X-ray photoelectron spectroscopy - An introduction

Spyros Diplas

spyros.diplas@sintef.no
spyros.diplas@smn.uio.no

SINTEF Materials & Chemistry, Materials Physics - Oslo
&
Centre of Materials Science and Nanotechnology, Department of Chemistry, UiO
Material Characterisation Methods

- Thin Film X-Ray Diffraction
- Reflection High Energy Electron Diffraction
- Low Energy Electron Diffraction
- Scanning Tunneling Microscopy
- Transmission Electron Microscopy
- Electron Diffraction
- X-Ray Diffraction
- Extended X-ray Absorption Fine Structure
- Surface EXAFS
- Extended Electron Energy Loss Fine Structure
- Electron Energy Loss Spectroscopy
- X-ray Photo-electron Spectroscopy
- Static Secondary Ion Spectroscopy
- Dynamic SIMS
- Imaging SIMS
- Small Area XPS
- Time-of-Flight (imaging) SIMS
- Scanning Auger electron Microscopy
- Fourier Transform Infra-Red Spectroscopy
- Scanning Electron Microscopy
- Energy Dispersive X-ray Analysis
- Nuclear Magnetic Resonance
- Mass Spectroscopy Gas Chromatography
What is surface?

• What happens at surfaces is extremely important in a vast range of applications from environmental corrosion to medical implants.
• A surface is really the interface between different phases (solid, liquid or gas).
• We can think of the surface as the top layer of atoms but in reality the state of this layer is very much influenced by the 2 – 10 atomic layers below it (~0.5 – 3 nm).
• Surface modification treatments are often in the range of 10 – 100 nm thick. >100 nm can be thought of as the bulk.
• Surface analysis encompasses techniques which probe the properties in all these ranges.

God made solids, but surfaces were the work of the devil
-------Wolfgang Pauli
Surface Analysis - Techniques Available

- Properties and reactivity of the surface will depend on:
 - bonding geometry of molecules to the surface
 - physical topography
 - chemical composition
 - chemical structure
 - atomic structure
 - electronic state

No one technique can provide all these pieces of information. However, to solve a specific problem it is seldom necessary to use every technique available.
XPS-Basic Principle

Excitation

$$E_{\text{kin}} = h\nu - E_B - \omega$$

De-excitation

$$E_{KL2,3L2,3}(Z) = E_K(Z) - [E_{L2,3}(Z) + E_{L2,3}(Z + 1)]$$
Auger electron vs x-ray emission yield

![Graph showing the probability of Auger electron emission and X-ray photon emission as a function of atomic number for elements B, Ne, P, Ca, Mn, Zn, Br, Zr.](image)

- **Auger Electron Emission**
- **X-ray Photon Emission**
Schematic of an XPS spectrometer

Number of emitted electrons measured as function of their kinetic energy
Examples of XPS spectrometers
Instrument: Kratos Axis Ultra$^{\text{DLD}}$
Instrument: Theta Probe

- Spectroscopy
 - Source-defined small area XPS
 - 15 µm to 400 µm
- Snapshot spectrum acquisition
 - Up to 112 channels
 - Faster serial mapping
 - Faster profiling
- Unique parallel ARXPS with up to 96 channels
- Large samples (70 mm x 70 mm x 25 mm)
- Sputter profiles
- Mapping possible up to full size of sample holder
- ISS included

Target applications
- Thickness measurements
- Surface modification, plasma & chemical
- Self assembly
- Nanotechnology
- Ultra thin film technologies
- Shallow interfaces
Sample requirements

- Has to withstand high vacuum ($\leq 10^{-7}$ Torr).
- Has to withstand irradiation by X-rays.
- Sample surface must be clean!
- Reasonably sized.
XPS Depth of Analysis

The probability that a photoelectron will escape from the sample without losing energy is regulated by the Beer-Lambert law:

\[
\frac{-z}{\lambda_e(E) \cos \theta} e^{\frac{z}{\lambda_e(E) \cos \theta}}
\]

Where \(\lambda_e\) is the photoelectron inelastic mean free path

Attenuation length (\(\lambda\)) \(\approx 0.9\) IMFP

IMFP: The average distance an electron with a given energy travels between successive inelastic collisions
Features of the XPS spectrum

- Primary structure
 - Core level photoelectron peaks (atom excitation)
 - Valence band spectra
 - CCC, CCV, CVV Auger peaks (atom de-excitation)

- Secondary structure
 - X-ray satellites and ghosts
 - Shake up and shake off satellites
 - Plasmon loss features
 - Background (slope)
XPS spectrum ITO

Auger peaks
- Sn MNN
- In MNN
- O KLL

Photoelectron peaks
- Sn 3d
- In 3d
- Sn 3p
- In 3p
- Sn 3s
- In 3s
- O 1s

Other peaks
- In/Sn 4s
- In/Sn 4p
- C 1s

MENA 3100 - February 2017
Peak width (ΔE)

\[\Delta E = (\Delta E_n^2 + \Delta E_p^2 + \Delta E_a^2)^{1/2} \]

- Gaussian broadening:

- Instrumental:

 There is no perfectly resolving spectrometer nor a perfectly monochromatic X-ray source.

- Sample

 For semiconductor surfaces in particular, variations in the defect density across the surface will lead to variations in the band bending and, thus, the work function will vary from point to point. This variation in surface potential produces a broadening of the XPS peaks.

- Excitation process such as the shake-up/shake-off processes or vibrational broadening.

- Lorentzian broadening:

 The core-hole that the incident photon creates has a particular lifetime (τ) which is dependent on how quickly the hole is filled by an electron from another shell. From Heisenberg's uncertainty principle, the finite lifetime will produce a broadening of the peak.

 \[\Gamma = \frac{\hbar}{\tau} \]

 Intrinsic width of the same energy level should increase with increasing atomic number.
ΔE(1) = kΔq + ΔV_M - ΔR

Initial state contribution

• Δq: changes in valence charge

• ΔV_M: Coulomb interaction between the photoelectron (i) and the surrounding charged atoms.

Final state contribution

• ΔR: relaxation energy change arising from the response of the atomic environment (local electronic structure) to the screening of the core hole.
Chemical shift - Growth of ITO on p c-Si

![Graph showing chemical shift and growth of ITO on p c-Si](image)

- Si 2p
- In 3d
- Sn 3d

Intensity arbitrary units

Binding Energy (eV)

SiO_x

BHF 15 sec + 500°C

1.5 nm

0.5 nm

MENA 3100 - February 2017
Quantification

Unlike AES, SIMS, EDX, WDX there are little in the way of matrix effects to worry about in XPS. We can use either theoretical or empirical cross sections, corrected for transmission function of the analyser. In principle the following equation can be used:

\[I = J \rho \sigma K \lambda \]

- \(I \) is the electron intensity
- \(J \) is the photon flux,
- \(\rho \) is the concentration of the atom or ion in the solid,
- \(\sigma \) is the cross-section for photoelectron production (which depends on the element and energy being considered),
- \(K \) is a term which covers instrumental factors,
- \(\lambda \) is the electron attenuation length.

In practice atomic sensitivity factors (F) are often used:

\[[A] \text{ atomic \%} = \frac{(I_A/FA)}{\Sigma(I/F)} \]

Various compilations are available.
Chemical shift

![Graph showing chemical shift analysis with different binding energies and arbitrary units for various samples (TFAA 1, 2, 3, 4, 5). The graph includes peaks for C-C/C-H, C-O/OH, and specific binding energies such as 2p1/2 oxide and 2p3/2 metal.]
Spin-Orbit Coupling/Splitting

• **Spin-orbit coupling/splitting**: **Final** state effect for orbitals with orbital angular momentum \(l > 0 \). A **magnetic interaction** between an electron's spin and its orbital angular momentum.

• Example Ti. Upon photoemission an electron from the \(p \) orbital is removed - remaining electron can adopt one of two configurations: a **spin-up** (s=+1/2) or **spin-down** (s=-1/2) state. If no spin-orbit interaction these two states would have equal energy (degenerated states).

• **Spin-orbit coupling lifts the degeneracy**

• To realise that we need to consider the quantum number, \(j \), the **total angular momentum quantum number**.

• \(j = l + s \) where \(s \) is the spin quantum number (±½). For a \(p \) orbital \(j=1/2 \) or \(3/2 \). Thus the final state of the system may be either \(p1/2 \) or \(p3/2 \) and this gives rise to a splitting of the core-level into a doublet as shown in the figure above.

• **Spin-orbit coupling** is described for light elements by the Russell-Saunders (LS) coupling approximation and by the \(j-j \) coupling approximation for heavier elements.

The intensity of the peaks is given by the degeneracy \(g_J = 2j + 1 \)
Plasmons

- They describe the interaction (inelastic scattering) of the PE with the plasma oscillation of the outer shell (valence band) electrons

- Plasmons in their quantum mechanical description are pseudoparticles with energy $E_p = \hbar \omega$

- $\omega = \left(\frac{ne^2}{\varepsilon_0 m}\right)^{1/2}/2\pi$

 - $n =$ valence electron density, $e, m =$ electron charge and mass
 - $\varepsilon_0 =$ dielectric constant of vacuum
Peak asymmetry in metals caused by small energy electron-hole excitations near E_F of metal.
Use of an ion gun to erode the sample surface and re-analyse
- Enables layered structures to be investigated
- Investigations of interfaces
- Depth resolution improved by:
 - Low beam energies
 - Small ion beam sizes
 - Sample rotation

Depth profile with ion sputtering

SnO₂
Sn

Depth
Angle Resolved XPS (ARXPS) for non-destructive depth profile

\[I_{(d)} = I_o \ast \exp(-d/\lambda) \]

\[I_{(d)} = I_o \ast \exp(-d/\lambda \cos \theta) \]

\[\lambda = \text{attenuation length} \quad (\lambda \approx 0.9 \text{ IMFP}) \]

\[\lambda = 538 \alpha_A / E_A^2 + 0.41 \alpha_A (\alpha_A E_A)^{0.5} \]

(\(\alpha_A\) volume of atom, \(E_A\) electron energy)
XPS-Check list

- Depth of analysis ~ 5nm
- All elements except H and He
- Readily quantified (limit ca. 0.1 at%)
- All materials (vacuum compatible)
- Chemical/electronic state information
 - Identification of chemical states
 - Reflection of electronic changes to the atomic potential
- Compositional depth profiling by
 - ARXPS (ultra thin film <10 nm),
 - change of the excitation energy
 - choose of different spectral areas
 - sputtering
- Ultra thin film thickness measurement
- Analysis area mm² to 10 micrometres
Interfacial studies of Al$_2$O$_3$ deposited on 4H-SiC(0001)

Avice, Diplas, Thøgersen, Christensen, Grossner, Svensson, Nilsen, Fjellvåg, Watts

- $d = \lambda_S \cos \theta \ln(1 + R/R\infty)$

- d: SiO$_x$ film thickness
- λ_S: inelastic mean free path for Si,
- θ: the angle of emission,
- R: the Si 2p intensity ratios $I_{\text{SiO}_x}/I_{\text{SiC}}$,
- $R\infty$: the Si 2p intensity ratios $I\infty_{\text{SiO}_x}/I\infty_{\text{SiC}}$ where $I\infty$ is the intensity from an infinitely thick substrate.
- $R\infty = (\sigma_{\text{SiO}_x, \text{SiO}_2} \cdot \lambda_{\text{SiO}_x, \text{SiO}_2}) / (\sigma_{\text{Si, Si}} \cdot \lambda_{\text{Si, Si}})$
- where $\sigma_{\text{SiO}_x, \text{SiO}_2}$ and $\lambda_{\text{SiO}_x, \text{SiO}_2}$ are the number of Si atoms per SiO$_2$ unit volume and the inelastic mean free path respectively.
- The $\sigma_{\text{SiO}_x, \text{SiO}_2} / \sigma_{\text{Si, Si}}$ ratio is given by
 - $\sigma_{\text{SiO}_x} / \sigma_{\text{Si}} = (D_{\text{SiO}_2} \cdot F_{\text{SiO}_2}) / (D_{\text{Si}} \cdot F_{\text{Si}})$
- where D is the density of the material and F the formula weight.

- For the calculations we also assumed that the Si 2p photoelectrons from both SiC and Si oxide film will be attenuated by the same amount as they travel through the Al2O3 film therefore, their intensity ratio will reflect the attenuation of the Si 2p electrons coming from the SiC through the Si oxide film.

From XPS

$\text{d= 1nm at RT, d=3nm at 1273 K}$
CIGS solar cell

- **CIGS solar cell**
 - Energy/environmental application
 - Solar cells based on Cu(In, Ga)Se$_2$ (CIGS)
 - Thin-film stack on glass
 - Mo and Zn oxide layer form electrical contacts
 - p-type CIGS film (sunlight absorber) and n-type CdS film form p-n junction
 - Excellent efficiency
 - Low cost compared to thicker silicon-based solar cells
 - Practical problem
 - Controlling film composition and interfacial chemistry between layers (affects electrical properties)
 - XPS solution
 - XPS sputter depth profiling
 - Elemental and composition information as a function of depth
 - Identify chemical gradients within layers
 - Investigate chemistry at layer interfaces

Acknowledgement: Thermo Electron Corporation
CIGS solar cell

- Depth profile of CIGS film stack
 - Demonstrates standardless quantification of XPS
 - Excellent quantification agreement between XPS and Rutherford BackScattering (RBS)
 - Both techniques show cross-over of In and Ga close to 1.6 µm depth
 - XPS tool is able to analyze product solar cell device

Acknowledgement: Thermo Electron Corporation
Elemental distribution and oxygen deficiency of magnetron sputtered ITO films

A. Thøgersen, M. Rein, E. Monakhov, J. Mayandi, S. Diplas

JOURNAL OF APPLIED PHYSICS 109, 113532 (2011)