Nanophysics 2022

- 1. Basics of crystal structures, reciprocal space
- 2. Bloch wave functions, electronic energy bands: occupation, envelope functions
- 3. Electronic energy bands: effective mass, doping
- 4. Electronic surface states: general features
- 5. Semiconductor-metal interface
- 6. Semiconductor heterostructures
- 7. Field-effect transistors and quantum wells
- 8. Experimental techniques in Nanophysics: samples preparation
- 9. Experimental techniques in Nanophysics: low-temperature techniques
- 10. Experimental techniques in Nanophysics: SPM, AFM, STM
- 11. Two-dimensional electron gas: General properties
- 12. Two-dimensional electron gas: Magnetoconductance
- 13. Quantum Hall effect: Basic information
- 14. Graphene: Main properties and band structure
- 15. Diffusive and ballistic quantum wires
- 16. Quantum point contact: Conductance quantization
- 17. Ballistic quantum wires: Conductance quantization
- 18. Phase coherence, Aharonov-Bohm effect in nanostructures
- 19. Weak localization
- 20. Resonant tunneling
- 21. Coulomb blockage: principle and devices
- 22. Single-electron tunneling devices: Main principles
- 23. Single-electron tunneling devices: "Diamond" diagrams
- 24. Quantum dots: Energy spectrum
- 25. Quantum dots: Manifestation of magnetic field
- 26. Quantum dots: Conduction resonances
- 27. Nanomechanics
- 28. Nanophotonics
- 29. Mesoscopic superlattices
- 30. Magnetic superstructures. Physics of giant magnetoresistance
- 31. Spintronics
- 32. Superconductivity as nanoscale quantum phenomenon, applications of superconductors
- 33. Nanoscale superconductivity