
Chapter 1

The algebraic origin of SUSY

The goal of these lectures is to introduce the basics of low-energy models of supersymmetry
(SUSY) using the Minimal Supersymmetric Standard Model (MSSM) as a main example.
Rather than starting with the problems of the SM, we will focus on the algebraic origin of
SUSY in the sense of an extension of the symmetries of Einsten’s Special Relativity (SR),
which was the original motivation for SUSY.

1.1 What is a group?

Definition: The set G = {gi} and operation • form a group if and only if for
∀ gi ∈ G

i) gi • gj ∈ G (closure)

ii) (gi • gj) • gk = gi • (gj • gk) (associativity)

iii) ∃e ∈ G such that gi • e = e • gi = gi (identity element)

iv) ∃g−1
i ∈ G such that gi • g−1

i = g−1
i • gi = e (inverse)

A simple example of a group is G = Z with usual addition as the operation, e = 0 and
g−1 = −g. Alternatively we can restrict the group to Zn, where the operation is addition
with modulo n. In this group, g−1

i = n − gi and the unit element is e = 0. Note that Z is
an infinite group, while Zn is finite, with order n (meaning n members). Both are abelian

groups, meaning that gi • gj = gj • gi.
All of this is ”only” mathematics. Physicists are often more interested in groups where

the elements of G act on some elements of a set s ∈ S, g(s) = s′ ∈ S.1 S here can for example
be the state of a system, say a wave-function in quantum mechanics. We will return to this
in a moment, let us just mention that the operation gi • gj acts as (gi • gj)(s) = gi • (gj(s))
and the identity acts as e(s) = s.2

1As a result mathematics courses in group theory are not always so relevant to a physicist.
2We can prove this from iii) in the definition. Note that we use e as the identity in an abstract group, while
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A more sophisticated example of a group can be found in a use for the Taylor expansion3

f(x + a) = f(x) + af ′(x) +
1

2
a2f ′′(x) + . . .

=
∞
∑

n=0

an

n!

dn

dxn
f(x)

= ea d
dx f(x)

The operator Ta = ea d
dx is called the translation operator (in this case in one dimension).

Together with the operation Ta • Tb = Ta+b it forms the translational group T (1), where

T−1
a = T−a. In N dimensions the group T (N) has the elements T!a = e!a·!∇.

Definition: A subset H ⊂ G, is a subgroup if and only if:a

i) hi • hj ∈ H for ∀hi, hj ∈ H

ii) h−1
i ∈ H for ∀hi ∈ H

aAn alternative, more compact, way of writing these two requirements is hi • h−1
j ∈ H for

∀hi, hj ∈ G. This is often utilised in proofs.

Definition: H is a proper subgroup if and only if H $= G and H $= {e}. A
subgroup H is a normal (invariant) subgroup, if and only if for ∀g ∈ G,

ghg−1 ∈ H for ∀h ∈ H

A simple group G has no proper normal subgroup. A semi-simple group G has
no abelian normal subgroup.

The unitary group U(n) is defined by the set of complex unitary n× n matrices U , i.e.
matrices such that U †U = 1 or U−1 = U †. This has the neat property that for ∀!x, !y ∈ Cn

multiplication by a unitary matrix leaves scalar products unchanged:

!x′ · !y′ ≡ !x′†!y′ = (U!x)†U!y

= !x†U †U!y = !x†!y = !x · !y

If we additionally require that det(U) = 1 the matrices form the special unitary group
SU(n). Let Ui, Uj ∈ SU(n), then

det(UiU
−1
j ) = det(Ui) det(U−1

j ) = 1.

1 is used as the identity matrix in matrix representations.
3This is the first of many points where any real mathematician would start to cry loudly and leave the

room.
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This means that UiU
−1
j ∈ SU(N). In other words, SU(n) is a proper subgroup of U(n).

Let V ∈ U(n) and U ∈ SU(n), then V UV −1 ∈ SU(n) because:

det(V UV −1) = det(V ) det(U) det(V −1) =
det(V )

det(V )
det(U) = 1.

In other words, SU(n) is also a normal subgroup of U(n).

Definition: A (left) coset of a subgroup H ⊂ G is a set {gh : h ∈ H} where g ∈ G
and a (right) coset of a subgroup H ⊂ G is a set {hg : h ∈ H} where g ∈ G. For
normal subgroups H the left and right cosets coincide and form the coset group
G/H which has the members {gh : h ∈ H} for ∀g ∈ G and the binary operation ∗
with gh ∗ g′h′ ∈ {(g • g′)h : h ∈ H}.

Definition: The direct product of groups G and H, G × H, is defined as the
ordered pairs (g, h) where g ∈ G and h ∈ H, with component-wise operation (gi, hi)•
(gj , hj) = (gi •gj , hi •hj). G×H is then a group and G and H are normal subgroups
of G × H.

Definition: The semi-direct product G ! H, where G is a mapping G : H → H,
is defined by the ordered pairs (g, h) where g ∈ G and h ∈ H, with component-wise
operation (gi, hi) • (gj , hj) = (gi • gj , hi • gi(hj)). Here H is not a normal subgroup
of G ! H.

The SM gauge group SU(3)c ×SU(2)L ×U(1)Y is an example of a direct product. Direct
products are ”trivial” structures because there is no ”interaction” between the subgroups.
Can we imagine a group G ⊃ SU(3)c × SU(2)L ×U(1)Y that can be broken down to the SM
group but has a non-trivial unified gauge structure? There is, SU(5) being one example.

1.2 Representations

Definition: A representation of a group G on a vector space V is a map ρ : G →
GL(V ), where GL(V ) is the general linear group on V , i.e. invertible matrices of
the field of V , such that for ∀gi, gi ∈ G, ρ(gigj) = ρ(gi)ρ(gj) (homeomorphism).

For U(1) the transformation eiχα is the fundamental or defining representation which
can be used on wavefunctions ψ(x)—these form a one dimensional vector space over the
complex numbers. For SU(2) the transformation eiαiσi , with σ being the Pauli matrices, is
the fundamental representation, which can be applied to e.g. weak doublets ψ = (νl, l).4

4This is a bit daft, since both U(1) and SU(2) are defined in terms of matrices. However, we will also
have use for other representations, e.g. the adjoint representation, which is not the fundamental or defining
representation.
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Definition: Two representations ρ and ρ′ of G on V and V ′ are equivalent if and
only if ∃A : V → V ′, that is one-to-one, such that for ∀g ∈ G, Aρ(g)A−1 = ρ′(g).

Definition: An irreducible representation ρ is a representation where there is
no proper subspace W ⊂ V that is closed under the group, i.e. there is no W ⊂ V
such that for ∀w ∈ W , ∀g ∈ G we have ρ(g)w ∈ W .a

aIn other words, we can not split the matrix representation of G in two parts that do not ”mix”.

Let ρ(g) for g ∈ G act on a vector space V as a matrix. If ρ(g) can be decomposed into
ρ1(g) and ρ2(g) such that

ρ(g)v =

[

ρ1(g) 0
0 ρ2(g)

]

v

for ∀v ∈ V , then ρ is reducible.

Definition: T (R) is the Dynkin index of the representation R in terms of ma-
trices Ta, given by Tr[Ta, Tb] = T (R)δab. C(R) is the Casimir invariant given by
C(R)δij = (T aT a)ij

1.3 Lie groups

We begin by defining what we mean by Lie groups

Definition: A Lie group G is a finite-dimensional, n, smooth manifold C∞,
i.e. for ∀g ∈ G, g can locally be mapped onto (parametrised by) Rn or Cn, and
group multiplication and inversion are smooth functions, meaning that given
g(#a), g′(#a) ∈ G, g(#a′) • g′(#a′) = g′′(#b) where #b(#a,#a′) is analytic, and g−1(#a) = g′(#a′)
where #a′(#a) is analytic.

In terms of a Lie group G acting on a vector space V , dim(V ) = m (or more generally
an m-dimensional manifold), this means we can write the map G×V → V for #x ∈ V
as xi → x′

i = fi(xi, aj) where fi is analytic in xi and aj. Additionally fi should have
an inverse.

The translation group T (1) with g(a) = ea d
dx is a Lie group since g(a) · g(a′) = g(a + a′)

and a + a′ is analytic. Here we can write f(x, a) = x + a. SU(n) are Lie groups as they have

a fundamental representation ei!α!λ where λ is a set of n× n-matrices, and fi(#x, #α) = [ei!α!λ#x]i.

By the analyticity we can always construct the parametrization so that g(0) = e or xi =
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fi(xi, 0). By an infinitesimal transformation dai we then get the following Taylor expansion5

x′
i = xi + dxi = fi(xi, dai)

= fi(xi, 0) +
∂fi

∂aj
daj + . . .

= xi +
∂fi

∂aj
daj

This is the transformation by the member of the group that in the parameterisation sits daj

from the identity. If we now let F be a function from the vector space V to either the real R

or complex numbers C, then the group transformation defined by dai changes F by

dF =
∂F

∂xi
dxi

=
∂F

∂xi

∂fi

∂aj
daj

≡ dajXjF

where the operators defined by

Xj ≡
∂fi

∂aj

∂

∂xi

are called the n generators of the Lie group. It is these generators X that define the action
of the Lie group in a given representation as the a’s are mere parameters.

As an example of the above we can now go in the opposite direction and look at the
two-parameter transformation defined by

x′ = f(x) = a1x + a2,

which gives

X1 =
∂f

∂a1

∂

∂x
= x

∂

∂x
,

which is the generator for dilation (scale change), and

X2 =
∂

∂x
,

which is the generator for T (1). Note that [X1,X2] = −X2.

Exercise: Find the generators of SU(2) and their commutation relationships.
Hint: One answer uses the Pauli matrices, but try to derive this from an infinitesimal
parametrization.

Next we lists three central results on Lie groups derived by Sophus Lie [6]:

5The fact that fi is analytic means that this Taylor expansion must converge in some radius around fi(xi, 0).
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Theorem: (Lie’s theorems)

i) For a Lie group ∂fi

∂aj
is analytic.

ii) The generators Xi satisfy [Xi,Xj ] = Ck
ijXk, where Ck

ij are structure con-
stants.

iii) Ck
ij = −Ck

ji and Ck
ijC

m
kl + Ck

jlC
m
ki + Ck

liC
m
kj = 0.a

aThe second identity follows from the Jacobi identity [Xi, [Xj , Xk]] + [Xj , [Xk, Xi]] +
[Xk, [Xi, Xj ]] = 0

Exercise: What are the structure constants of SU(2)?

1.4 Lie algebras

Definition: An algebra A on a field (say R or C) is a linear vector space with a
binary operation ◦ : A × A → A.

The vector space R3 together with the cross-product constitutes an algebra.

Definition: A Lie algebra L is an algebra where the binary operator [ , ], called
Lie bracket, has the properties that for x, y, z ∈ L and a, b ∈ R (or C):

i) (associativity)
[ax + by, z] = a[x, z] + b[y, z]

[z, ax + by] = a[z, x] + b[z, y]

ii) (anti-commutation)
[x, y] = −[y, x]

iii) (Jacobi identity)
[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0

We usually restrict ourselves to algebras of linear operators with [x, y] = xy − yx, where
property iii) is automatic. From Lie’s theorems the generators of an n-dimensional Lie group
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form an n-dimensional Lie algebra.
We mentioned the fundamental representation of a matrix based group earlier. These

representations have the lowest possible dimension. Another important representation is the
adjoint. This consists of the matrices:

(Mi)
k
j = −Ck

ij

where Ck
ij are the structure constants. From the Jacobi identity we have [Mi,Mj ] = Ck

ijMk,
meaning that the adjoint representation fulfills the same algebra as the fundamental (gener-
ators). Note that the dimension of the fundamental representation n for SO(n) and SU(n)
is always smaller than the adjoint, which is equal to the degrees of freedom, 1

2n(n − 1) and
n2 − 1 respectively.

Exercise: Find the dimensions of the fundamental and adjoint representations of
SU(n).

Exercise: Find the fundamental representation for SO(3) and the adjoint repre-
sentation for SU(2). What does this say about the groups and their algebras?
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Chapter 2

The Poincaré algebra and its
extensions

We now take a look at the groups behind Special Relativity (SR), the Lorentz and Poincaré
groups, and look for ways to extend them to internal symmetries, i.e. gauge groups.

2.1 The Lorentz Group

A point in the Minkowski space-time manifold M4 is given by xµ = (t, x, y, z) and Einstein’s
requirement was that physics should be invariant under the Lorentz group.

Definition: The Lorentz group L is the group of linear transformations xµ →
x′µ = Λµ

νxν such that x2 = xµxµ = x′
µx′µ is invariant. The proper or-

thochronous Lorentz group L↑
+ is a subgroup of L where det Λ = 1 and Λ0

0 ≥ 1.
a

aThis guarantees that time moves forward, and makes space and time reflections impossible,
with the group describing only boosts and rotations.

From the discussion in the previous section one can show that any Λ ∈ L↑
+ can be written as

Λµ
ν =

[

exp

(

−
i

2
ωρσMρσ

)]µ

ν

, (2.1)

where ωρσ = −ωσρ are the parameters of the transformation and Mρσ are the generators of
L, and the basis of the Lie algebra for L, and are given by:

M =









0 −K1 −K2 −K3

K1 0 J3 −J2

K2 −J3 0 J1

K3 J2 −J1 0









,
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where Ki and Ji are generators of boost and rotation respectively. These fulfil the following
algebra:1

[Ji, Jj ] = −iεijkJk, (2.2)

[Ji,Kj ] = iεijkKk, (2.3)

[Ki,Kj ] = −iεijkJk. (2.4)

The generators M of L obey the commutation relation:

[Mµν ,Mρσ] = −i(gµρMνσ − gµσMνρ − gνρMµσ + gνσMµρ). (2.5)

2.2 The Poincaré group

We extend L by translation to get the Poincaré group, where translation : xµ → x′µ = xµ+aµ.
This leaves lengths (x − y)2 invariant in M4.

Definition: The Poincaré group P is the group of all transformations of the form

xµ → x′µ = Λµ
νx

ν + aµ.

We can also construct the restricted Poincaré group P ↑
+, by restricting the ma-

trices Λ in the same way as in L↑
+.

We see that the composition of two elements in the group is:

(Λ1, a1) • (Λ2, a2) = (Λ1Λ2, Λ1a2 + a1).

This tells us that the Poincaré group is not a direct product of the Lorentz group and
the translation group, but a semi-direct product of L and the translation group T (1, 3),
P = L ! T (1, 3). The translation generators Pµ have a trivial commutation relationship:2

[Pµ, Pν ] = 0 (2.6)

One can show that:3

[Mµν , Pρ] = −i(gµρPν − gνρPµ) (2.7)

Equations (2.5)–(2.7) form the Poincaré algebra, a Lie algebra.

2.3 The Casimir operators of the Poincaré group

Definition: The Casimir operators of a Lie algebra are the operators that com-
mute with all elements of the algebra a

aTechnically we say they are members of the centre of the universal enveloping algebra of the
Lie algebra. Whatever that means.

1Notice that (2.2) and (2.4) are the SU(2) algebra.
2This means that the translation group in Minkowski space is abelian. This is obvious, since xµ + yµ =

yµ + xµ. One can show that the differential representation is the expected Pµ = −i∂µ.
3For a rigorous derivation of this see Chapter 1.2 of [8]
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A central theorem in representation theory for groups and algebras is Schur’s lemma:

Theorem: (Schur’s Lemma)
In any irreducible representation of a Lie algebra, the Casimir operators are
proportional to the identity.

This has the wonderful consequence that the constants of proportionality can be used to
classify the (irreducible) representations of the Lie algebra (and group). Let us take a concrete
example to illustrate: P 2 = PµPµ is a Casimir operator of the Poincaré algebra because the
following holds:4

[

Pµ, P 2
]

= 0, (2.11)
[

Mµν , P
2
]

= 0. (2.12)

This allows us to label the irreducible representation of the Poincaré group with a quantum
number m2, writing a corresponding state as |m〉, such that:5

P 2|m〉 = m2|m〉.

The number of Casimir operators is the rank of the algebra, e.g. rankSU(n) = n − 1.

It turns out that P ↑
+ has rank 2, and thus two Casimir operators. To demonstrate this is

rather involved, and we won’t make an attempt here, but note that it can be shown that6

L↑
+
∼= SL(2, C), furthermore SL(2, C) = SL(2, R)× SL(2, R) because we can split a complex

number into two real numbers, and SL(2, R) ∼= SU(2), which has rank 1. We will return to

this relationship between L↑
+ and SL(2, C) in Section 2.5, where we use it to reformulate the

algebras we work with in supersymmetry.
So, what is the second Casimir of the Poincaré algebra?

Definition: The Pauli-Ljubanski polarisation vector is given by:

Wµ ≡
1

2
εµνρσP νMρσ . (2.13)

4The first relation follows trivially from the commutation of Pµ with Pν . To show the second we first use
that

[Mµν , PρP ρ] = [Mµν , Pρ]P
ρ + Pρ[Mµν , P ρ], (2.8)

and Eq. (2.7) to get:

[Mµν , PρP ρ] = −i(gµρPν − gνρPµ)P ρ − iPρ(gµ
ρPν − gν

ρPµ), (2.9)

thus
[Mµν , PρP ρ] = −2i[Pµ, Pν ] = 0. (2.10)

5This quantum number looks astonishingly like mass and P 2 like the square of the 4-momentum operator.
However, we note that in general m2 is not restricted to be larger than zero.

6Here ∼= means homomorfic, that is structure preserving, while = means isomorphic.
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Then W 2 = WµW µ is a Casimir operator of P ↑
+, i.e.:

[

Mµν ,W
2
]

= 0 (2.14)
[

Pµ,W 2
]

= 0 (2.15)

To show this we can re-write the operator as:7

W 2 = −
1

2
MµνM

µνP 2 + MρσMνσPρP
ν .

From the above it is easy to show that W 2 is indeed a Casimir
Again, because W 2 is a Casimir operator, we can label all states in an irreducible repre-

sentation (read particles) with quantum numbers m, s, such that:

W 2|m, s〉 = −m2s(s + 1)|m, s〉

The m2 appears because there are two Pµ operators in each term. However, what is the
significance of the s, and why do we choose to write the quantum number in that (familiar?)
way? One can easily show using ladder operators that s = 0, 1

2 , 1, . . ., i.e. can only take integer
and half integer values. In the rest frame (RF) of the particle we have:8

Pµ = (m,!0)

Using that WP = 0 this gives us W0 = 0 in the RF, and furthermore:

Wi =
1

2
εi0jkmM jk = mSi,

where Si = 1
2εijkM

jk is the spin operator. This gives W 2 = − !W 2 = −m2!S2, meaning that
s is indeed the spin quantum number.9

The conclusion of this subsection is that anything transforming under the Poincaré group,
meaning the objects considered by SR, can be classified by two quantum numbers: mass and
spin.

2.4 The no-go theorem and graded Lie algebras

Since we now know the Poincaré group and its representations well, we can ask: Can the
external space-time symmetries be extended, perhaps also to include the internal gauge sym-
metries? Unfortunately no. In 1967 Coleman and Mandula [2] showed that any extension

of the Pointcaré group to include gauge symmetries is isomorphic to GSM × P ↑
+, i.e. the

generators Bi of standard model gauge groups all have

[Pµ, Bi] = [Mµν , Bi] = 0.

Not to be defeated by a simple mathematical proof this was countered by Haag, !Lopuszański
and Sohnius (HLS) in 1975 in [5] where they introduced the concept of graded Lie algebras

7This is non-trivial to demonstrate, see Chapter 1.2 of [8].
8This does not loose generality since physics should be independent of frame.
9Observe that this discussion is problematic for massless particles. However, it is possible to find a similar

relation for massless particles, when we chose a frame where the velocity of the particle is mono-directional.
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to get around the no-go theorem.

Definition: A (Z2) graded Lie algebra or superalgebra is a vector space L that
is a direct sum of two vector spaces L0 and L1, L = L0⊕L1 with a binary operation
• : L × L → L such that for ∀xi ∈ Li

i) xi • xj ∈ Li+j mod 2 (grading)a

ii) xi • xj = −(−1)ijxj • xi (supersymmetrization)

iii) xi • (xj • xk)(−1)ik + xj • (xk • xi)(−1)ji + xk • (xi • xj)(−1)kj = 0 (generalised
Jacobi identity)

This definition can be generalised to Zn by a direct sum over n vector spaces Li,
L = ⊕n−1

i=0 Li, such that xi • xj ∈ Li+j mod n with the same requirements for super-
symmetrization and Jacobi identity as for the Z2 graded algebra.

aThis means that x0 • x0 ∈ L0, x1 • x1 ∈ L0 and x0 • x1 ∈ L1.

We can start, as HLS, with a Lie algebra (L0 = P ↑
+) and add a new vector space L1 spanned

by four operators, the Majorana spinor charges Qa. It can be shown that the superalgebra
requirements are fulfilled by:

[Qa, Pµ] = 0 (2.16)

[Qa,Mµν ] = (σµνQ)a (2.17)

{Qa, Qb} = 2/P ab (2.18)

where σµν = i
4 [γµ, γν ] and as usual Qa = (Q†γ0)a.10

Unfortunately, the internal gauge groups are nowhere to be seen. They can appear if we
extend the algebra with Qα

a , where α = 1, . . . , N , which gives gives rise to so-called N > 1
supersymmetries. This introduces extra particles and does not seem to be realised in nature
due to an extensive number of extra particles.11 This extension, including N > 1, can be
proven, under some reasonable assumptions, to be the largest possible extension of SR.

2.5 Weyl spinors

Previously we claimed that there is a homomorphism between L↑
+ and SL(2, C). This homo-

morphism, with Λµ
ν ∈ L↑

+ and M ∈ SL(2, C), can be explicitly given by:12

Λµ
ν(M) =

1

2
Tr[σµMσνM

†], (2.19)

M(Λµ
ν) = ±

1
√

det(Λµ
νσµσν)

Λµ
νσµσ

ν , (2.20)

where σµ = (1,−$σ) and σµ = (1,$σ).

10Alternatively, (2.18) can be written as {Qa, Qb} = −2(γµC)abPµ.
11Note that N > 8 would include particles with spin greater than 2.
12The sign in Eq. (2.20) is the reason that this is a homomorphism, instead of an isomorphism. Each element

in SL(2, C) can be assigned to two in L↑
+.
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Since we have this homomorphism we can look at the representations of SL(2, C) in-
stead of the Poincaré group (with its usual Dirac spinors) when we describe particles, but
what are those representations? It turns out that there exist two inequivalent fundamental
representations of SL(2, C):

i) The self-representation ρ(M) = M working on an element ψ of a representation space F :

ψ′
A = MA

BψB A,B = 1, 2

ii) The complex conjugate self-representation ρ(M) = M∗ working on ψ in a space Ḟ :13

ψ
′
Ȧ = (M∗)Ȧ

ḂψḂ Ȧ, Ḃ = 1, 2

Definition: ψ and ψ are called left- and right-handed Weyl spinors.

Indices can be lowered and raised with:

εAB = εȦḂ =

(

0 −1
1 0

)

εAB = εȦḂ =

(

0 1
−1 0

)

The relationship between ψ and ψ can be expressed with:14

σ0ȦA
(ψA)∗ = ψ

Ȧ

Note that from the above:
(ψA)† = ψȦ

(ψȦ)† = ψA

We define contractions of Weyl spinors as follows:

Definition: ψχ ≡ ψAχA and ψχ ≡ ψȦχ
Ȧ.

These quantities are invariant under SL(2, C). With this in hand we see that

ψ2 ≡ ψψ = ψAψA = εABψBψA = ε12ψ2ψ1 + ε21ψ1ψ2 = ψ2ψ1 − ψ1ψ2.

This quantity is zero if the Weyl spinors commute. In order to avoid this we make the
following assumption which is consistent with how we treat fermions (and Dirac spinors):

Postulate: All Weyl spinors anticommute:a {ψA,ψB} = {ψȦ,ψḂ} = {ψA,ψḂ} =
{ψȦ,ψB} = 0.

aThis means that Weyl spinors are so-called Grassmann numbers.

13The dot on the indices is just there to help us remember which sum is which and does not carry any
additional importance.

14This is a bit daft, as σ0
ȦA

= δȦA, and we will in the following omit the matrix and write (ψA)∗ = ψ
Ȧ
.
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This means that
ψ2 ≡ ψψ = ψAψA = −2ψ1ψ2.

Weyl spinors can be related to Dirac spinors ψa as well:15

ψa =

(

ψA

χȦ

)

.

We see that in order to describe a Dirac spinor we need both handedness of Weyl spinor. For
Majorana spinors we have:

ψa =

(

ψA

ψ
Ȧ

)

.

We can now write the super-Poincaré algebra (superalgebra) in terms of Weyl spinors.

With Qa = [QA, Q
Ȧ
] (a Majorana spinor) we have:

{QA, QB} = {QȦ, QḂ} = 0 (2.21)

{QA, QḂ} = 2σµ

AḂ
Pµ (2.22)

[QA, Pµ] = [QȦ, Pµ] = 0 (2.23)

[QA,Mµν ] = iσµν
A

BQB (2.24)

where σµν = i
4(σµσν − σνσµ).

15Note that in general (ψA)∗ != χȦ.
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