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• Incoming charged particle interacts with atom / 
molecule:

• An ion pair is created

Excitation / ionization

Excitation

Ionisation



• Interaction between two particles where kinetic 
energy is preserved:

• Classical mechanics:
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• Equations give, among others, maximum energy 
transferred:

Elastic collision 2
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• Proton-electron collision:

θmax = 0.03º , Emax = 0.2 %

• Electron-electron (or e.g. neutron-neutron) coll.:

θmax = 90º , Emax = 100 %

Elastic collision 3
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• Rutherford showed that the cross section is:

→ small scattering angles are most probable

• With respect to energy:

• → small energy transfers most probable

Elastic collision – cross section
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• S=dT/dx; expected energy loss per unit lenght

Stopping power
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• Charged particles: Coulomb interactions

• Most impprtant: interactions with electrons

• Impact parameter b:

Impact parameter

a: classical atomic radius



• b >> a : incoming particle passes atom at long 
distance

• Weak forces, small energy transfers to the atom

• Inelastic collisions: Predominantly excitations, some 
ionizations

• Energy transfer range from ”Emin” to ”H”

• Hans Bethe. Quantum mechanical considerations

• In the following, theory for heavy charged particles

Soft collisions 1

• r0: classical electron radius = e2/4πε0mec2

• I: mean excitation potential
• β = v/c
• z: charge of incoming particle
• ρ: density of medium
• NAZ/A : numbers of electron per gram
• H: maksimum energy transferred by soft collisions

Soft collisions 2
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• Quantum mechanics (atomic structure) is reflected in 
the mean excitation potential

Soft collisions 2

• b << a : charged pass particle pass ’through’ atom

• Large (but few) energy transfers

• Energy transfers from H to Emax

• May be considered as an elastic collision between 
free particles (binding energy is negligible)

Hard collisions 1
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• For inelastic collisions, the total cross section is thus: 

• Important: Increases with z2, decreases with v2, not 
dependent on particle mass

Collision stopping power
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• I and electron density (ZNA/A) give differences

Sc/ρ, different substances

Singly charged heavy particles



• Electron-electron scattering is more complicated; 
scattering between two identical particles

• Sc, hard/ρ (el-el) is described by the Möller cross 
section

• Sc, hard/ρ (pos-el) is described by the Bhabha c.s.

• Sc, soft /ρ was given by Bethe, as for heavy particles

• Characteristics similar to that for heavy charged 
particles

Sc/ρ, electrons and positrons

• Derivation of Sc assumes v >> vatomic electrons

• When v ~ vatomic electrons, no ionizations
• Most important for K-shell electrons
• Shell correction C/Z takes this into accout, and thus 

reduces Sc /ρ
• C/Z depends on particle energy and medium

Shell correction



• Charged particles polarizes medium which is being 
traversed

• Weaker interactions with remote atoms due to 
reduction in electromagnetic field strenght

• Polarization increases with energy and density
• Most important for electrons and positrons

Density correction
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• Density correction δ reduces Sc /ρ for liquids and 
solids

• Sc/ρ (water vapor) > Sc/ρ (water)

Density correction

Dashed line:
Sc/ρ without δ



• LETΔ is denoted the restricted stopping power
• dT/dx: mean energy loss per unit lenght – but how 

much is deposited ’locally’?

• Sc: energy transfers from Emin to Emax

• How much energy is deposited within the range of 
an electron given energy Δ?

Linear Energy Transfer 1

Electron released by ionization

Electrons leaving ’local volume’ → energy transfer > Δ

Track from charged particle

• Energy loss (soft + hard) per unit lenght for 
Emin < E < Δ:

• For Δ=Emax, we have L∞=Sc ; unrestricted LET
• LETΔ is often given in [keV/μm]
• 30 MeV protons in water: LET100 eV / L∞ = 0.53

Linear Energy Transfer 2
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• Photon may be emitted from charged particle 
accelerated in the field from an electron or nucleus

• Larmor’s formula (classical electromagnetism) for 
radiated effect from accelerated charged particle:

Brehmsstrahlung 1
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• For particle accelerated in nuclear field: 

• Comparison of protons and electrons:

• Brehmsstrahlung not important for heavy charged 
particles

Brehmsstrahlung 2
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• Energy loss by brehmsstrahlung is called radiative 
loss

• Maksimum energy loss is the totale kinetic energy T
• Radiative loss per unit lenght: radiative stopping 

power:

• weakly dependent on T and Z
• Brehmsstrahlung increases with energy and atomic 

number

Brehmsstrahlung 3
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• Total mass stopping power:

Total stopping power, electrons
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Radiation yield
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• High energy electrons (v > c/n) polarizes medium 
(e.g. water) and blueish light (+ UV) is emitted

• Low energy loss

Cerenkov effect

• Nuclear interactions: Inelastic process where 
charged particle (e.g. proton) excites nucleus →
– Scattering of charged particle
– Emission of neutron, photon, or α-particle (      )

• Not important below ~10 MeV (protons)

• Positron annihilation: Positron interacts with 
electron → a pair of photons with energy ≥ 2 x 0.511 
MeV is created. Photons are emitted in opposite 
directions.

• Probability decreases as ~ 1/v

Other interactions

4
2 He



• The range ℜ of a charged particle in matter is the 
(expectation value) of it’s total pathlenght p

• The projected range <t> er is the  (expectation 
value) of the largest depth tf a charged particle can 
reach along it’s incident direction

• Electrons:
<t> < ℜ

• Heavy charged particles: 
<t> ≈ ℜ

Range 1

• The range may be approximated by ℜCSDA
(continuous slowing down approximation)

• Energy loss per unit lenght dT/dx – gives implicitly a 
measure of the range:

CSDA-range

0 1T

CSDA

0

dT
dT

dx

−
⎛ ⎞⇒ℜ = ⎜ ⎟
⎝ ⎠∫

n n

i
i 1 i 1 i

dx dx
x T  ,  x T

dT dT= =

⎛ ⎞Δ = Δ ⇒ℜ = Δ = Δ⎜ ⎟
⎝ ⎠

∑ ∑
0T

xΔ

0 0

dT
T T T x

dx
−Δ = − Δ



• The range is often given multiplied by the density:

• Unit thus becomes [cm] [g/cm3] = [g/cm2]
• Range of charged particle depends on:
– Charge and kinetic energy
– Density, electron density and mean excitation 

potential of absorber
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• In a beam of charged particles, one has: 
– Variations in energy deposition (straggling)
– Variations in angular scattering

→ The beam, where all particles originally had the same 
velocity, will be smeared out as the particles 
traverses matter

Multiple scattering and straggling
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Projected range

Energy deposition, protons

187 MeV



Energy deposition, electrons

• Monte Carlo simulations of the track of an electron 
(0.5 keV) and an α-particle (4 MeV) in water

• Note:
e- is most scattered
α has the highest dT/dx

Monte Carlo simulations

e-

α

Excitation

Ionisation
2 nm



• Heavy charged particles may be used for radiation 
therapy – conforms better to the target than photons 
or electrons

Hadron therapy

• For stopping powers:

http://physics.nist.gov/PhysRefData/Star/Text/contents.html

• For attenuation coefficients:

http://physics.nist.gov/PhysRefData/XrayMassCoef/cover.html

Web pages


