
Exercise in FYS4715: A simple model of neuronal calcium
dynamics - November 19, 2019

Geir Halnes

In the experiments you did with Kristian Lensjø, you probably saw images of neurons flashing
(in green) when responding to certain visual stimuli. The interpretation of these experiments
is that: (1) a flash indicated elevations in the intracellular Ca2+ concentration ([Ca2+]) , (2)
the [Ca2+] elevation indicated that the neuron fired an action potential, and (3) the action
potential indicated that the neuron received a sufficiently strong external input to drive it
above firing its threshold. In this exercise, we will make a simple model that captures the
relationship between the input, the action potential and the [Ca2+] dynamics in a neuron.
We will use the good old Hodgkin-Huxley (HH) model for action potential generation as a
starting point, and you have been an implementation of this in the python file ’Exercise.py’.
Your task is to expand this model to also include a Ca2+ channel and intracellular [Ca2+]

dynamics.

The standard Hodgkin-Huxley model:

The standard HH-model is defined by the following set of differential equations:

C
dV

dt
= I − ḡKn4(V − EK+)− ḡNam3h(V − ENa+)− gL(V − EL) (1)

dn

dt
=

n∞(V )− n
τn(V )

(2)

dm

dt
=

m∞(V )−m
τm(V )

(3)

dh

dt
=

h∞(V )− h
τh(V )

(4)

It is convenient to rewrite the last three equations in the form:

dx

dt
= αx(V )(1− x)− βx(V )x where x ∈ {n,m, h}. (5)
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The coefficients αx(V ) and βx(V ) represent the (voltage-dependent) activation and inacti-
vation rates, respectively, for the gate x . With these coefficients, the steady-state activation
variables x∞(V ) and the time constants τx(V ) in the Hodgkin-Huxley equations are given
by

x∞(V ) =
αx(V )

αx(V ) + βx(V )
and τx(V ) =

1

αx(V ) + βx(V )
. (6)

The code below uses a simple forward Euler method to run the Hodgkin-Huxley model (Eqns.
1-4) when responding to a rectangular input-current pulse:

I(t) =

{
Imax tstim,on ≤ t ≤ tstim,off
0 else

(7)

and with the initial conditions:

V (0) = Vrest (8)

n(0) = n∞(Vrest) (9)

m(0) = m∞(Vrest) (10)

h(0) = h∞(Vrest) . (11)

Here, Vrest denotes the resting potential of the neuron, i.e. the stationary membrane poten-
tial in the absence of any input I. The default parameters are given in Table 1. Note that
these parameters are already implemented in the function ‘set_parameters()‘. You may run
the code to check that it works as it should plot the input current I(t) and the resulting
membrane potential V (t), and produce a response with two action potentials.

Problem 1: Speed up the Hodgkin-Huxley model

Problem 1i: The HH-model was based on recordings from a squid giant axon in cold temper-
ature. The activation/inactivation rates (αx and βx) under those circumstanses were quite
slow compared to what they are in neurons that live inside a nice and warm brain. The first
task is therefore to make the HH-model more in-vivo brain-like by speeding up all rates by
a factor 2. That is, multiply all reaction rates by 2 and run a new simulation. Compare the
response to that in the original HH-model.

Problem 1ii: Just to get some insight in what the HH-model does, adjust the stimulus
(strength and duration) to find the f − I curve (firing rate as function of input current) of
the modified HH-neuron. Note that for some ’subthreshold’ currents, the HH-model responds
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by firing spikes for a while before becoming silent. Let this "unsustained" firing correspond
to a zero firing rate. What is the threshold current for sustained firing for the speeded-up
version of the HH-model?

P.s. Don’t spend too much time on this. You could write an algoritm for counting spikes
here, but it is sufficient to instead just run a short series of manual trials, count spikes, and
plot a few data points to get the essential picture.

Problem 2: Add a Ca2+ channel to the (speeded-up) model:

The HH-model has only two active ion channels, i.e., the Na+ and K+ channels responsible
for generating action potentials. Most neurons have several additional ion channels. For
example, many neurons have so called high-voltage-activated Ca2+ channels. As their name
indicate, these open at high voltages, such as during an action potential, and and while they
are open, Ca2+ rushes into the cell. It is the resulting increase in [Ca2+] that is recorded in
Ca2+ imaging experiments.

Problem 2i: Expand the (speeded-up) HH-model to include a simple model of a high-
voltage-activated calcium channel with two activation gates (s). We will deal with the
calcium dynamics later, but may here start by only modelling the current with the same kind
of formalism that was used for the original two HH-channels (and follwing the same logic in
the code):

ICa = ḡCa2+s
2(V − ECa2+). (12)

Suitable functions for the activation/deactivation rates are:

αs =
1.6

1 + exp[−0.072 · (Vm + 8)]
βs =

0.02 · (Vm − 8.3)

exp[(Vm − 8.3)/5.6]− 1
(13)

For the Ca2+ reversal potential you may use ECa2+ = 120 mV. For the conductance (ḡCa2+),
see point (2ii) below.

Problem 2ii: The high-voltage-activated Ca2+ current is typically smaller than the Na+

and K+ currents, but it is sometimes big enough to affect the shape of the action potential,
normally by prolonging its duration slightly. Try out some different values for the conductance
ḡCa2+, and find a value that makes ICa have a minor but visible (e.g., changes it duration by
a few percent) impact on the action potential shape.
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Problem 3: Add calcium dynamics to the model:

Problem 3i: Expand the model by adding Ca2+ dynamics modelled on the simple form:

d [Ca2+]

dt
= −kCa · ICa + ([Ca2+]0 − [Ca2+])/τCa. (14)

Here, the first term represents Ca2+ entering through the Ca2+-channel, and the second
term is a simple exponential decay term that represents various processes that work to bring
[Ca2+] back to the resting concentration. For the resting (and initial) concentration, you
may use [Ca2+]0 = 50 nM = 5e − 5 mM. For the decay time constant, you may use τCa =

50 ms. Finally, for the constant kCa, you may use kCa = 1e − 8 cm2mM/µA (units matched
to give calcium change in mM/ms).

P.s. kCa converts a transmembrane current density to a concentration change in the intra-
cellular volume, and thus depends on the volume/surface ratio of the cell. However, the
majority of the Ca2+ ions that cross the membrane are almost instantaneously buffered away
by several biochemical reactions, and thus do not "show up" as free intracellular calcium.
As kCa summarizes several processes for which there often is little quantitative data, it is in
models normally considered a "free parameter", and is tuned to a value that gives rise to
realistic calcium fluctuations. The value suggested above works fine for the current model
setup.

Problem 3ii: Give the neuron a brief input pulse that makes it fire a single action potential.
Plot the voltage and calcium response, and discuss it in the context of Kristian’s Ca2+ imaging
experiments.

Problem 3iii: (If time) Depending on your choice of gCa, the calcium elevation during an
action potential should be on the order of some tens to some hundreds of nM. If Kristian
gave you any quantitative data on the actual calcium signal and magnitude, you may try to
tune kCa, τCa and gCa to reproduce it.

Problem 3iv: (If time) Some neurons have very slow τCa and can then use the intracellular
[Ca2+]-level as an "indicator" of their average firing rate. Explain how this can be possible,
and illustrate it with simulations on the model.
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Figure 1: Table 1: Parameters

5


