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• Interactions between ionizing radiation and matter

• Radioactive and non-radioactive sources

• Calculations and measurement of absorbed doses 
(dosimetry)

• Radiation chemistry

• Biological effects of ionizing radiation 

• Principles of radiation protection

Contents FYSKJM4710

• To understand primary and secondary effects of 
ionizing radiation

• How radiation doses are calculated and measured

• To understand the principles of radiation protection, 
their origin and applications

Objectives



• Photon represented by a plane wave 
in quantum mechanical calculations

• In principle, two different processes:

– Absorption

– Scattering

• Scattering: coherent (elastic) og incoherent 
(inelastic)

Photon interactions
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• Cross section σ: “target area”, effective target 
covering a certain area

• Proportional to the interaction strength between an 
incoming particle and the target particle

• Consider two discs, one target and one incoming:

• σ is the total area: 

Cross section 1

incoming particle
radius r1
(direction into the paper)

electron, 
nucleus...
radius r2
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• N particles move towards an area S with n atoms

• Probability of interaction: p = nσ/S

• Number of interacting particles: Np= Nnσ/S

Cross section 2

Atom cross 
section, σ

S

no interactioninteraction

Incoming particle

• Separate between electronic and atomic cross section

• The cross section depends on:
- Type of target (nucleus, electron, ..)
- Type of and energy of incoming particle 

(photon, electron…)

• Cross section calculated with quantum mechanics 
- here visualized in a classical window

Cross section 3



• Differential cross section with respect to scattering 
angle

Cross section 4
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• Scattering without loss of energy: hν=hν’

• Photon is absorbed by atom, thereby emitted at a 
small deflection angle

• Depends on atomic structure and photon energy

• Atomic cross section:

Coherent (Rayleigh) scattering
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• Scattering with loss of energy: hν’<hν
• Photon-electron scattering; electron may be assumed 

free (i.e. unbound)

Incoherent (Compton) scattering

• Conservation of energy and momentum:

→

Compton scattering – kinematics
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Compton scattering – kinematics

• An X-ray unit is to be installed, with the beam 
direction towards the ground. Employees in the floor 
above the unit are worried. Maximum X-ray energy 
is 250 keV. What is the maximum energy of the 
backscattered photons?

Compton scattering – example
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• Klein and Nishina derived the cross section for 
Compton scattering, assuming free electron

• Differential cross section:

Compton scattering – cross section 1
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r0: classical electron radius

• Cylinder symmetry results in:

• ~ probability of finding a scattered photon in the 
interval [θ, θ+dθ]

• Total electronic cross section:

• Atomic cross section: aσ=Zeσ

Compton scattering – cross section 2
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• Scattered photons are more frowardly directed with 
increasing photon energy:

Compton scattering – cross section 3

• Cross section may be modified with respect to 
energy:

Compton scattering – cross section 3
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• Cross section may be modified with respect to 
energy:

Compton scattering – cross section 4

• Correct atomic cross section:

Compton scattering – cross section 5

Effect of electron 
binding energy

Klein-Nishina 
Carbon (Z=6) 
Copper (Z=29) 
Lead (Z=82)       



• The energy transferred to an electron in a Compton 
process:

• The cross section for energy transfer:

• Mean energy transferred:
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Compton scattering – transferred energy 1

• The fraction of incident energy transferred:

Compton scattering – transferred energy 2



• Photon is absorbered by atom/molecule; the result is 
an excitation or ionization

• Atom may deexcite and emit characteristic radiation:

Photoelectric effect 1
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• In the kinematics, the binding energy of the ejected 
electron should be taken into account:

• Assuming Eb=0, the atomic cross section is:

Photoelectric effect 2
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Photoelectric effect 2

Photoelectric cross section (dσ/dθ)/σ

• Energy of characteristic radiation depends on 
elektronic structure and transition probabilities

• ”K- and L-shell” vacancies ↔ hνK and hνL 

• Isotropic emission

• Fraction of photoelectric interactions: 
PK [hν>(Eb)K] and PL [(Eb)K<hν<(Eb)K]

• Probability for emission: YK og YL (flourescence 
yield)

• Energy emitted from the atom:
PKYKhνK+(1-PK)PLYLhνL

Characteristic radiation



• Energy release by ejection of losely bound electron

• Energy of emitted electron equal to deexcitation 
energy

• Low Z: Auger dominates

• High Z: characteristic radiation dominates

Auger effect

• General formula:

• Fraction of energy transferred to photoelectron:

• However: don’t forget Auger electron(s)

• Cross section for energy transfer to photoelectron:

Photoelectric cross section
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• Photon absorption in the nuclear electromagnetic 
field where an electron-positron pair is created

• Triplet production: in the electromagnetic field of an 
electron 

Pair production 1

• Conservation of energy:

• Average kinetic energy after absorption:

• Estimated electron/positron scattering angle:

• Total cross section:

Pair production 2
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• In the electromagnetic field from an electron, an 
electron-positron pair is created

• Energy conservation:

• Average kinetic energy:

• Primary electron is also given energy

• Threshold: 4m0c2

Triplet production
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Pair- and triplet production

κ p
p/

Z
2

or
 κ

tp
/Z

 [
cm

2 ]

Pair



• Photon (energy above a few MeV) excites a nucleus

• Proton or neutron is emitted

• (γ, n) interactions may have consequences for 
radiation protection

• Example: Tungsten W (γ, n)

Photonuclear reactions

• nV atoms per volume = ρ(NA/A)

• Number of atoms: 

n=nVV=nVSdx

• Interaction probability

p=nσ/S=nVσdx

• Probability per unit length:

μ=p/dx=nVσ=ρ(NA/A)σ
μ: linear attenuation coefficient

Attenuation coefficients 1

σ
dx

S



• NA : Avogadro’s constant; 6.022 × 1023 mole-1

• A: number of grams per mole

• NA/A: number of atoms per gram

• NAZ/A: number of electrons per gram

• Number of atoms per volume: ρ(NA/A)

• Etc.

Attenuation coefficients 2

• Total mass attenuation coeffecient:

• Coefficient for energy transfer:

• Braggs rule for mixture of atoms:

Attenuation coefficients 3
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Attenuation coefficients 4
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• Beam with N photons impinge absorber with 
thickness dx:

• Sannsynlighet for at ett foton skal vekselvirke: μdx

• Antall fotoner som vekselvirker: Nμdx
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• ’Probability’ for photon not interacting: e-μx

• Normalized probability

• Mean free path:

Mean free path
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Summary


