
Chapter 1

The algebraic origin of SUSY

The goal of these lectures is to introduce the basics of low-energy models of supersymmetry
(SUSY) using the Minimal Supersymmetric Standard Model (MSSM) as a main example.
Rather than starting with the problems of the SM, we will focus on the algebraic origin of
SUSY in the sense of an extension of the symmetries of Einsten’s Special Relativity (SR),
which was the original motivation for SUSY.

1.1 What is a group?

Definition: The set G = {gi} and operation • form a group if and only if for
∀ gi ∈ G

i) gi • gj ∈ G (closure)

ii) (gi • gj) • gk = gi • (gj • gk) (associativity)

iii) ∃e ∈ G such that gi • e = e • gi = gi (identity element)

iv) ∃g−1
i ∈ G such that gi • g−1

i = g−1
i • gi = e (inverse)

A simple example of a group is G = Z with usual addition as the operation, e = 0 and
g−1 = −g. Alternatively we can restrict the group to Zn, where the operation is addition
with modulo n. In this group, g−1

i = n − gi and the unit element is e = 0. Note that Z is
an infinite group, while Zn is finite, with order n (meaning n members). Both are abelian

groups, meaning that gi • gj = gj • gi.
All of this is ”only” mathematics. Physicists are often more interested in groups where

the elements of G act on some elements of a set s ∈ S, g(s) = s′ ∈ S.1 S here can for example
be the state of a system, say a wave-function in quantum mechanics. We will return to this
in a moment, let us just mention that the operation gi • gj acts as (gi • gj)(s) = gi • (gj(s))
and the identity acts as e(s) = s.2

1As a result mathematics courses in group theory are not always so relevant to a physicist.
2We can prove this from iii) in the definition. Note that we use e as the identity in an abstract group, while
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A more sophisticated example of a group can be found in a use for the Taylor expansion3

f(x + a) = f(x) + af ′(x) +
1

2
a2f ′′(x) + . . .

=
∞
∑

n=0

an

n!

dn

dxn
f(x)

= ea d
dx f(x)

The operator Ta = ea d
dx is called the translation operator (in this case in one dimension).

Together with the operation Ta • Tb = Ta+b it forms the translational group T (1), where

T−1
a = T−a. In N dimensions the group T (N) has the elements T!a = e!a·!∇.

Definition: A subset H ⊂ G, is a subgroup if and only if:a

i) hi • hj ∈ H for ∀hi, hj ∈ H

ii) h−1
i ∈ H for ∀hi ∈ H

aAn alternative, more compact, way of writing these two requirements is hi • h−1
j ∈ H for

∀hi, hj ∈ G. This is often utilised in proofs.

Definition: H is a proper subgroup if and only if H $= G and H $= {e}. A
subgroup H is a normal (invariant) subgroup, if and only if for ∀g ∈ G,

ghg−1 ∈ H for ∀h ∈ H

A simple group G has no proper normal subgroup. A semi-simple group G has
no abelian normal subgroup.

The unitary group U(n) is defined by the set of complex unitary n× n matrices U , i.e.
matrices such that U †U = 1 or U−1 = U †. This has the neat property that for ∀!x, !y ∈ Cn

multiplication by a unitary matrix leaves scalar products unchanged:

!x′ · !y′ ≡ !x′†!y′ = (U!x)†U!y

= !x†U †U!y = !x†!y = !x · !y

If we additionally require that det(U) = 1 the matrices form the special unitary group
SU(n). Let Ui, Uj ∈ SU(n), then

det(UiU
−1
j ) = det(Ui) det(U−1

j ) = 1.

1 is used as the identity matrix in matrix representations.
3This is the first of many points where any real mathematician would start to cry loudly and leave the

room.
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This means that UiU
−1
j ∈ SU(N). In other words, SU(n) is a proper subgroup of U(n).

Let V ∈ U(n) and U ∈ SU(n), then V UV −1 ∈ SU(n) because:

det(V UV −1) = det(V ) det(U) det(V −1) =
det(V )

det(V )
det(U) = 1.

In other words, SU(n) is also a normal subgroup of U(n).

Definition: A (left) coset of a subgroup H ⊂ G is a set {gh : h ∈ H} where g ∈ G
and a (right) coset of a subgroup H ⊂ G is a set {hg : h ∈ H} where g ∈ G. For
normal subgroups H the left and right cosets coincide and form the coset group
G/H which has the members {gh : h ∈ H} for ∀g ∈ G and the binary operation ∗
with gh ∗ g′h′ ∈ {(g • g′)h : h ∈ H}.

Definition: The direct product of groups G and H, G × H, is defined as the
ordered pairs (g, h) where g ∈ G and h ∈ H, with component-wise operation (gi, hi)•
(gj , hj) = (gi •gj , hi •hj). G×H is then a group and G and H are normal subgroups
of G×H. For semi-direct products G!H, H is not a normal subgroup of G!H.

The SM gauge group SU(3)c ×SU(2)L ×U(1)Y is an example of a direct product. Direct
products are ”trivial” structures because there is no ”interaction” between the subgroups.
Can we imagine a group G ⊃ SU(3)c × SU(2)L ×U(1)Y that can be broken down to the SM
group but has a non-trivial unified gauge structure? There is, SU(5) being one example.

1.2 Representations

Definition: A representation of a group G on a vector space V is a map ρ : G →
GL(V ), where GL(V ) is the general linear group on V , i.e. matrices of the field
of V , such that for ∀gi, gi ∈ G, ρ(gigj) = ρ(gi)ρ(gj) (homeomorphism).

For U(1) eiχα(x) is a representation on a wavefunction ψ(x) (one dimensional vector space
over complex numbers). For SU(2) eiαiσi , with σ being the Pauli matrices, is the funda-
mental representation on weak doublets ψ = (νl, l).4

Definition: Two representations ρ and ρ′ of G on V and V ′ are equivalent if and
only if ∃A : V → V ′, that is one-to-one, such that for ∀g ∈ G, Aρ(g)A−1 = ρ′(g).

4This is a bit daft, since both U(1) and SU(2) are defined in terms of matrices. However, we will also
have use for other representations, e.g. the adjoint representation, which is not the fundamental or defining
representation.
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Definition: An irreducible representation ρ is a representation where there is
no proper subspace W ⊂ V that is closed under the group, i.e. there is no W ⊂ V
such that for ∀w ∈ W , ∀g ∈ G we have ρ(g)w ∈ W .a

aIn other words, we can not split the matrix representation of G in two parts that do not ”mix”.

Let ρ(g) for g ∈ G act on a vector space V as a matrix. If ρ(g) can be decomposed into
ρ1(g) and ρ2(g) such that

ρ(g)v =

[

ρ1(g) 0
0 ρ2(g)

]

v

for ∀v ∈ V , then ρ is reducible.

Definition: T (R) is the Dynkin index of the representation R in terms of ma-
trices Ta, given by Tr[Ta, Tb] = T (R)δab. C(R) is the Casimir invariant given by
C(R)δij = (T aT a)ij

1.3 Lie groups

Definition: A Lie group is a finite-dimensional (n) smooth manifold C∞, i.e.
for ∀g ∈ G, g can locally be mapped onto (parametrised by) Rn or Cn, and group
multiplication and inversion are smooth functions, meaning that given g(#a), g′(#a) ∈
G, g(#a′) • g′(#a′) = g′′(#b) where #b(#a,#a′) is analytic, and g−1(#a) = g′(#a′) where #a′(#a) is
analytic.
In terms of a Lie group G acting on a vector space V , dim(V ) = m (or more generally
an m-dimensional manifold), this means we can write the map G×V → V for #x ∈ V
as xi → x′

i = fi(xi, aj) where fi is analytic in xi and aj. Additionally fi should have
an inverse.

The translation group T (1) with g(a) = ea d
dx is a Lie group since g(a) · g(a′) = g(a + a′)

and a + a′ is analytic. Here we can write f(x, a) = x + a. SU(n) are Lie groups as they have

a fundamental representation ei!α!λ where λ is a set of n× n-matrices, and fi(#x, #α) = [ei!α!λ#x]i.

By the analyticity we can always construct the parametrization so that g(0) = e or
xi = fi(xi, 0). By an infinitesimal transformation dai we then get

x′
i = xi + dxi = fi(xi, dai)

= fi(xi, 0) +
∂fi

∂aj
daj + . . .

= xi +
∂fi

∂aj
daj

This is the transformation by the group member daj from the identity. Now, let F be a
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function from V to R or C. The group transformation dai changes F by

dF =
∂F

∂xi
dxi

=
∂F

∂xi

∂fi

∂aj
daj

= dajXjF

where

Xj =
∂fi

∂aj

∂

∂xi

are the n generators of the Lie group.
As an example we can now go in the opposite direction and look at the two-parameter

transformation
x′ = f(x) = a1x + a2

that gives

X1 =
∂f

∂a1

∂

∂x
= x

∂

∂x
,

which is the generator for dilation (scale change), and

X2 =
∂

∂x
,

which is the generator for T (1). Note that [X1,X2] = −X2.

Theorem: (Lie’s theorems)

i) For a Lie group ∂fi

∂aj
is analytic.

ii) The generators Xi satisfy [Xi,Xj ] = Ck
ijXk, where Ck

ij are structure con-
stants.

iii) Ck
ij = −Ck

ji and Ck
ijC

m
kl + Ck

jlC
m
ki + Ck

liC
m
kj = 0.a

aThis follows from the Jacobi identity [Xi, [Xj , Xk]] + [Xj , [Xk, Xi]] + [Xk, [Xi, Xj ]] = 0

1.4 Lie algebras

Definition: An algebra A on a field (say R or C) is a linear vector space with a
binary operation ◦ : A × A → A.
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The vectorspace R3 together with the crossproduct constitutes an algebra.

Definition: A Lie algebra L is an algebra where the binary operator, called Lie
bracket, has the properties that for x, y, z ∈ L and a, b ∈ R (or C):

i) (associativity)
[ax + by, z] = a[x, z] + b[y, z]

[z, ax + by] = a[z, x] + b[z, y]

ii) (anti-commutation)
[x, y] = −[y, x]

iii) (Jacobi identity)
[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0

We usually restrict ourselves to algebras of linear operators with [x, y] = xy − yx, where
iii) is automatic. From Lie’s theorems the generators of an n-dimensional Lie group form an
n-dimensional Lie algebra.

We mentioned the fundamental representation of a matrix based group earlier. These
representations have the lowest possible dimension. Another important representation is the
adjoint. This consists of the matrices:

(Mi)
k
j = −Ck

ij

where Ck
ij are the structure constants. From the Jacobi identity we have [Mi,Mj ] = Ck

ijMk,
meaning that the adjoint representation fulfills the same algebra as the fundamental (gener-
ators). Note that the dimension of the fundamental representation n for SO(n) and SU(n)
is always smaller than the adjoint, which is equal to the degrees of freedom, 1

2n(n − 1) and
n2 − 1 respectively.


