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A B S T R A C T

Lexical access in bilinguals can be modulated by multiple factors in their individual language learning history.
We developed the BiLex computational model to examine the effects of L2 age of acquisition, language use and
exposure on lexical retrieval in bilingual speakers. Twenty-eight Spanish-English bilinguals and five mono-
linguals recruited to test and validate the model were evaluated in their picture naming skills in each language
and filled out a language use questionnaire. We examined whether BiLex can (i) simulate their naming per-
formance in each language while taking into account their L2 age of acquisition, use and exposure to each
language, and (ii) predict naming performance in other participants not used in model training. Our findings
showed that BiLex could accurately simulate naming performance in bilinguals, suggesting that differences in L2
age of acquisition, language use and exposure can account for individual differences in bilingual lexical access.

1. Introduction

Lexical access is a fundamental aspect of language processing that
provides an excellent window into the ability of bilingual speakers to
handle two languages and select words from their mental lexicons.
Lexical access in speech production can largely differ across bilinguals
as mastering two languages depends on multiple factors that make the
bilingual experience dynamic and almost unique to each speaker (Luk &
Bialystok, 2013). There is considerable variation among bilinguals in
terms of the degree of similarity between their two languages, their
language learning contexts and their L2 age of acquisition (AoA), which
leads to different patterns of learning, exposure, use, and attained
proficiency for each language (Costa & Sebastián-Gallés, 2014). This
natural variability and intrinsic complexity in bilingualism also poses
methodological challenges for bilingual research. For instance, het-
erogeneity in language learning history can especially affect studies
with small samples and variables that influence bilingual language
acquisition and processing can often be confounded. Computational
approaches may offer a potential solution to this problem by facilitating
the principled and systematic investigation of important factors that
influence bilingual lexical access in the context of individual variations
(Fricke, Zirnstein, Navarro-Torres, & Kroll, 2018; Li, 2013). Current
models of lexical access assume that word retrieval is achieved via
spreading activation across at least two different representational stages

in the lexical network from the conceptual system to phonology (Dell,
1986; Levelt, Roelofs, & Meyer, 1999). Because several lexical re-
presentations can be activated from the semantic system, the lexical
unit with the highest degree of activation is ultimately chosen for
production. In bilinguals, the semantic system activates the lexical
nodes of the two languages (Colomé, 2001; Costa, 2005; Costa,
Caramazza, & Sebastian-Galles, 2000; Gollan & Kroll, 2001) and cross-
language activation and interaction in lexical processing are highly
modulated by differences in L2 proficiency (van Hell Janet & Darren,
2012). Importantly, the Revised Hierarchical Model (RHM) (Kroll &
Stewart, 1994) provides a developmental account of bilingual word
production across varying degrees of L2 proficiency. Similar to most
models of the bilingual mental lexicon (see French & Jacquet, 2004 for
a review) the RHM assumes that concepts are stored in a shared se-
mantic system with word forms stored in two separate lexical systems
for each language. Active connections between representations in the
conceptual and lexical systems vary in strength according to L2 fluency
and relative dominance of L1 to L2 such that the mappings between L2
word forms and meanings are weak in early L2 learning, but become
stronger with increased proficiency. This underlying asymmetry allows
accounting for individual differences in language learning history in
lexical processing (Kroll, Van Hell, Tokowicz, & Green, 2010).

Individual differences in lexical access can also be influenced by
developmental and contextual factors including L2 AoA, and the degree
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of lifetime exposure to each language and their relative frequency of
use, which ultimately contribute to a bilingual’s language proficiency
(Kastenbaum et al., 2018). L2 AoA can facilitate or constrain the
achievement of native-like L2 attainment (Birdsong, 2018) and late
AoA has been associated with slower and less accurate lexical retrieval
as compared to early AoA (Hirsh, Morrison, Gaset, & Carnicer, 2003;
Kohnert, Hernandez, & Bates, 1998). Notably, beyond the maturational
constraints related to the age of L2 learning onset, bilingual lexical
access can also be influenced by the age at testing as the human lexicon
tends naturally to increase over time from early infancy to adulthood,
although normal aging can lead to a decay in word retrieval and overall
lexical processing in both languages (Juncos-Rabadán, 1994). Also,
language exposure and usage can influence L2 performance modulating
lexical access (Kastenbaum et al., 2018) and tip-of-the-tongue states in
bilinguals (Kreiner & Degani, 2015). Moreover, increased exposure and
use may lead to both higher availability of the most exposed language
for production and lower automaticity in word-finding in the less ex-
posed language (Tu et al., 2015). Importantly, L1 and L2 also influence
each other mutually and increased frequency of L2 use and immersion
in an L2 environment can lead to decreased L1 proficiency in bilinguals
(Baus, Costa, & Carreiras, 2013; Linck, Kroll, & Sunderman, 2009) af-
fecting L1 lexical retrieval and often leading to L1 attrition (Schmid,
2010).

The examination of these sources of variation in language proces-
sing can help to better understand the architecture of the language
system (Fricke et al., 2018) and to address unresolved questions re-
garding lexical acquisition and retrieval in bilinguals (Costa &
Sebastián-Gallés, 2014). In this sense, computational modeling offers a
promising framework to (i) systematically examine how lexical access is
modulated by variations in factors that influence language learning and
processing in bilinguals, (ii) disentangle the effects of influencing fac-
tors that often confound in behavioral research, (iii) provide an account
on how such variations modulate bilingual language representation,
and (iv) examine premorbid factors of the individual language learning
history that influence language breakdown and recovery in bilinguals
with language deficits. Computational models based on artificial neural
networks and in particular Self-Organized Maps (SOMs, Kohonen,
2001) have made important contributions to language research (Li &
Zhao, 2013; Miikkulainen, 1993). SOM models are trained using un-
supervised learning algorithms with several properties that make them
highly suitable to model the mental lexicon (Li & Farkas, 2002). SOM-
based models of bilingualism have helped addressing multiple aspects
of language acquisition and processing (Fang, Zinszer, Malt, & Li, 2016;
Li & Farkas, 2002; Miikkulainen & Kiran, 2009; Shook & Marian, 2013;
Zhao & Li, 2010, 2013). Among these, our previous bilingual DISLEX
model was developed to represent lexical processing across varying
combinations of L2 AoA and proficiency to fit a given combination of
these factors to a particular individual’s learning background and per-
formance (Miikkulainen & Kiran, 2009). Importantly, its use was
helpful to examine language breakdown and recovery in bilingual
aphasia (Grasemann, Sandberg, Kiran, & Miikkulainen, 2011; Kiran,
Grasemann, Sandberg, & Miikkulainen, 2013). However, no previous
models including the bilingual DISLEX model, were designed to match
behavioral lexical access performance in healthy bilinguals while ex-
amining the joint contribution of relevant variables that influence bi-
lingual language representation and processing beyond AoA and pro-
ficiency.

Here, we sought to develop BiLex, a SOM-based computational
connectionist model that can capture the natural variation in lexical
access among adult bilinguals with varying degrees of L2 proficiency
while accounting for developmental and contextual factors known to
influence lexical retrieval and ultimate L2 competence. BiLex expands
on our previously built DISLEX model (Miikkulainen & Kiran, 2009)
that incorporated aspects of the RHM of the organization of the bilin-
gual lexicon (Kroll & Stewart, 1994), to simulate lexical access in
healthy bilinguals. The motivation for the development of BiLex was to

extend our previous work based on computational simulations of lan-
guage impairment and treatment response in bilinguals with aphasia
(Grasemann et al., 2011; Kiran et al., 2013) to the prediction of treat-
ment outcomes in this population.

The aim of the present study was twofold. We first aimed to examine
whether BiLex can accurately simulate lexical access in Spanish-English
adult bilinguals while taking into account their age at testing, L2 AoA,
and a fine–grained characterization of their language exposure and
usage, while incorporating aging and attrition effects in the overall
model training. Our second aim was to determine whether the model is
able to predict the naming performance of other participants whose
data was not used in model training. In this way, these two specific aims
can contribute to the validation of BiLex towards its ultimate goal: the
prediction of treatment outcomes in bilinguals with aphasia by (i) using
BiLex to simulate individual premorbid naming ability in each lan-
guage, (ii) implementing a lesion component in each individual pre-
morbid BiLex model to reflect the effects of brain damage on the bi-
lingual language system and (iii) retraining such lesioned models to
simulate and predict individual response to language treatment pro-
vided in one language versus the other.

2. Materials and methods

2.1. Participants

Participants were 33 healthy adults including 28 Spanish-English
bilinguals (6 male, mean age=42.89, SD=16.2, range=18–82;
mean number of years of education=17.13, SD=4.46,
range=9–27), and 5 monolinguals (2 male, mean age= 56,
SD=5.15, range= 49–63; mean number of years of educa-
tion= 13.14, SD=4.56, range=10–21) recruited to reflect maximum
exposure to and use of Spanish (n= 2) and English (n=3), thus al-
lowing for a full range of inter-individual variability in terms of naming
performance and language learning history across languages. The de-
mographic information of all participants is provided in Table 1. All
participants had normal or corrected-to-normal vision and hearing and
no history of neurological or psychiatric illness. Following approved
procedures by the Ethical Committee at Boston University, participants
gave their written consent to undergo language testing in person or via
videoconference using GoToMeeting (LogMeIn, Boston, MA, USA) and
received a gift-card for their participation.

2.2. Assessment of language learning history

All participants filled out a Language Use Questionnaire (LUQ,
Kastenbaum et al., 2018), where they reported their L2 AoA and pro-
vided a detailed profile of their language learning history in Spanish
and English including current language use, lifetime exposure, lifetime
confidence, family proficiency, educational history and language ability
rating (see Kastenbaum et al., 2018 for a detailed description of all LUQ
metrics). Of these measures, L2 AoA, lifetime exposure and current use
of each language were selected as the most important inputs to train the
BiLex model (see Section 2.7) because of their contribution to bilingual
lexical access (Kastenbaum et al., 2018), and because they represent the
most objective, fine-grained measures that could be effectively and
reliably implemented in our computational simulations. L2 AoA re-
flected the age of L2 learning onset. The lifetime exposure section of the
LUQ requested participants to indicate the percentage of time (ex-
pressed in 25% increments: 100% Spanish, 25% English-75% Spanish,
50% in each language, 75% English-25% Spanish, or 100% English)
they spent hearing, speaking and reading in each language in each
three-year interval from age 0 to 30 and a single final interval for age
“30 and up”. For current language use, participants needed to detail the
languages they and their conversation partners used on weekdays and
weekends on an hourly basis (Table 1).

For each participant, current age at testing, English and Spanish
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lifetime exposure and English and Spanish current use were combined
to estimate their percentage of English vs. Spanish overall language
exposure on a yearly basis from birth to their current age. To compute
this combined metric, lifetime exposure percentages were first calcu-
lated for each language as a weighted average of hearing, speaking, and
reading for each three-year age interval, giving equal weight of 1 to
speaking and listening, and 0.5 to reading.1 The resulting percentage of
lifetime exposure to English vs. Spanish was replicated for each year of
life included in a given three-year age interval. Next, overall current use
of English vs. Spanish was calculated as the average percentage of the
overall time a participant and conversation partner spent each hour
using each language during weekdays and weekends. The resulting
percentage of current use was then combined with the lifetime exposure
data over the five last years of life of the participant, shifting gradually
from the original lifetime exposure percentage to the current use per-
centage for each language (e.g.: for a participant with age at
testing=50, English lifetime exposure at “30 and up” = 50%, and
English current use= 60%, the final estimated overall language ex-
posure for English for the last five years of life including ages 45–50 was
50, 52, 54, 56, 58, 60% respectively).

2.3. Assessment of lexical access in picture naming

Lexical access was examined in both languages in all participants
using the Boston Naming Test (BNT- Kaplan, Goodglass, & Weintraub,
2001; Kohnert et al., 1998) and a 60-item naming screener involving 60
pictures of concrete words individually presented on a laptop computer.
The lexical frequency (per million) of these words was estimated in
English and Spanish using Clearpond (Marian, Bartolotti, Chabal, &
Shook, 2012) and Espal (Duchon, Perea, Sebastián-Gallés, Martí, &
Carreiras, 2013) respectively, and matched across languages (Spanish
M=17.56, SD=28.9; English M=17.39, SD=29.1, t
(115)=−0.031, p= .976). The order of language tested was coun-
terbalanced across participants and both target words and acceptable
dialectal or lexical variations were credited. Naming performance
across tests in each language was averaged into a composite naming score
for each participant and was used as an individual index of lexical ac-
cess to be simulated using the BiLex model.

2.4. Word corpus for neural network training

The training corpus included 638 concrete nouns in English and
their direct translations to Spanish. The word set was sufficiently re-
presentative as it included exemplars of thirteen semantic categories
with different physical, categorical and functional features. For the
purpose of model training, the semantic and phonetic representations of
these words were developed as vectors of numbers that indicated the
extent to which a representation had particular semantic or phonetic

Table 1
Demographics, LUQ metrics on L2 AoA, language exposure and use, and naming performance of all participants.

Participant Sex Age Education
(years)

Language profile L1 L2 AoA Lifetime
exposure
Spanish

Lifetime
exposure
English

Current
usage
Spanish

Current
usage
English

Comp.
Naming
Spanish

Comp.
Naming
English

P1 F 53 20 Bilingual Spanish 6 0.63 0.37 0.13 0.87 0.88 0.82
P2 M 18 14 Bilingual Spanish1 0 0.39 0.61 0.03 0.97 0.48 0.82
P3 M 36 12 Bilingual Spanish 20 0.64 0.36 0.42 0.58 0.79 0.75
P4 F 18 15 Bilingual Spanish 4 0.62 0.38 0.28 0.72 0.87 0.72
P5 F 36 21 Bilingual Spanish 26 0.70 0.30 0.47 0.53 0.88 0.78
P6 M 45 27 Bilingual Spanish 12 0.60 0.40 0 1 0.91 0.55
P7 F 30 23 Bilingual Spanish 7 0.76 0.24 0.28 0.72 0.92 0.67
P8 F 48 15 Bilingual Spanish 15 0.55 0.45 0.09 0.91 0.95 0.88
P9 F 39 21 Bilingual Spanish 36 0.80 0.20 0.22 0.78 0.94 0.68
P10 M 30 26 Bilingual Spanish 7 0.68 0.32 0.21 0.79 0.87 0.88
P11 F 27 18 Bilingual Spanish 6 0.39 0.61 0.19 0.81 0.75 0.88
P12 F 25 22 Bilingual English1 0 0.53 0.47 0.36 0.64 0.88 0.83
P13 F 37 16 Bilingual Spanish1 0 0.37 0.63 0.22 0.78 0.81 0.97
P14 F 21 20 Bilingual Spanish 7 0.81 0.19 0.82 0.18 0.73 0.48
P15 F 73 11 Bilingual Spanish 23 0.89 0.11 0.87 0.13 0.73 0.45
P16 F 33 14 Bilingual Spanish1 0 0.44 0.56 0.45 0.55 0.60 0.94
P17 F 63 14 Bilingual Spanish 7 0.89 0.11 0.97 0.03 0.85 0.60
P18 F 33 18 Bilingual English 19 0.19 0.81 0.5 0.5 0.82 0.99
P19 F 54 14 Bilingual Spanish 5 0.45 0.55 0.37 0.63 0.61 0.88
P20 F 38 18 Bilingual Spanish 21 0.64 0.36 0.07 0.93 0.79 0.83
P21 F 53 18 Bilingual Spanish 18 0.51 0.49 0.17 0.83 0.77 0.75
P22 F 45 14 Bilingual Spanish 26 0.65 0.35 0.73 0.27 0.73 0.62
P23 F 55 16 Bilingual Spanish 12 0.26 0.74 0.07 0.93 0.80 0.94
P24 M 36 20 Bilingual English 0 0.18 0.82 0.25 0.75 0.15 0.95
P25 F 52 12 Bilingual Spanish 3 0.29 0.71 0.61 0.39 0.76 0.80
P26 F 82 12 Bilingual Spanish1 40 0.89 0.10 1 0 0.7 0.35
P27 M 60 9 Bilingual Spanish 27 0.74 0.26 0.86 0.14 0.68 0.68
P28 F 61 19 Bilingual Spanish 3 0.69 0.31 0.96 0.04 0.85 0.69
P29 M 59 12 Monolingual Spanish – 1 0 1 0 0.92 0.06
P30 M 49 10 Monolingual English – 0 1 0.33 0.67 0 0.93
P31 F 63 10 Monolingual Spanish – 1 0 1 0 0.88 0.11
P32 M 56 21 Monolingual English – 0 1 0 1 0.05 0.98
P33 F 58 12 Monolingual English – 0 1 0 1 0 0.98

LUQ=Language Use Questionnaire; AoA= age of acquisition; L1=native language, L2= second language; Comp. Naming=Composite naming score;
F= female; M=male.
Lifetime exposure and current use are shown as computed by the LUQ. Composite naming scores expressed as proportion of correct responses.

1 Language the participant was most exposed to from birth although L2 was initially acquired at age 0.

1 Reading skills had a smaller weight in the calculation of lifetime exposure
because picture naming abilities do not directly rely on access to orthography
and to account for bilinguals who do not acquire their L2 in formal education
settings and thus, their lower reading abilities are less representative of their
language exposure than their hearing and speaking skills.
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features.
Semantic vector representations were created using the semantic

feature data developed for another project (Sandberg, Gray, & Kiran,
2018). Briefly, feature validation using MTurk (https://www.mturk.
com/), consisted in assigning 10–20 relevant semantic features per
word (e.g.: feature “can fly” assigned to “vulture”) and asking healthy
adults whether or not a given word X had the feature Y. A total of 400
features were chosen on the basis that MTurk feature data were avail-
able across a minimum of five words while feature variability in the
corpus would allow to distinguishing between otherwise similar words.
Each word (e.g. “ant”) was built a vector of numerical features that
encoded the percentage of adults who thought a given feature was
applicable to that particular word (e.g., “moves”: 100%; “has legs”:
94%; “swims”: 16%). Because full input vectors containing all features
were necessary for model training, the final dense semantic re-
presentations were compiled using zeros in the case of word-feature
pairs that were not represented in the MTurk data set, resulting in
vectors containing all 400 features for each word. These vectors were
used as input for the semantic map during model training as initial
experiments confirmed that the resulting representations were suffi-
ciently detailed and accurate to enable well-organized SOM models of
the semantic system.

Phonetic representations of English words and their Spanish trans-
lations were based on feature-based encodings of symbols in the
International Phonetic Alphabet (IPA). All relevant phonemes (each
consisting of a letter and possible diacritics) were encoded using four
numeric values. IPA symbols for vowels were encoded according to four
features: height, backness, length, and roundedness. For instance, /ə/,
denoting a mid-central short unrounded vowel, was represented by
(0.5, 0.5, 0, 0) whereas /ɶː/, an open front long rounded vowel, was
encoded as (1, 1, 1, 1). IPA symbols for consonants were encoded using
a different set of numeric features designed to approximate their pho-
netic properties: place and manner of articulation, phonation, and la-
teralization. Similar to roundedness for vowels, phonation and later-
alization were binary features (e.g. 1 for a voiced consonant, 0 for a
voiceless one). Place of articulation was encoded using a 0 for a bilabial
sound, 1 for a glottal sound, and increasing values within this range for
dental, palatal, and other intermediate sounds. Similarly, the manner of
articulation was encoded as a single number ranging between 0 for
“stop” consonants and 1 for nasal consonants (e.g., 0.3 for fricative
consonants). Thus, feature-based encodings for vowels and consonants
represent a tractable, simple encoding scheme that approximates the
phonetics of words well enough to make meaningful comparisons be-
tween feature-based phonetic encodings.

Several constraints were implemented for the phonetic vector re-
presentations including: (a) numeric vectors of equal length for each

word, (b) vowels and consonants were to be equated in the same way
for all words within a language, and (c) word representations were
aligned relative to their stress patterns instead of their absolute position
within a word to enable differences in stress between similar sounding
words (e.g. “insight” vs. “incite” in English). Considering these criteria,
phonetic vector representations were created for all words in the corpus
as follows. First, IPA transcriptions for each word were manually split
into spoken syllables. Each syllable was then encoded as a CCVVCC
structure. In cases where consonants were missing, those from the
neighboring syllable were repeated. Single vowels or consonants were
doubled if needed, and in rare cases where a syllable started or ended
with three consonants, the features for the second and third were
averaged. Thus, each syllable was represented by a list of 24 numeric
attributes (6 phonemes with 4 features each) that could be mean-
ingfully compared on an element-by-element basis. The representation
of the entire word was obtained by concatenating the representations
for each syllable and padding all words with neutral feature values (0.5)
such that all had equal length, and the syllable carrying the primary
stress was always in the same position.

The position of the primary stress, as well as the overall length of
the phonetic representations, was determined by the maximum number
of syllables before and after the primary stress that occurred in the
corpus. In English, phonetic vector representations used 144 features (6
syllables with 24 features each) with the primary stress on the third
syllable. In Spanish, phonetic vector representations used 192 features
(8 syllables with 24 features each), with the primary stress on the fourth
syllable. These vectors served as the training input for the phonetic
maps of each language.

2.5. Model architecture and training

The architecture of the BiLex model is shown in Fig. 1 and is re-
presentative of all its individual instances simulating the naming per-
formance of each participant. Following the assumptions of the orga-
nization of the bilingual mental lexicon proposed in the Revised
Hierarchical Model (Kroll & Stewart, 1994), the architecture consists of
three separated systems, a semantic system for word meanings and two
phonetic systems for the phonetic representations of words in L1 and L2
respectively. All three systems are interconnected with one another by
directional associative connections that vary in strength depending on
relative language dominance and allow for network activation to pro-
pagate between systems. The semantic and phonetic systems were
modeled as SOMs. Each SOM is a two-dimensional topographic grid of
information processing units or neurons, trained to encode the semantic
and phonetic vector representations developed for each word in the
training corpus. The training of the entire BiLex model uses the

Semantic map 

“Dog” 

Cat 

Dog 

Perro 

Gato 

English phonetic map Spanish phonetic map 

Fig. 1. Architecture of the BiLex model. The model consists of three SOMs one for the semantic representations of words shared across languages, and two for the
phonetic representations of words in each language.
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standard SOM training algorithm, but trains the maps in parallel (i.e.,
the semantic map and one of the phonetic maps at a time) along with
the associative connections that allow activation to flow between them.

In each training instance, a word from the entire corpus is randomly
selected. Based on the current simulated age of the model (i.e. how far
training has progressed), a language is selected probabilistically for
training. For instance, if the current age of the model is 15 and the
participant’s overall language exposure at age 15 is 75% Spanish and 25%
English, the training algorithm would train the selected word in Spanish
with 75% probability. The semantic and phonetic vector representa-
tions of the selected word are then simultaneously presented to the
corresponding maps leading to learning-induced changes in the archi-
tecture of the model. Within each map, every time an input vector is
presented, the SOM algorithm computes for each neuron the Euclidean
distance d between its weight w vector (i.e., connection strength) and
the input vector or symbol representation.

The neuron with the smallest distance (i.e., winner unit) receives
the highest degree of activation, and its weights and those of its
neighbor neurons on the map grid are adjusted towards the input
vector:

= +w w v w' ( )ij ij ij ij,

where is the learning rate, wij is the weight vector of the map unit at
grid position ij and v is the input vector. The Gaussian neighborhood
function is centered on the winner unit; it determines how much each
neighboring unit is adjusted. The width of the Gaussian determines
how fast decreases with increasing map distance to the winner unit,
and hence controls the size of the neighborhood that is adjusted
meaningfully.

As a result of this process, the neuron’s weight vector becomes a
representation of the input vector, and the weights in the neighbor
neurons become more similar to the input. Over time and with addi-
tional exposure, the neurons encoding input vector representations
become increasingly organized in the semantic and phonetic space as a
function of similarity, such that neurons located close in the map space
tend to encode words with similar semantic features (semantic map)
and phonetic properties (phonetic maps).

The effectiveness of SOM training depends on how many training
patterns are presented to the map, and how the neighborhood size ,
and the learning rate in Eq. (1) change over time. Initially, the size of
the neighborhood is relatively large to establish the map global struc-
ture. To speed up training, learning rates are relatively high because the
gross map structure is more important than precisely tuned weights. As
training progresses, the size of the neighborhood is gradually reduced,
leading the map to learn the similarity relations between input patterns
at a progressively more fine-grained level. By the end of training, the
neighborhood is usually reduced to a size where only the winner unit
and, to a lesser degree, a few surrounding units adapt in each training
cycle. Similar to neighborhood size, the learning rate is usually reduced
over time, which allows the map to fine-tune its unit vectors and slowly
settle into a locally more precise representation of the input space.

Presenting the semantic and phonetic vector representations of a
given word to the maps also results in the activation of neurons in the
corresponding semantic and phonetic maps. Activations are normalized
to 1 for the unit closest to the input vector (i.e., winning neuron) and 0
for the one with the largest distance, and change linearly for distances
in between (i.e., neighboring neurons). In this way, both the winning
and neighboring neurons tend to react more strongly to the same or
similar input vectors in future presentations. These activations are then
used to adapt the associative connections between maps by strength-
ening the connections that link active neurons across maps using
Hebbian learning. Thus, every time the neurons encoding the semantic
and phonetic vector representations of a given word are co-activated
across maps, their associative links become stronger and increase their
likelihood of being co-activated in future instances. Cross-language
connections between the two phonetic maps receive similar training.

However, if the model is exposed to a word in one language, only the
connections leading to the exposed map are trained (i.e., when training
an L1 word, connections from L2 to L1 are trained and vice versa). As a
result of this learning process, when a concept is presented to the se-
mantic map, its associated phonetic representations in both phonetic
maps are activated.

Additionally, because lexical access can decrease in humans due to
aging or attrition, small amounts of noise were added to all associative
connections during training (i.e., a random number between 0 and a
threshold parameter γ was added to each associative connection). This
approach to modeling aging and attrition was based on behavioral data
showing that lexical retrieval (Connor, Spiro, Avron, Obler, & Albert,
2004; Kavé, Knafo, & Gilboa, 2010) and verbal memory performance
(Salthouse, 2003) decline in older adulthood because the associations
that link different concepts or attributes (e.g. words and meanings)
become weaker in older adults (Naveh-Benjamin, 2000).

Finally, because Hebbian learning will always increase connections
strengths, the overall sum of outgoing associative connections is nor-
malized such that for each neuron, the L2 norm of outgoing connections
to each target map is 1. This allows the overall output of a map to stay
bounded, associative connections are able to adapt throughout model
training, and the relative strength of outgoing connections remains the
same. For efficiency, both normalization and connection noise are ap-
plied only once per training epoch (i.e. per year over the simulated
lifetime of the model).

2.6. Simulations of human naming performance

Once training is completed, naming a specific word in either lan-
guage can be simulated by presenting its semantic vector representation
to the semantic map of the BiLex model. The resulting activation is then
propagated to the phonetic map of the language simulated via the as-
sociative connections resulting in phonetic map activation. The weight
vector of the most highly activated phonetic unit is then compared to all
the phonetic representations in the corpus of that particular language,
the word with the minimal distance is identified and produced as
output. If the output word is the same as the original input, the word is
counted as correctly named. The simulated naming performance is then
calculated as the percentage of words that are correctly named in this
way. In order to simulate human performance separately on each
naming test, the corpus was split into two subsets. The first subset of
words was used more frequently than the rest of the corpus for model
training to reflect the high-frequency of words included in the 60-item
naming screener. The second subset included 100 relatively rare words
of the corpus that were used with less frequency for model training to
reflect the inclusion of low-frequency words in the BNT. The higher and
lower frequency subsets were then used for simulations of performance
on the 60-item naming screener and the BNT respectively. As with the
participants, a simulated composite naming score for each trained BiLex
model was calculated as the average of both naming tests, and was used
to evaluate how well the model’s simulated scores were able to match
actual naming performance (i.e., composite naming score).

2.7. Evolutionary algorithm, individual and global training parameters

A key feature of BiLex is its ability to capture the effects of an in-
dividual’s language learning history on lexical access. Thus factors in-
cluding age at testing, overall language exposure, and L2 AoA reflect the
individual differences between participants (i.e., individual training
parameters), whereas all other parameters governing model training
remain constant across individuals (i.e., global training parameters).
The individual training parameters were based on each individual’s
self-reported LUQ data. The age at testing indicated the number of
epochs used for model training, one training epoch per simulated year
of life for each simulated participant. The overall language exposure
metric computed for each language determined the proportion of
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English and Spanish words randomly selected for training during each
simulated year (as described in Section 2.5). L2 AoA was accounted for
as zero exposure in the L2 phonetic map up to the reported L2 AoA at
which point training of the L2 phonetic map and its associative links
with the semantic map commenced.

The global training parameters included the learning rate , and the
neighborhood size at different simulated ages, the scale γ of the
random noise added to associative connections each epoch to simulate
aging and language attrition effects, the size N of grid neurons for each
of the three SOMs and word frequency. We used an evolutionary al-
gorithm (EA, Bäck, 1996) to find the best-fit set of global parameters
that when combined with the individual parameters of each participant
would result in a set of individually-tailored BiLex models that were
able to reproduce each participant’s naming performance in each lan-
guage. EAs are population-based optimization algorithms that use
biologically inspired mechanisms to evolve a population of candidate
solutions to a given problem (i.e., candidate sets of global training
parameters). We used a steady-state EA which started out with a
random population of candidate solutions that were continuously op-
timized and assessed using an evaluation function (see Section 2.8 for
details). This optimization took place by repeatedly selecting, re-
combining, and mutating high-fitness candidate solutions, discarding
old ones and replacing low-fitness ones with the offspring of high-fit-
ness ones according to the evaluation of the quality of each candidate
solution (i.e., goodness-of-fit) while keeping each population at an
approximately constant size. A candidate solution in the EA consisted of
20 numeric values encoding all global training parameters (see
Appendix A for details on the optimization of training parameters). An
initial population of 100 candidate solutions was generated by choosing
random values within reasonable intervals chosen empirically for each
parameter. For both learning rates and neighborhood sizes , a
parameter value was required for every year of training. An important
goal was to speed up the production of reasonable candidate solutions
and maintain population diversity while limiting the number of opti-
mized parameters to avoid overfitting. Thus, both parameters were
optimized only for certain fixed ages and parameter values for the ages
in between were determined using linear interpolation. Also, to ensure
that parameters stayed reasonable over time both parameters were
constrained to non-increasing values after age 4 during model training.

New candidate solutions were added to the population whenever
the population size fell below a threshold of 30. For efficiency, instead
of adding new candidates one at a time, the population size was in-
creased to a predetermined maximum of 70. The cycle of evaluation,
selection, recombination, and mutation was repeated as long as a new
best-fit parameter set was found at least once in every 500 candidates
added to the population. However, if none of the most recent 500 so-
lutions was able to improve on the previous best solution, new candi-
dates were instead added by just selecting and mutating (i.e., skipping
the recombination step, but increasing the mutation rate to 0.5). This
kind of mutation burst allowed maintaining population diversity while
preventing the EA from converging on a sub-optimal solution prema-
turely. The EA optimization was run until no new best-fit candidate
solution was found in the most recent 1000 candidates added to the
population. All parameter settings governing the EA, such as population
sizes and mutation rates, were set empirically and are explained else-
where (Grasemann, Peñaloza, Kiran, & Miikkulainen, in press).

2.8. Fitness evaluation of optimized candidate solutions

To evaluate how well a particular candidate solution in the popu-
lation was able to match the naming performance of a given partici-
pant, a BiLex model was trained using the combined global and in-
dividual training parameters. Naming scores in each language were
then simulated separately for the 60-item naming screener and the BNT
using the trained BiLex model. The goodness-of-fit (GOF) for candidate
solution c in the population on individual participant i GOF( )ci was then

calculated as the sum of squared residual fitting errors over the four
tests scores (both naming tests in English and Spanish). Additionally, to
evaluate how well candidate solution c was able to match naming
performance in general, its GOF was averaged over all individual
training parameters sets available for model fitting by the EA. The fit-
ness of candidate c was then calculated as

=
=

fitness N
GOFc

i
N

ci1

where N is the number of individual parameter sets on which c was
evaluated.

Model training and testing was implemented on GPU hardware
using TensorFlow (Abadi, Agarwal, Barham, Brevdo, Chn, Citro, &
Ghemawat, 2015). To increase efficient use of available computing
resources, a modified evaluation function based on the age layering
technique (Shahrzad, Hodjat, & Miikkulainen, 2016) was used to limit
full evaluations to just the most promising candidate solutions in the
population (for details see Grasemann et al., in press).

2.9. Cross-validation

We conducted a five-fold cross-validation through random data
splitting to evaluate the simulation performance of BiLex and the EA
parameter fitting procedure. This analysis allows to ensure the best-fit
candidate solution is reliably comparable to other high-fitness solutions
(i.e., and therefore is not an outlier in the population) while minimizing
the possibility of data over-fitting. Each of the 33 participants were
randomly assigned to five test sets (n=6 or 7), with the exception that
each of the five test sets included one monolingual participant to ensure
that each EA was exposed to the full range of both language exposure
and naming performance. For each test set, the remaining participants
were assigned to the corresponding training set (n=27 or 26), and
their individual training parameters were used for GOF evaluation by
the EA during evolution. The five-best fit candidate solutions from each
EA were used to train individual BiLex models for each participant in its
corresponding test set using their individual training parameters to-
gether with the global training parameters evolved to match other
participants’ naming scores.

3. Results

3.1. LUQ metrics and naming performance in Spanish and English

Bilingual participants presented varying profiles of language
learning history in terms of their L2 AoA (M=12.50, SD=11.38;
range=0–40) their lifetime exposure to Spanish (M=0.58,
SD=0.21; range= 0.18–0.89) and English (M=0.42, SD=0.21;
range=0.10–0.82) and their current use of Spanish (M=0.41,
SD=0.32; range= 0–1) and English (M=0.59, SD=0.32;
range=0–1). They also showed a wide range of naming performance
in both languages. This variability was evident on the Spanish BNT
(M=0.72, SD=0.17; range= 0.27–0.95), the 60-item naming
screener (M=0.82, SD=0.15; range= 0.23–0.95), and on the re-
sulting composite naming score in Spanish (M=0.77, SD=0.15;
range=0.25–0.95). Likewise, a large individual variation in naming
performance was also observed on the English BNT (M=0.70,
SD=0.17; range= 0.30–0.98), the 60-item naming screener
(M=0.82, SD=0.15; range= 0.46–1) and consequently in the com-
posite naming score in English (M=0.76, SD=0.16;
range=0.40–0.99) (Table 1).

Thus, the behavioral data available for simulations are re-
presentative of a large range of bilingual speakers across different ages
at testing, L2 AoA, lifetime exposure and current language use (i.e., re-
flected in the individual overall language exposure), and levels of naming
ability in both languages. The inter-individual variability in bilingual
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language learning history is important for the validation of the BiLex
model, as it allows to test the assumption that when considering L2
AoA, lifetime exposure and current language use as individual parameters
for model training, BiLex can account for individual differences in
naming performance in each language across different profiles of bi-
lingualism. As expected, the monolingual participants showed ex-
tremely high lifetime exposure and current use of their native language
accompanied by an equally high naming performance in their native
language and only minimal ability in the other language (Table 1). This
confirms that the test sets could benefit of extreme profiles of high
naming performance in the context of high exposure and use of just one
language.

3.2. Cross-validation of the EA parameter fitting method

The five EAs were run on the five training sets and each produced a
number of highly fit candidate solutions with comparable best-fitness
values across runs M=12.83; SD=0.72. The final five best-fit candi-
date solutions (Appendix B) were found by the EAs after evaluating
approximately 2750 candidate solutions (M=2749, SD=1023, range:
1024–3727). Although training sets differed for all runs, the EAs con-
verged on similar parameters in many cases, e.g. low but finite
minimum exposure ε (M=0.04, SD=0.0137, range=0.019–0.08),
and large initial neighborhood size (M=08.06, SD=1.17,
range=6.29–9.46) that dropped to a much lower size (M=0.59,
SD=0.049, range: 0.5–0.63) by age 25.

To evaluate the overall simulation performance of BiLex, we con-
ducted multiple regression analyses for each language separately. For
English, the statistical model included the English simulation composite
score (i.e., the average of all five simulated composite naming scores for
this language) as predictor, the actual composite naming scores in English
as the dependent variable, and language (whether English is L1 or L2)
as a covariate. The same analysis was conducted for Spanish. The re-
gression analysis for English showed that the English simulation com-
posite scores significantly predicted actual composite naming scores in
English F (2, 30)= 73.68, p < .0001, R2=0.83 after controlling for
language (b=1.08, SE=0.10, t=10.72, p < .0001). Likewise, the
regression analysis for Spanish revealed that the Spanish simulation

composite scores significantly predicted actual composite naming scores
in Spanish F (2, 30)= 31.9, p < .0001, R2=0.68 after controlling for
language (b=0.86, SE=0.19, t=4.39, p < .0001). These results
demonstrate that by using EA-optimized parameter sets, BiLex is also
able to predict the naming performance of unknown individual parti-
cipants in each language regardless of whether the language is the
native or the second language (Fig. 2).

3.3. Effects of L2 AoA and language exposure on map organization

The best-fit candidate solution identified by the EA allowed the
Bilex model to acquire highly organized SOMs in both the semantic and
phonetic space reflecting the organization of an adult bilingual lexicon.
Appropriate map organization is reflected in its local structure (i.e.,
units encoding word input representations cluster in semantic and
phonetic categories and differentiate well from each other) and global
structure (i.e., similar word categories tend to be neighbors and all the
map space is used appropriately for representation) (Fig. 3). Im-
portantly, BiLex was able to capture how the representation of words in
the L2 phonetic system can be modulated by differences in L2 AoA and
language exposure leading to different degrees of L2 naming perfor-
mance (Fig. 4). More specifically, early AoA and high exposure lead to
well-organized L2 phonetic maps and highest naming performance
(> 90% accuracy). As long as AoA was early, the L2 phonetic map
organized well globally and locally (i.e., words cluster in categories
with no overlapping representations) even for relatively low exposure,
with still good naming performance (∼80% accuracy). Late AoA led to
a decreased global organization of the L2 phonetic map and a slightly
decreased naming performance even at high exposure (∼70% accu-
racy). Finally, late AoA and low exposure led to a deficient global and
local organization of the L2 phonetic map and low naming performance
(∼40% accuracy).

4. Discussion

The present study sought to examine (i) whether our BiLex com-
putational model can accurately simulate lexical access in picture
naming in Spanish-English bilinguals while taking into account their L2

Fig. 2. Results of five-fold cross validation. Scatterplots show how the simulation composite scores (y axis) predicted actual composite naming scores (x axis) in all
participants in both English (left) and Spanish (right) across all five best-fit candidate solutions.
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AoA, degree of lifetime exposure and current use of each language and
(ii) whether the model can predict naming accuracy in participants
whose data was not used for model training. Our findings indicate that
the BiLex model was able to simulate a wide range of naming perfor-
mance in all the participants, explaining 83% of the variance in their
naming scores in English and 68% in Spanish irrespective of whether
the language was L1 or L2. Moreover, the cross-validation approach
showed that when using the five best-fit candidate solutions determined
by the EAs, BiLex was also able to accurately match the naming per-
formance of other participants whose data were not part of model
training, which validates its predictive capacity on naming performance
across different individual profiles of bilingualism. These findings align
with previous behavioral research suggesting that age of L2 onset and
degree of exposure and use of each language modulate lexical access in
bilinguals (Hirsh et al., 2003; Kastenbaum et al., 2018; Kohnert et al.,
1998) and provide additional evidence that SOM-based computational
approaches can contribute to our understanding of how such factors
affect bilingual language representation and processing (see Li, 2013; Li
& Zhao, 2013 for a review).

The EA approach was useful in determining efficient candidate so-
lutions that by gradually reducing both neighborhood size and learning
rate allowed to establish a well-organized model architecture

representing a fully developed adult bilingual mental lexicon. It is
generally assumed that the semantic and phonetic systems are struc-
tured as topographic maps, where concepts are organized spatially
according to some degree of similarity (Caramazza, Hillis, & Leek,
1994; Farah & Wallace, 1992). In BiLex, this organization is reflected in
the proximity of words with similar features in the semantic and pho-
netic space, and the observation that similar categories neighbor each
other even when information regarding category membership was not
part of the training input. It is worth noting that because the semantic
representations of words were always activated regardless of the lan-
guage being trained in each learning instance, the resulting semantic
map was well-organized in global and local structure and conceptual
knowledge was largely distributed and well-differentiated in the se-
mantic space for all participants. However, the organization of the L2
phonetic map was crucially affected by L2 AoA and its interaction with
L2 exposure. For instance, very early L2 AoA led to highly functional
and very well-organized maps in terms of their global and local struc-
ture resulting in high L2 naming performance. On the other hand, the
later the L2 AoA the more L2 exposure was needed for the model to
achieve a still functional but less-efficient organization and distribution
of representations in the phonetic space, which in turn resulted in al-
ready lower degrees of L2 naming performance. At the end of this

Fig. 3. Organization of the semantic and English phonetic maps after training a BiLex model that simulates naming performance of a highly proficient bilingual.
Representative BiLex model that achieved close to 100% naming accuracy in both languages with high exposure and L2 AoA=0 for both languages. (A) Full
architecture of BiLex depicted for reference, with one semantic map and one phonetic map for each language. (B and C) Semantic map: global (B) and local (C)
depictions of an entire semantic map after training. Each map unit is colored according to the semantic category associated with the closest word (e.g. the category of
“apple” is “fruit”). Words tend to cluster under similar categories and categories tend to be neighbors (e.g. “fruit” is next to “vegetables”). (D–F) English phonetic map
after training: (D) full phonetic map colored according to semantic categories for contrast, showing that English words do not form color-coded semantic clusters as in
figure (B) because they are organized in space according to their phonetic properties. This panel also shows global (E) and local (F) depictions of the phonetic map
this time colored according to rough phonetic categories reflecting the number of syllables before and after the stress of each word (e.g. map units colored purple
under the cluster 0,2 encode words with no syllables before and two syllables after the main stress). The Spanish phonetic map organization (not shown in detail)
resembles that shown for the English phonetic map (D–F).
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spectrum, very late L2 AoA heavily impacted the phonetic map with a
poor global and local organization and no amount of exposure being
able to aid native-like functionality resulting in decreased L2 naming
performance. Models with late L2 AoA had neighborhood sizes and
learning rates that started out too small leading to phonetic features of
words to be less efficiently distributed in the global structure of the
phonetic space and less well differentiated from other representations
to the extent that some overlapped in high word density areas of the
map. These findings are in line with previous computational accounts of
bilingual processing showing that representational structure is highly
dependent on L2 AoA (Grasemann et al., 2011; Miikkulainen & Kiran,
2009; Zhao & Li, 2010) with better L2 lexical organization for early as
opposed to late L2 learning (Zhao & Li, 2007) and an overall less well-
organized lexical network for L2 as compared to L1 even in proficient

bilinguals (Borodkin, Kenett, Faust, & Mashal, 2016). Moreover, it has
been proposed that this type of overlapping organization of word re-
presentations in late L2 AoA can lead to increased difficulty, higher
confusion rates and errors in word retrieval due to competition (Zhao &
Li, 2007, 2010).

Importantly, a central working assumption underlying the BiLex
model is that, similar to an efficient set of training parameters (i.e.
candidate solution) necessary to achieve well-organized SOMs, lan-
guage acquisition during human development requires an equivalent
progression of factors governing learning. In other words, the cortical
structures that underlie the human lexicon start out highly flexible and
adaptive, later in life adapt only to a smaller degree, both in terms of
learning intensity and overall flexibility while plasticity and function-
ality decrease with late L2 learning. Thus, such a process can also

Fig. 4. Effects of L2 AoA and exposure on the global structure of an L2 phonetic map. Depiction of differences in the organization of the L2 English phonetic map
across four individual BiLex models simulating naming performance in four different bilinguals across a range of L2 AoA (early–late) and exposure (high-low). (A)
Early AoA and high exposure leads to well-organized L2 phonetic maps and high naming performance. (B) Early AoA leads to well-organized maps and high naming
performance even for relatively low exposure. (C) Late L2 AoA impacts both global organization of the phonetic map and naming performance even at high exposure.
(D) Late AoA and low exposure, lead to deficient global and local map organization (i.e., less map area used with high overlap between word representations) and low
naming performance.
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provide a mechanistic explanation for age-related limitations on L2
learning and the modulatory effect of language exposure in bilinguals
as revealed by previous behavioral research showing that: (i) in early L2
AoA, language exposure and use contribute to receptive and expressive
vocabulary growth in the first years of life (Legacy, Zesiger, Friend, &
Poulin-Dubois, 2018; Ribot, Hoff, & Burridge, 2017) while proficiency
(which is ultimately dependent on language exposure) determines
naming performance in adulthood (Hernandez & Kohnert, 1999;
Kohnert et al., 1998), (ii) in late L2 AoA naming patterns can approx-
imate those of monolingual speakers with increased L2 use and ex-
posure (Malt, Li, Pavlenko, Zhu, & Ameel, 2015) and (iii) in late L2 AoA
but limited L2 exposure, a lower performance in picture naming and
verbal fluency can be expected (Bethlehem, de Picciotto, & Watt, 2003;
Hernandez & Li, 2007).

It is worth noting that BiLex was able to simulate naming perfor-
mance reasonably well for individuals above the age of 30, considering
that the LUQ collected fine-grained information about language ex-
posure in 3-year intervals up to this age, but included a single interval
for the age range “30 years and up”. While language exposure can differ
later in adulthood, the model accounted for current language use
during the last five years of life of each participant to capture more
recent language exposure and usage, which may have helped improving
the naming simulations for older individuals, especially for those with
late L2 AoA. It is also possible that fine-grained exposure metrics from
birth to early adulthood are more crucial to simulate naming perfor-
mance in older individuals who acquired their L2 before the age of 30
as these metrics can better reflect changes in vocabulary due to de-
velopment, and environmental influences from formal education and
working experience. However, the model may have achieved better
simulations for older bilinguals if equally fine-grained exposure data for
later years in life would have been available as input for model training.
Future research will need to extend the LUQ fine-grained assessments of
language exposure to the entire adulthood lifespan to test this possi-
bility.

Finally, our model also incorporated small amounts of noise to the
associative connections in order to reflect aging and attrition effects on
lexical access in older bilinguals immersed in an L2 speaking environ-
ment. As in previous work (Grasemann et al., 2011) noise led to de-
creased performance in the bilingual models thus capturing naming
ability also in older bilinguals. Examining the differential effects of
aging and attrition in bilingual representation and lexical processing
was beyond the scope of this study. However, because most of the at-
trition literature typically involves older adults and therefore their
impact in lexical access could be at least partially confounded (Rossi &
Diaz, 2016), adaptations of the BiLex model could potentially help to
disentangle the effects of aging from those of attrition in bilingual
lexical access across different established L1 and L2 attrition profiles
(van Els, 1986). Similarly, computational experiments with BiLex could
allow examining the effects of decreased language exposure and use
and the influence of the other language as main factors influencing
language attrition (Goral, 2004).

The architecture of Bilex used the RHM (Kroll & Stewart, 1994; Kroll
et al., 2010) as a reference framework for bilingual word production
with special focus on language proficiency. However, our findings do
not prove against alternative bilingual models. In fact, BiLex may
conform to other relevant models that make similar assumptions about
the organization of the bilingual mental lexicon (see French & Jacquet,
2004 for a review). Although beyond the goal of the study, it is also
worth considering the architecture of BiLex as a plausibility model of
the cortical organization of language in the bilingual brain. The re-
presentation of a single semantic system shared across languages in our
model is in line with neuroimaging findings of a substantial neural
overlap of semantic representations for equivalent words in L1 and L2
in the bilateral occipito-temporal cortex and the anterior temporal lobes
(van de Putte, De Baene, Brass, & Duyck, 2017). This last region may
operate as a crucial hub for semantic processing as evidenced by lesion

studies of semantic dementia (see Lambon Ralph, Jefferies, Patterson, &
Rogers, 2016 for a review). However, the separation of L1 and L2
phonetic representations would be expected at the local neuronal level
of the cortical maps involved in specific aspects of processing these
representations (i.e., audition, articulation, sequential processing, etc.)
instead of a strict separation at the higher neuroanatomical level of
cortical organization (Hernandez, Li, & MacWhinney, 2005). At this
gross neuroanatomical level, neuroimaging studies suggest a large
neural overlap for L1 and L2 processing that only extends to additional
regions presumably to compensate for the additional cognitive de-
mands related to low L2 proficiency (Sebastian, Laird, & Kiran, 2011),
and both languages are typically affected in bilinguals with aphasia
presenting lesions in perisylvian language regions (Peñaloza & Kiran,
2019).

Importantly, our findings also suggest potential avenues for future
research. For instance, while BiLex was originally designed to simulate
lexical access in word production, it can also allow for simulations of
word comprehension as the bidirectional connections between SOMS
allow to propagate activation from the two phonetic maps to the se-
mantic map. Also, the architecture of BiLex can facilitate the ex-
amination of how individual differences in L2 AoA and language ex-
posure modulate cross-language co-activation during lexical access.
Moreover, BiLex could further improve its simulation capacity by in-
corporating cognitive factors that influence lexical access in bilinguals
including cognitive control (Green & Abutalebi, 2013) and working
memory (Linck, Osthus, Koeth, & Bunting, 2014) and biological factors
such as dopamine-related genes known to modulate the effects of AoA
and exposure in L2 proficiency (Vaughn & Hernandez, 2018). Finally,
BiLex could contribute to both a better understanding of language
breakdown and the prediction of treatment-induced recovery in bilin-
gual adults with language dysfunction. Specifically, our findings sug-
gest that BiLex can be used to simulate a healthy bilingual language
system that reflects the premorbid language processing abilities of bi-
linguals with language deficits using their L2 AoA, language exposure
and usage as individual training parameters. Such individual BiLex
models can be then used in further simulations of language impairment
and rehabilitation outcomes that can ultimately help predicting in-
dividual response to treatment provided in one language versus the
other.

5. Conclusions

The present study provides evidence of the important contribution
of computational modeling to the examination of relevant aspects in the
language learning history of bilingual speakers that can modulate their
lexical processing abilities in each language. Using simulation and
cross-validation experiments, we demonstrate that BiLex can offer a
computational account of the influence of L2 AoA and language ex-
posure and use on (i) individual differences in lexical access in speakers
of different ages and with varying bilingual backgrounds, and (ii) in-
dividual variation in the representational structure of the bilingual
mental lexicon. Future research based on BiLex can help examining the
effects of other relevant factors such as aging and attrition, and further
our understanding of lexical access deficits and recovery.

Statement of significance

The present study aimed to develop and validate BiLex, a compu-
tational connectionist model of the bilingual lexicon. Here we demon-
strate that BiLex is able to account for individual differences in bilin-
gual lexical access by taking into account the L2 age of acquisition and
the degree of relative use and exposure to each language in healthy
bilingual speakers. Our findings demonstrate that these factors of the
language learning history of bilingual speakers can influence the or-
ganization of the bilingual mental lexicon and its functionality in word
retrieval. Importantly, they set the stage for continued work on the
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impact of lesions and rehabilitation on bilingual word retrieval.

Acknowledgments

This work was supported by the National Institute on Deafness and
Other Communication Disorders of the National Institutes of Health
[grant U01DC014922] awarded to Swathi Kiran. The content is solely
the responsibility of the authors and does not necessarily represent the
official views of the National Institutes of Health. The authors would
like to thank all the participants involved in this study. We also thank

Marina Calleja and Bianelkis Ramos for their assistance with participant
recruitment and Leela Rao for help with data collection.

Declaration of Competing Interest

Swathi Kiran serves as a consultant for The Learning Corporation
with no scientific overlap with the present study. Risto Miikkulainen
serves as vice-president for Sentient Inc. with no scientific overlap with
the present study.

Appendix A

A.1. Optimization of global training parameters

Minimum exposure parameter ε. Because monolingual participants tended to show above zero naming performance in their non-native language,
a minimum exposure parameter ε was added to allow the model to adapt to these data. During model training, the exposure percentage for each
language was then clipped to values between ε and (1- ε).

Learning rate and neighborhood size. To minimize potential data overfitting (i.e., by allowing the EA to evolve too fine-grained encodings in
limited participant data across training samples), both learning rate and neighborhood size were encoded as piecewise-linear functions of time,
i.e. their specific values were evolved at a small number of simulated ages (1, 4, 7, 10, 13, 19, 25, and 50) and interpolated linearly for intermediate
values.

Associative connections. Similar to the SOMs, the associative connections also required a learning rate at each time during training. A single
factor k was added to limit the overall number of evolved global training parameters, such that at each time the learning rate used for associative
connections was ' =k× . In this way, the scale of the learning rate for associative connections was independent of that for SOMs, but changed in
the same way over time.

Minimum word frequency. The word frequency training parameter consisting in the minimum word frequency used for the rarest word in the
corpus was included in order for the model to simulate differences in word frequencies between the BNT and the naming screener.

Number of words trained per simulated year. Although initially an evolved parameter, the number of words trained per simulated year was fixed
to 1.5 as early experiments showed that any value above 1.5× corpus size allowed well-organized maps and accurate naming simulations.

Appendix B

See Table A.
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