Lecture 8 060218

2.3 Forms

An antisymmetric tensor is a tensor whose sign changes under an arbitrary
exchange of two arguments.

Al . A T i) (2.83)

=l
—_
I

The components of an antisymmetric tensor change sign under exchange of
two indices.

Appp = Aoy (2.84)

Definition 2.3.1 (p-form)
A p-form is defined to be an antisymmetric, covariant tensor of rank p.
An antisymmetric tensor product A is defined by:
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where | | denotes antisymmetric combinations defined by:
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all possible permutations (2.86)
of indices with, “}” for even

and “-” for odd permutations)



Example 2.3.1 (antisymmetric combinations)
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Example 2.3.2 (antisymmetric combinations)

wlt @ w2 @ Wl =
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= geijk(g‘“i ® whi @ whk) (288)

Example 2.3.3 (A 2-form in 3-space)

a = apw' @w? +anw? @l +aw! 9w +agiw B! +anw? W +agew® w?
(2.89)

Now the antisymmetry of o means that

TQ9 = —Qyo; Qg = —Q3l Qg = —Qgg (2.90)



where 7| means summation only for ¢« < v (see (Misner, Thorne and Wheeler

1973)). We now use the definition of A with p = ¢ = 1. This gives

Q= QA"

We can also write

wH A wY is the
form basis.
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A tensor of rank 2 can always be split up into a symmetric and an anti-

symmetric part. (Note that tensors of higher rank can not be split up in this

way.)
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We thus have:
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In general, summation over indices of a symmetric and an antisymmetric quan-
tity vanishes. In a summation 7}, A*” where A*” is antisymmetric and 7, has

no symmetry, only the antisymmetric part of 7}, contributes. So that, in

(2.94)

a = 5@,&”&“ A w”

only the antisymmetric elements o, = —«y,, contribute to the summation.

These antisymmetric elements are the form components

Forms are antisymmetric covariant tensors. Because of this antisymmetry

a form with two identical components must be a null form (= zero). e.g.

131 = —a131 = a131 =0

In an n-dimensional space all p-forms with p > n are null forms.



