”. We shall now show that the “geodesic postulate” follows
as a consequence of the field equations.

Consider a system of free particles in curved space-time. This system can
be regarded as a pressure-free gas. Such a gas is called dust. It is described by
an energy-momentum tensor

.T,u.if _ p'U,H 'U,V (6 . 32)

where p is the rest density of the dust as measured by an observer at rest in the
dust and u* are the components of the four-velocity of the dust particles.

Einstein’s field equations as applied to space-time filled with dust, take the
form
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Because the divergence of the left hand side is zero, the divergence of the right
hand side must be zero, too

(pu'u”),, =0 (6.34)
or

(pu”ut),, =0 (6.35)

we now regard the quantity in the parenthesis as a product of pu” and v/. By
the rule for differentiating a product we get

(pu”)put + pu”ut, =0 (6.36)



Since the four-velocity of any object has a magnitude equal to the velocity of
light we have

wult = —c? (6.37)
Differentiation gives
(uyut),, =0 (6.38)
Using, again, the rule for differentiating a product, we get
U +uyutl, =0 (6.39)

From the rule for raising an index and the freedom of changing a summation
index from « to u, say, we get
ut = uluy,,, = ¢ g, = va gt  u, = uau, = wul, (6.40)
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Thus the two terms of eq.(6.39) are equal. It follows that each of them are equal
to zero. So we have

uyut, =0 (6.41)

Multiplying eq.(6.36) by u,, we get
(pu”)puput + pu”uyut, =0 (6.42)

Using eq.(6.37) in the first term, and eq.(6.41) in the last term, which then
vanishes, we get

(pu”),, =0 (6.43)
Thus the first term in eq.(6.36) vanishes and we get

pu”ut, =0 (6.44)
Since p # 0 we must have

u’ult, =0 (6.45)

This is just the geodesic equation. Conclusion: [t follows from FEinstein’s
field equations that free particles move along paths corresponding to geodesic
curves of space-time.



7.1 Schwarzschild’s exterior solution

This is a solution of the vacuum field equations £, = 0 for a static spherically
symmetric spacetime. One can then choose the following form of the line element
(employing units so that c=1),

ds? = —2) qgp2 o+ 2800 g2 4 2002
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d0? = db? + sin? 0d¢*? (7.1)

These coordinates are chosen so that the area of a sphere with radius r is 472
Physical distance in radial direction, corresponding to a coordinate distance
dr, is dl, = \/Grdr = e"")dr.
Here follows a stepwise algorithm to determine the components of the Ein-
stein tensor by using the Cartan formalism:

1. Using orthonormal basis (ie. solving £, = 0) we find

Wt =Mt o =B = rdf . g‘*‘:’ = rsinfdo (7.2)

2. Computing the connection forms by applying Cartan’s 1. structure equa-
tions

dot = Q" AW (7.3)

dw' = ¢“a'dr A dt
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0L = e Palwt + frw” (7.5)



3. To determine the f-functions we apply the anti-symmetry

Qﬁ.f/ = - v (76)
This gives:
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4. We then proceed to determine the curvature forms by applying Cartan’s
2nd structure equations

R = d + QL 705 (7.8)
which gives:
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5. By applying the following relation
R = L ph P (7.10)
—v 9 pagT T '

we find the components of Riemann’s curvature tensor.

6. Contraction gives the components of Ricci’s curvature tensor

Ry = RS (7.11)



7. A new contraction gives Ricci’s curvature scalar

R=FR, (7.12)

8. The components of the Einstein tensor can then be found

1
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where 7, = diag(—1.1,1.1). We then have:
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We want to solve the equations £;; = 0. We get only 2 independent
equations, and choose to solve those:

E; =0 and E:w =0 (7.15)
By adding the 2 equations we get:

E&: + Ey =0
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= (a+3)=0=a+3=K; (const) (7.16)

We now have:
ds® = —e2dt® + 2P dr? + r2d0? (7.17)

By choosing a suitable coordinate time, we can achieve
I&rl =0=a= —:ﬁ

Since we have ds? = —e2¥dt? + e 2dr? + r2dQ2, this means that ¢, =
—q%. We still have to solve one more equation to get the complete solution,
and choose the equation E;; = 0, which gives

2 o 1 o/
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This equation can be written:



1 d :
S Y e 28y = 0
2=l (7.18)
sr(1—e?) = Ky (const)
If we choose Ko = 0 we get 3 = 0 giving o = 0 and
ds® = —dt* + dr* + r*dQ? (7.19)
which is the Minkowski space-time described in spherical coordinates. In
general, Ko # 0 and 1 —e~20 = }:? = K , giving
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ds2 = —(1 = 2)de® + 2 412002 (7.20)
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